A358f что за микросхема

A358f что за микросхема

Самый популярный двухканальный операционный усилитель LM358, LM358N. Операционник относится к серии LM158, LM158A, LM258, LM258A, LM2904, LM2904V. Имеет множество схем включения, аналогов и datasheet.

Микросхемы LM358 и LM358N идентичны по параметрам и отличаются только корпусом.

Вам будут интересны даташиты и характеристики других ИМС LM317T, TL431, LM494. Они применяются совместно с импульсными стабилизаторами и блоках питания.

A358f что за микросхема A358f что за микросхема

Содержание

  • 1. Характеристики, описание
  • 2. Таблица характеристик.
  • 3. Цоколёвка, распиновка
  • 4. Аналог
  • 5. Типовые схемы включения
  • 6. Datasheet, даташит LM358 LM358N

Характеристики, описание

A358f что за микросхема

Питание ИМС может быть однополярным от 3 до 32В. Операционный усилитель стабильно работает на стандартных 3,3В. Двухполярное  питание от 1,5 до 16 Вольт.  При указанной температуре  0° до 70° характеристики остаются в пределах нормы. Если количество градусов выйдет за эти пределы, то появится отклонение параметров.

Многих интересует описание на русском LM328N, но даташит большой, основная часть понятна и без перевода. Чтобы вы не искали LM358 datasheet на русском, составил таблицу основных параметров.

Несколько популярных datasheet для скачивания:

Таблица характеристик

Параметр LM358, LM358N
Питание, вольт 3-32В
Биполярное питание ±1,5В до ±16В
Потребляемый ток 0,7мА
Напряжение смещения по входу 3мВ
Ток смещения  компенсации по входу 2нА
Входной ток смещение 20нА
Скорость нарастания на выходе 0,3 В/мсек
Ток на выходе 30 — 40мА
Максимальная частота 0,7 до 1,1 МГц
Коэффициент дифференциального усиления 100дБ
Рабочая температура 0° до 70°

Микросхемы различных производителей могут иметь разные параметры, но всё в пределах нормы. Единственное может сильно отличаться максимальная частота у одних она  0,7МГц, у других до 1,1МГц. Вариантов использования ИМС накопилось очень много, только в документации их около 20 штук. Радиолюбители расширили это количество более 70 схем.

Типовой функционал из datasheet на русском:

  1. компараторы;
  2. активные RC фильтры;
  3. светодиодный драйвер;
  4. суммирующий усилитель постоянного тока;
  5. генератор импульсов и пульсаций;
  6. низковольтный детектор пикового напряжения;
  7. полосовой активный фильтр;
  8. для усиливания с фотодиода ;
  9. инвертирующий и не инвертирующий усилитель;
  10. симметричный усилитель;
  11. стабилизатор тока;
  12. инвертирующий усилитель переменного тока;
  13. дифференциальный усилитель постоянного тока;
  14. мостовой усилитель тока.

Цоколёвка, распиновка

A358f что за микросхема

Аналог

A358f что за микросхема

..

Большая популярность определяет и большое количество аналогов LM358 LM358N. В зависимости от производителя характеристики могут немного меняться, но всё в пределах допуска.  Перед заменой проверьте электрические характеристики у изготовителя, вдруг вам не подойдёт. Схемы включения аналогичны. Аналогов  более 30 штук, покажу первую дюжину полностью схожих:по параметрам:

  1. КР1040УД1
  2. КР1053УД2
  3. КР1401УД5
  4. GL358
  5. NE532
  6. OP295
  7. OP290
  8. OP221
  9. OPA2237
  10. TA75358P
  11. UPC1251C
  12. UPC358C

Типовые схемы включения

A358f что за микросхема

Пришлось просмотреть несколько спецификаций от разных фабрик, чтобы найти самый полноценный. Большинство короткие и малоинформативные.  Чтобы было максимально понятно, как работают схемы включения LM358 и LM358N, ознакомитесь с типовым включением.

