Блок питания 30в 2а на мс34063

Конденсатор фильтра для понижающих (Step-down converter) источников питания не является обязательным элементом, при достаточно большой индуктивности фильтра.

Источник: zipstore.ru

MC34063: схема включения, особенности работы, простые устройства

Блок питания 30в 2а на мс34063

Описание микросхемы

Стабилизация и преобразование напряжения — это немаловажная функция, которая используется во многих устройствах.

Это всевозможные регулируемые источники питания, преобразующие схемы и высококачественные встраиваемые блоки питания.

Большинство бытовой электроники сконструированного именно на этой МС, потому что она имеет высокие рабочие характеристики и без проблем коммутирует достаточно большой ток.

MC34063 имеет встроенный осциллятор, поэтому для работы устройства и старта преобразования напряжения в различные уровни достаточно обеспечить начальное смещение путем подключения конденсатора ёмкостью 470пФ.

Этот контроллер пользуется огромной популярностью среди большого количества радиолюбителей. Микросхема хорошо работает во многих схемах.

А имея несложную топологию и простое техническое устройство, можно легко разобраться с принципом ее работы.

Блок питания 30в 2а на мс34063

Как ШИМ рассматривать этот контроллер не стоит, так как в нем отсутствует немаловажный компонент – устройство коррекции ошибки. Из-за чего на выходе микросхемы может возникать погрешность.

А для исключения ошибки на выходе рекомендуется подключать хотя бы простой LC-фильтр.

Также она является одной из самых доступных в ценовом диапазоне, поэтому большинство полезных устройств сконструированы именно на этом контроллере.

Микросхема имеет небольшой запас по мощности, поэтому в критических режимах она вполне сможет выстоять, но кратковременно.

Поэтому при разработке любых устройств на базе этого ШИМ следует грамотно выбирать параметры компонентов и производить расчет MC34063 в соответствии с режимами работы.

А чтобы облегчить процесс расчета параметров устройств на базе этой интегральной схемы, можно воспользоваться mc34063 калькулятором.

Как и у любой интегральной схемы ШИМ-контроллер mc34063 имеются качественные аналоги, одним из которых является отечественная микросхема КР1156ЕУ5. Она имеет хорошие рабочие характеристики, которые станут основой для разработки качественных функциональных устройств с полезными возможностями.

Параметры микросхемы

MC34063 реализован в стандартном DIP-8 корпусе с 8 выводами. Также имеются компоненты для поверхностного монтажа без конкурса. ШИМ-контроллер MC34063 изготовлен достаточно качественно, о чем говорят немалые параметры, позволяющие создавать многофункциональные устройства с широкими возможностями. К основным рабочим характеристикам относятся:

  • Диапазон напряжений, которыми может манипулировать контроллер — от 3 до 40В.
  • Максимальный коммутируемый ток на выходе биполярного транзистора — 1,5А.
  • Напряжение питания — от 3 до 50В.
  • Ток коллектора выходного транзистора — 100мА.
  • Максимальная рассеиваемая мощность — 1,25Вт.

Выбирая за основу этот ШИМ-контроллер, вы обеспечите себя надёжным практическим макетом, который даст возможность качественно изучить особенности работы импульсных устройств и преобразователей напряжения.

Применяется микросхема во многих устройствах:

  • понижающие источники питания;
  • повышающие преобразователи;
  • зарядные устройства для телефонов;
  • драйверы для светодиодов и другие.

Типовая схема включения

Чтобы запустить контроллер достаточно обеспечить несколько условий, реализовать которые можно, имея в кармане пару конденсаторов, индуктивность, диод и несколько резисторов. Схема подключения контроллера зависит от требований, которые будут предъявлены к ней.

Если необходимо изготовить ШИМ-стабилизатор, что довольно часто применяется на практике. Схема работает исключительно на понижение выходного напряжения, которое зависит от отношения сопротивлений, включенных в обратной связи.

Выходное напряжение формируется делителем в соотношении 1:3 и поступает на вход внутреннего компаратора.

Типовая схема включения состоит из следующих компонентов:

  • 3 резистора;
  • диод;
  • 3 конденсатора;
  • индуктивность.

Рассматривая схему на понижение напряжения или его стабилизации можно увидеть, что она оснащена глубокой обратной связью и достаточно мощным выходным транзистором, который прямотоком пропускает через себя напряжение.