  • A358f что за микросхема
  • A358f что за микросхема A358f что за микросхема
  • Светодиодный драйвер для светодиода

Datasheet, даташит LM358 LM358N

Сфера применения, указанная производителями:

  1. блюрэй плееры и домашние кинотеатры;
  2. химические и газовые сенсоры;
  3. ДВД рекордеры и плееры;
  4. цифровые мультиметры;
  5. сенсор температуры;
  6. системы управления двигателями;
  7. осциллографы;
  8. генераторы;
  9. системы определения массы.
  1. Описание характеристик LM358N

Схема включения LM358 (N)

  • A358f что за микросхема
  • Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению.
  • Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.

LM358 цоколевка

LM358 состоит из двух ОУ, каждый имеет по 4 вывода, имеющих свое назначение. Всего получается 8 контактов. Производятся в нескольких видах корпусного исполнения, для объемного DIP и поверхностного монтажа на плату SO. Так же могут встречается в усовершенствованных корпусах SOIC, VSSOP, TSSOP.

 A358f что за микросхема

Назначение контактов для всех видов корпусов совпадает: 2,3, 5,6, — входы, 1,7 – выходы, 4 – минус источника питания, 8 – плюс источника питания.

Технические характеристики

  1. Ниже указаны предельные допустимые значения условий эксплуатации для диапазона рабочих температур окружающей среды TA от 0 до +70 °C, если не указано иное.
  2. A358f что за микросхема
  3. Основные электрические характеристики, при температуре окружающей среды TA = 25 °C.
  4. A358f что за микросхема
  5. Рекомендуемые условия эксплуатации в диапазоне рабочих температур окружающей среды, если не указано иное:
  6. A358f что за микросхема
  7. Подверженность устройства повреждению от электростатического разряда (ESD):
  8. A358f что за микросхема
  9. Также у данного устройства есть тепловые характеристики:
  10. A358f что за микросхема

Схемы подключения

Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.

  • Схема в мощном неинвертирующим усилителе. A358f что за микросхема
  • Преобразователь напряжения — ток.
  • A358f что за микросхема
  • Схема с дифференциальным усилителем.
  • A358f что за микросхема
  • Неинвертирующий усилитель средней мощности.

Аналоги

Аналогами LM358 можно считать микросхемы в которых  указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.

Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.

Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.

Маркировка

Префикс LM сначала использовался при маркировке общего назначения компанией National Semiconductor. Цифры “358” это ее серийный номер. В 2011 году эта компания  была приобретена другим производителем электроники Texas Instruments.

С этого года префикс “LM” является кодом производителя Texas Instruments, но несмотря на это, этот код используют и другие производители при маркировке своей продукции. Микросхемы LM358, LM358-N и LM358-P имеют одинаковые технические параметры.

У большинства компаний-производителей символами “-N” , “-P” обозначаются пластиковые корпуса PDIP.

Работа операционного усилителя lm358

Под термином «операционный усилитель» подразумевается микросхема дифференциальный усилитель постоянного тока, с высоким коэффициентом усиления и высоким входным сопротивлением, адаптированная для работы с внешней цепью отрицательной обратной связи.

A358f что за микросхема

Операционный усилитель (ОУ) имеет сложную внутреннюю структуру, в которую не будем углубляться сосредоточившись на практическом применении. Графический символ операционного усилителя относится не к его внешнему виду (тем более что он может быть доступен в различных корпусах), а к принципу работы:

A358f что за микросхема

Графический символ операционного усилителя. We (In) — вход, Wy (Out) — выход

Символ этот очень упрощен. Если бы мы хотели разместить на нем все необходимые детали обвязки и коррекции, пришлось бы нарисовать еще контакты. Но чаще всего этого достаточно.

Принцип действия ОУ

Подаем на усилитель через входы, обозначенные здесь символом We (+) так называемый неинвертирующий вход и / или We (-) так называемый инвертирующий вход некоторый сигнал. У него может быть даже очень небольшое напряжение. Разница входного напряжения называется дифференциальным напряжением.

  • Этот усилитель является своего рода компаратором — он будет сравнивать оба сигнала друг с другом и вести себя по-разному в зависимости от того, какой сигнал будет сильнее:
  • We (+) > We (-) => Wy ~ Uпит — Uwo
  • Если подадим более высокое напряжение на неинвертирующий вход We (+), чем на инвертирующий вход We (-), выход будет близок к напряжению Uпит, подаваемому на усилитель, за вычетом падения напряжения на усилителе Uwo.
  • We (+) < We (-) => Wy ~ 0 В
  • Если подадим более низкое напряжение на вход неинвертирующего We (+), чем на вход инвертирующего We (-) контакта, выход будет близок к нулю.
  • We (+) = We (-) => Wy ~ 0 В
  • Если подадим один и тот же сигнал на оба входа (называемый в данном случае недифференциальным сигналом), выходное напряжение будет близко к нулю.
  • Операционный усилитель, с которым будем проводить тесты, имеет обозначение LM358 (это наверное самая распространённая микросхема ОУ). Согласно информации из документации, это двойной усилитель напряжения (то есть два усилителя в одном корпусе), поэтому он имеет восемь контактов:
Читайте также:  Пятиконтактное реле схема подключения дхо

A358f что за микросхема

Слева операционный усилитель LM358; Справа схема его контактов

Вывод 8 (напряжение питания) и вывод 4 (масса) являются общими для обоих усилителей. Остальные ножки раздельные:

  1. первый усилитель состоит из ножек: 3 (We (+)), 2 (We (-)), 1 (выход).
  2. второй усилитель состоит из ножек: 5 (We (+)), 6 (We (-)), 7 (выход)

Если присмотритесь, то заметите небольшое углубление на одной стороне корпуса. На схеме в примечании вместо углубления рядом с цифрой 1 есть черная точка. Это стандартный способ маркировки передней части микросхемы. Ножки всегда нумеруются последовательно, начиная с выемки (или точки) против часовой стрелки.

A358f что за микросхема

Операционный усилитель LM358 с маркировкой ключа

Проверим как это выглядит на практике — соберем макетную плату. Напряжение питания 6 В. Для желто-зеленого светодиода выбран резистор 220 Ом. Потенциометр P1 на 10 кОм.

Внимание! Перед подключением блока питания к схеме на плате убедитесь, что операционный усилитель подключен правильно, иначе можете его повредить.

Вариант 1. Резистор R1 и светодиод D1 (желтый) подключены между плюсом блока питания и выходом операционного усилителя; неинвертирующий вход We (+) (третий вывод усилителя) также подключен к плюсу питания.

A358f что за микросхема

Схема из источника питания B1, операционного усилителя LM358, резистора R1, потенциометра P1 и диода D1

Напряжение на входе We (+) (вывод 3) выше напряжения на входе We (-) (вывод 2), поэтому на выходе усилителя (вывод 1) получаем напряжение близкое к напряжению питания, минус падение напряжения на усилителе. Разность потенциалов между источником питания B1 и выходом операционного усилителя будет слишком низкой для питания светодиода, поэтому он останется выключенным.

A358f что за микросхема

Вариант 2. Резистор R1 и светодиод R1 (в моем случае желтый) подключены между «плюсом» блока питания и выходом операционного усилителя; неинвертирующий вход We (+) (третий вывод усилителя) подключен к земле.

A358f что за микросхема

Напряжение на входе We (+) (вывод 3) ниже напряжения на входе We (-) (вывод 2), поэтому выход усилителя (вывод 1) будет близок к 0 В. Разности потенциалов между источником питания B1 и выходом операционного усилителя будет достаточно для питания светодиода, поэтому он будет светиться.

A358f что за микросхема

Вариант 3. Резистор R1 и светодиод D1 (теперь зеленый) подключены между выходом операционного усилителя и землей; неинвертирующий вход We (+) (третий выходной контакт усилителя) подключен к «плюсу» источника питания.

A358f что за микросхема

Напряжение на входе We (+) (вывод 3) выше напряжения на входе We (-) (вывод 2), поэтому на выходе усилителя (вывод 1) получаем напряжение, близкое к напряжению питания минус падение напряжения на усилителе. Разности потенциалов между выходом операционного усилителя и землей будет достаточно для питания светодиода, поэтому он будет светиться.

A358f что за микросхема

Вариант 4. Резистор R1 и светодиод D1 (зеленый) подключены между выходом операционного усилителя и массой; неинвертирующий вход We (+) (третий вывод усилителя) подключен к земле.

Напряжение на входе We (+) (вывод 3) ниже напряжения на входе We (-) (вывод 2), поэтому выход усилителя (вывод 1) будет близок к 0 В. Никакая разность потенциалов между выходом операционного усилителя и землей не предотвратит включение светодиода, поэтому он останется выключенным.

  1. Собраны результаты опытов в таблице ниже:
  2. Результаты проведенного эксперимента — влияние подключения We (+) — третьей ножки усилителя и свечения светодиода

Верна ли приведенная выше схема для всех операционных усилителей? Нет. Возьмем, к примеру, еще один, очень похожий операционный усилитель LM393. Он может проводить электричество только от точки в цепи с более высоким потенциалом (аналогично линиям 1 и 2 в таблице).

Он не проводит ток от выхода усилителя к точке в цепи с более низким потенциалом напряжения, например к земле (позиции 3 и 4 в таблице). Другими словами, если бы мы использовали усилитель LM393 для эксперимента который только что проводили, зеленый светодиод не светился бы независимо от входных сигналов.

Почему это происходит? Здесь более подробно рассмотрим внутреннюю структуру обоих усилителей:

Схема внутреннего устройства операционных усилителей: а) LM358; б) LM393

Схема слева (a) показывает внутреннюю структуру усилителя LM358, а схема справа (b) — LM393. Обе схемы сложны, поэтому не будем вдаваться в подробности. Сосредоточимся только на транзисторах, размещенных перед выходом (помечены как OUT или OUTPUT).

В LM358 прямо перед выходом есть два транзистора, которые проводят электричество в разных направлениях (пометили их красным кружком).

LM393 имеет только один транзистор непосредственно перед выходом (также в красном кружке), который предотвращает прохождение тока от усилителя через выход к земле (или к части схемы с более низким потенциалом).

Операционный усилитель адаптирован для работы с внешней цепью отрицательной обратной связи. Дело в том, что часть выходного сигнала может подаваться обратно на вход или наоборот со входа на выход усилителя.

Может быть несколько конфигураций с использованием операционного усилителя и усилителя обратной связи (например, суммирующий, вычитающий, интегрирующий и дифференцирующий усилитель), но тут рассмотрим только две из самых простых и наиболее популярных из них — неинвертирующий и инвертирующий.

Неинвертирующий усилитель

Графический символ неинвертирующего усилителя

Напряжение, подаваемое на вход We (+) выше, чем подаваемое на We (-), поэтому выходной сигнал большой, потому что он близок к напряжению питания Uпит, за вычетом падения напряжения на усилителе Uwo (We (+) > We (-) => Wy ~ Uпит — Uwo).

Часть выходного сигнала возвращается через резистор на вход We (-), таким образом этот сигнал становится больше, чем напряжение на We (+), и напряжение на выходе становится близким к 0 В (We (+) < We (-)) => Wy ~ 0 В).

Вследствие падения напряжения на выходе (и отсутствия на нем усиления сигнала на We (-)) напряжение на We (+) снова будет больше We (-).

  • На практике быстро устанавливается состояние равновесия при котором выходной сигнал будет постоянным. Его размер легко рассчитать по формуле:
  • Uwy = Uwe (+) x [(R1 + R2) / R1]
  • Предположим, что на вход We (+) поступает напряжение 0,5 В, а на выходе хотим получить в 5 раз больше, то есть 2,5 В. Подставим данные в формулу:
  • Uwy = Uwe (+) x [(R1 + R2) / R1]
  • 2,5 В = 0,5 В x [(R1 + R2) / R1]
  • [(R1 + R2) / R1] = 2,5 В / 0,5 В
  • [(R1 + R2) / R1] = 5

Отношение суммы сопротивлений резисторов R2 и R1 к R1 должно дать нам 5. Итак, предположим, что сопротивление R2 = 10 кОм и R1 = 2,2 кОм (соотношение их сопротивлений составляет 5,54).

Читайте также:  Условия реализации технологического процесса

Соберем всё на макетной плате по следующей схеме:

Прежде всего необходимо убедиться, что на вход We (+) подается соответствующее напряжение. Для этого подключите вольтметр между землей и третьей ножкой усилителя, а затем поверните ручку потенциометра до тех пор, пока мультиметр не покажет результат 0,5 В (или как можно более близкий).

Теперь измерьте напряжение на выходе усилителя, то есть между первым контактом и массой. Теоретически должны получить результат близкий к 2,5 В. Между тем, показание вольтметра составляет целых 2,88 В.

Откуда эта разница? Помните, мы не использовали резисторы с коэффициентом 5,54, а не 5. Давайте снова подставим данные (на этот раз реальные) в формулу:

  1. Uwy = Uwe (+) x [(R1 + R2) / R1]
  2. Uwy = 0,51 В x [(2,16 кОм + 10 кОм) / 2,16 кОм
  3. Uwy = 0,51 В x 5,63
  4. Uwy = 2,87 В
  5. Теоретически и практически получили почти такой же результат — 2,87 В.

Инвертирующий усилитель

  • Графический символ инвертирующего усилителя
  • Принцип действия будет объяснен на основе схемы:

Некоторым нововведением на схеме выше являются два источника питания (B1, B2), каждый из которых будет иметь напряжение 3 В. Но в нашем распоряжении только одна аккумуляторная батарейка. Это не будет проблемой — подключим вывод из центра за второй батареей. Таким образом получаем два источника питания по 3 В каждый.

Кроме того для сборки указанной схемы на макетной плате используйте: P1 — потенциометр, R1 — резистор 2,2 кОм, R2 — резистор 10 кОм (резисторы будут иметь такие же номиналы, как и в предыдущем эксперименте), D1 — зеленый светодиод, D2 — красный светодиод.

Подключим узел между источниками напряжения к земле — теоретически это будет нулевая точка. Это сделано только для расчетов.

Теперь проверим что будет, если ползунок потенциометра повернуть как можно дальше к земле. Красный светодиод будет тускло светиться. Почему? Когда регулятор потенциометра P1 заземлен, сигнал, поступающий на усилитель со входа We (+), больше, чем We (-). Посчитаем какое напряжение ожидаем получить на выходе в этом случае.

  1. Uwy = — (R2 / R1) x Uwe (-)
  2. Uwe (-) в этой ситуации связан с точкой, которая по отношению к нашей нулевой точке (теоретической массе) имеет напряжение -3 В, и это значение подставляем в формулу:
  3. Uwy = — (10 кОм / 2,2 кОм) x -3 В
  4. Uwy = — 4,54 x -3 В
  5. Uwy = 13,62 В

На выходе ожидаем 13,62 В — почему? Ведь питаем схему только от 4-х аккумуляторов с общим напряжением 6 В! Можно ли на выходе получить 13,62 В? Конечно нет.

Полученный нами теоретический результат лишь доказывает, что усилитель полностью насыщен.

В этой ситуации на выходе мы можем получить только предельное напряжение питания, за вычетом падения напряжения на самом усилителе. На практике получился результат: 1,57 В.

Теперь осторожно повернём ручку потенциометра. В какой-то момент красный светодиод погаснет, а зеленый загорится. Чем дальше потенциометр находится от земли, тем большее напряжение будет поступать на вход We (-), пока оно не станет больше чем напряжение на входе We (+).

Согласно сказанному, если сигнал на входе We (-) больше сигнала на входе We (+), на выходе получим напряжение близкое к 0 В. Но помните, что резистор R2 соединяет вход We (-) с выходом, тем самым становясь каналом для тока, который каким-то образом обходит усилитель и подключается к току на выходе.

Какого напряжения тогда ждем на выходе?

  • Uwy = — (R2 / R1) x Uwe (-)
  • Uwe (-) в этой ситуации связан с точкой, которая имеет напряжение +3 В по отношению к нулевой точке (теоретическая масса), и это значение, которое подставим для формулы:
  • Uwy = — (10 кОм / 2,2 кОм) x + 3 В
  • Uwy = — 4,54 x 3 В
  • Uwy = — 13,62 В
  • Получили тот же результат что и раньше, но со знаком минус.

Почему не получили одинаковые значения, но с противоположными знаками? Причина может заключаться в том, что усилитель работает на предельных значениях, поэтому результат может быть неверным. По этой причине будем выполнять другие измерения в диапазоне, в котором усилитель работает линейно.

Для этого установим ручку потенциометра немного вправо и немного левее от центра.

Вариант 1. На усилитель подадим напряжение + 0,2 В (естественно относительно теоретической нулевой точки). Для этого поднесите красный щуп вольтметра к средней ножке потенциометра, а черный — к третьей ножке усилителя. Осторожно поверните ручку потенциометра, пока мультиметр не покажет 0,2 В (в этом эксперименте светодиоды можно удалить, чтобы они не мешали измерениям).

Теперь измерьте напряжение на выходе — черный щуп к третьему и красный щуп к первому выводу усилителя. Как и положено настоящему инвертирующему усилителю, после подачи небольшого положительного напряжения получаем на выходе гораздо более высокое напряжение, но со знаком минус!

Вариант 2. Подадим на усилитель напряжение — 0,21 В (опять же по отношению к теоретической нулевой точке). Для этого поднесите красный щуп вольтметра к средней ножке потенциометра, а черный — к третьей ножке усилителя. Осторожно поверните ручку потенциометра, пока мультиметр не покажет — 0,21 В.

Измерьте выходное напряжение так же, как и раньше (черный щуп к третьему, красный щуп к первому контакту усилителя). Результат станет таким же, но на этот раз со знаком плюс.

  1. Для обобщения информации о неинвертирующем и инвертирующем усилителе будут использованы два графика:
  2. Неинвертирующий усилитель — небольшой сигнал на входе (положительный) даст большой сигнал на выходе (тоже положительный)
  3. Инвертирующий усилитель — небольшой сигнал на входе (положительный) даст большой сигнал на выходе (отрицательный), а небольшой сигнал на входе (отрицательный) даст большой сигнал на выходе (положительный).
  4. Конечно это простейшие схемы включения ОУ, и есть ещё немало всяких нюансов, но если вы хорошо поймёте хотя бы это, то уже встанете на более высокую ступень радиолюбительства!
  5.    Форум
  6.    Форум по обсуждению материала Работа операционного усилителя lm358

Операционный усилитель LM358: схема включения, аналог, datasheet :

От того, какая конкретно используется схема включения LM358, будет зависеть множество параметров устройства. На этом операционном усилителе можно реализовать множество конструкций, которые без проблем применяются в микроконтроллерной технике и даже в акустических системах.

Это не очень требовательный элемент – у него быстродействие не блещет, диапазон рабочих напряжений тоже небольшой, но зато он обладает главными качествами – простотой и дешевизной. Стоимость одного ОУ оптом — около 15 рублей. Поэтому неудачные эксперименты с ним не больно ударят по карману.

Особенности операционного усилителя

A358f что за микросхема

Микросхема LM358 получила широкое распространение среди радиолюбителей, так как у нее очень много преимуществ. Среди всех можно выделить такие:

  1. Крайне низкая цена элемента.
  2. При реализации устройств на микросхеме не требуется устанавливать дополнительные цепи для компенсации.
  3. Может питаться как от однополярного источника, так и от двухполярного.
  4. Питание может происходить от источника, напряжение которого 3…32В. Это позволяет использовать практически любой блок питания.
  5. На выходе сигнал нарастает со скоростью 0,6 В/мкс.
  6. Максимальный потребляемый ток не превышает 0,7 мА.
  7. Напряжение смещения на входе не более 0,2 мВ.
Читайте также:  Стол из слэба дерева и эпоксидной смолы - река, берег, остров

Это ключевые особенности, на которые нужно обращать внимание при выборе этой микросхемы. В том случае, если какой-то параметр не устраивает, лучше поискать аналоги или похожие операционные усилители.

По datasheet LM358 можно увидеть, что в одном корпусе заключено сразу два операционных усилителя. Следовательно, имеется в каждом два входа и столько же выходов. Плюс еще две ножки предназначены для подачи питающего напряжения. Всего восемь выводов у микросхемы. Цоколевка LM358 следующая:

1 – выход DA1.1.

2 – минусовой вход DA1.1.

3 – плюсовой вход DA1.1.

4 – «минус» питания.

5 – плюсовой вход DA1.2.

6 – минусовой вход DA1.2.

7 – выход DA1.2.

8 – «плюс» питания LM358.

В каких корпусах выпускаются микросхемы

Корпус может быть как DIP8 – обозначение LM358N, так и SO8 – LM358D. Первый предназначен для реализации объемного монтажа, второй – для поверхностного.

От типа корпуса не зависят характеристики элемента – они всегда одинаковы. Но существует немало аналогов микросхемы, у которых параметры немного отличаются. Всегда есть плюсы и минусы.

Обычно, если у элемента большой диапазон рабочих напряжений например, страдает какая-либо другая характеристика.

A358f что за микросхема

Существует еще металлокерамический корпус, но такие микросхемы используют в том случае, если эксплуатация устройства будет происходить в тяжелых условиях.

В радиолюбительской практике удобнее всего использовать микросхемы в корпусах для поверхностного монтажа. Они очень хорошо паяются, что имеет важное значение при работе.

Ведь намного удобнее оказывается работать с элементами, у которых ножки имеют большую длину.

Какие есть аналоги?

Существует немало аналогов у микросхемы LM358. Схема включения у них точно такая же, но все равно лучше свериться с даташитом, чтобы не ошибиться. Среди полных аналогов микросхемы можно выделить такие:

  • NE532;
  • ОР221;
  • ОР04;
  • ОР290;
  • ОРА2237;
  • UPC358C;
  • ОР295;
  • ТА75358Р.

Также можно выделить аналоги элемента LM358D – это UPC358G, KIA358F, TA75358CF, NE532D. Существует немало похожих микросхем, которые отличаются от 358-й незначительно. Например, LM258, LM158, LM2409 полностью аналогичные характеристики имеют, но вот диапазон рабочих температур немного отличается.

Характеристики аналогов

По datasheet LM358 и ее аналогам можно узнать следующие характеристики:

  1. LM158 – работает в диапазоне температур от -55 до +125 градусов. Напряжение питания может колебаться в интервале 3…32В.
  2. LM258 – диапазон рабочих температур -25…+85, питающего напряжения – 3…32В.
  3. LM358 – температура 0…+70, напряжение – 3…32В.

В том случае, если недостаточно диапазона температур 0…+70, имеет смысл подыскать аналог операционному усилителю. Неплохо показывает себя LM2409, у него шире диапазон рабочих температур. Вот только для питания он немного меньше. Это существенно снижает возможность использования устройства в радиолюбительских конструкциях. Схема включения LM358 такая же, как и у большинства ее аналогов.

A358f что за микросхема

В том случае, если необходимо установить только один операционный усилитель, стоит обратить внимание на аналоги типа LMV321 или LM321. У них пять выводов, и внутри корпуса SOT23-5 заключен всего один ОУ.

А вот в том случае, если необходимо большее количество операционников, можно использовать сдвоенные элементы – LM324, у которых корпус имеет 14 выводов.

С помощью таких элементов можно сэкономить на пространстве и конденсаторах в цепи питания.

Схема неинвертирующего усилителя

Описание схемы:

  1. На плюсовой вход подается сигнал.
  2. К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
  3. Второй резистор соединен с общим проводом.
  4. Точка соединения резисторов подключается к минусовому входу.

Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.

A358f что за микросхема

Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.

Схема мощного неинвертирующего усилителя

Элементы, который применены в конструкции неинвертирующего усилителя, и их параметры:

  1. В качестве микросхемы используется LM358.
  2. Значение сопротивления R1=910 kOm.
  3. R2=100 kOm.
  4. R3=91 kOm.

Для усиления сигнала применяется полупроводниковый биполярный транзистор VT1.

A358f что за микросхема

По напряжению коэффициент усиления при условии использования таких элементов равен 10. Чтобы посчитать коэффициент усиления в общем случае, необходимо воспользоваться такой формулой: k=1+R1/R2. Для вычисления коэффициента по току всей схемы необходимо знать соответствующий параметр используемого транзистора.

Схема преобразователя напряжение-ток

Схема приведена на рисунке и немного похожа на ту, которая была описана в конструкции неинвертирующего усилителя. Но здесь добавлен биполярный транзистор. На выходе сила тока оказывается прямо пропорциональна напряжению на входе операционного усилителя.

A358f что за микросхема

  • И в то же время сила тока обратно пропорциональна сопротивлению резистора R1. Если описать это формулами, то выглядит следующим образом:
  • I=U(in)/R.

При величине сопротивления R1=1 Om, на каждый 1V напряжения, прикладываемого ко входу, на выходе будет 1А тока. Схема включения LM358 в режиме преобразователя напряжения в ток используется радиолюбителями для конструирования зарядных устройств.

Схема преобразователя ток-напряжение

  1. При помощи такой простой конструкции на операционном усилителе LM358 можно осуществить преобразование тока с малым значением в высокое напряжение. Описать это можно такой формулой:
  2. U(out)=I*R1.
  3. Если в конструкции применяется резистор сопротивлением 1 МОм, а по цепи протекает ток со значением 1 мкА, то на выходе элемента появится напряжение со значением 1В.

Схема простого дифференциального усилителя

Данная конструкция получила широкое распространение в устройствах, которые измеряют напряжение у источников, обладающих высоким сопротивлением. Необходимо учитывать особенность – отношения сопротивлений R1/R2 и R4/R3 должны быть равны. Тогда на выходе напряжение окажется со следующим значением:

U(out)=(1+R4/R3)*(Uin1-Uin2).

При этом коэффициент усиления может быть рассчитан по формуле k=(1+R4/R3). В том случае, если сопротивления всех резисторов равны 100 кОм, коэффициент окажется равен 2.

Регулировка коэффициента усиления

В прошлой конструкции имеется один недостаток – нет возможности произвести регулировку коэффициента усиления. Причина – сложность реализации, ведь нужно использовать сразу два переменных резистора. Но если вдруг возникла необходимость проводить регулировку коэффициента, можно использовать схему конструкции на трех операционниках:

A358f что за микросхема

  • Здесь корректировка происходит при помощи переменного резистора R2. Обязательно нужно учесть, чтобы были выполнены такие равенства:
  • В этом случае k=(1+2*R1/R2).
  • Напряжение на выходе усилителя U(out)=(1+2*R1/R2)*(Uin1-Uin2).

Схема монитора тока

Еще одна схема, которая позволяет проводить измерение значения тока в питающем проводе. Она состоит из шунтирующего сопротивления R1, операционного усилителя LM358, транзистора npn-типа и двух резисторов. Характеристики элементов:

  • микросхема DA1 – LM358;
  • сопротивление резистора R=0,1 Ом;
  • значение сопротивления R2=100 Ом;
  • R3=1 кОм.

Напряжение питания ОУ должно быть минимум на 2 В больше, нежели у нагрузки. Это обязательное условие функционирования схемы.

Схема преобразователя напряжения в частоту

Этот прибор потребуется в том случае, когда возникнет необходимость в подсчете периода или частоты какого-либо сигнала.

Схема применяется в качестве аналогово-цифрового конвертера. Параметры элементов, используемых в конструкции:

  • DA1 – LM358;
  • C1 – 0,047 мкФ;
  • R1=R6=100 кОм;
  • R2=50 кОм;
  • R3=R4=R5=51 кОм;
  • R6=100 кОм;
  • R7=10 кОм.

Это все конструкции, которые могут быть построены с использованием операционного усилителя. Но область применения LM358 на этом не ограничивается, существует большое количество схем намного сложнее, позволяющих реализовать различные возможности.

Ссылка на основную публикацию
Adblock
detector