Схема включения на понижение напряжения и стабилизации

Блок питания 30в 2а на мс34063

ШИМ-стабилизатор работает в импульсном режиме:

При открытии биполярного транзистора индуктивность набирает энергию, которая затем накапливается на выходной ёмкости. Такой цикл повторяется постоянно, обеспечивая стабильный выходной уровень. При условии наличия на входе микросхемы напряжения 25В на ее выходе оно составит 5 В с максимальным выходным током до 500мА.

Напряжение можно увеличить путем изменения типа отношения сопротивлений в цепи обратной связи, подключенной к входу. Также он используется в качестве разрядного диода в момент действия обратной ЭДС, накопленной в катушке в момент ее заряда при открытом транзисторе.

Применяя такую схему на практике, можно изготовить высокоэффективный понижающий преобразователь. При этом микросхема не потребляет избыток мощности, которая выделяется при снижении напряжения до 5 или 3,3 В. Диод предназначен для обеспечения обратного разряда индуктивности на выходной конденсатор.

Блок питания 30в 2а на мс34063

Импульсный режим понижения напряжения позволяет значительно экономить заряд батареи при подключении устройств с низким потреблением.

Например, при использовании обычного параметрического стабилизатора на его нагрев во время работы уходило по меньшей мере до 50% мощности.

А что тогда говорить, если потребуется выходное напряжение в 3,3 В? Такой понижающий источник при нагрузке в 1 Вт будет потреблять все 4 Вт, что немаловажно при разработке качественных и надёжных устройств.

Как показывает практика применения MC34063, средний показатель потерь мощности снижается как минимум до 13%, что стало важнейшим стимулом для ее практической реализации для питания всех низковольтных потребителей.

А учитывая широтно-импульсный принцип регулирования, то и нагреваться микросхема будет незначительно. Поэтому для ее охлаждения не потребуется радиаторов. Средний КПД такой схемы преобразования составляет не менее 87%.

Регулирование напряжения на выходе микросхемы осуществляется за счёт резистивного делителя. При его превышении выше номинального на 1,25В компоратор переключает триггер и закрывает транзистор. В этом описании рассмотрена схема на понижение напряжения с выходным уровнем 5В. Чтобы изменить его, повысить или уменьшить, необходимо будет изменить параметры входного делителя.

Для ограничения тока коммутационного ключа применяется входной резистор. Рассчитываемый как отношение входного напряжения к сопротивлению резистора R1.

Чтобы организовать регулируемый стабилизатор напряжения к 5 выводу микросхемы подключается средняя точка переменного резистора. Один вывод к общему проводу, а второй к питанию.

Работает система преобразования в полосе частот 100кГц, при изменении индуктивности она может быть изменена. При уменьшении индуктивности повышается частота преобразования.

Другие режимы работы

Блок питания 30в 2а на мс34063Кроме режимов работы на понижение и стабилизацию, также довольно часто применяется повышающий. Схема подключения отличается тем, что индуктивность находится не на выходе. Через нее протекает ток в нагрузку при закрытом ключе, который отпираясь, подаёт на нижний вывод индуктивности отрицательное напряжение.

Диод, в свою очередь, обеспечивает разряд индуктивности на нагрузку в одном направлении. Поэтому при открытом ключе на нагрузке формируется 12 В от источника питания и максимальный ток, а при закрытом на выходном конденсаторе оно повышается до 28В. КПД схемы на повышение составляет как минимум 83%.

Схемной особенностью при работе в таком режиме является плавное включение выходного транзистора, что обеспечивается ограничением тока базы посредством дополнительного резистора, подключенного к 8 выводу МС.

Тактовая частота работы преобразователя задаётся конденсатором небольшой ёмкости, преимущественно 470пФ, при этом она составляет 100кГц.

Выходное напряжение определяется по следующей формуле:

Используя вышеуказанную схему включения микросхемы МС34063А, можно изготовить повышающий преобразователь напряжения с питанием от USB до 9, 12 и более вольт в зависимости от параметров резистора R3. Чтобы провести детальный расчет характеристик устройства, можно воспользоваться специальным калькулятором. Если R2 составляет 2,4кОм, а R3 15кОм, то схема будет преобразовать 5В в 12В.

Схема на MC34063A повышения напряжения с внешним транзистором

В представленной схеме использован полевой транзистор. Но в ней допущена ошибка. На биполярном транзисторе необходимо поменять местами К-Э. А ниже представлена схема из описания. Внешний транзистор выбирается исходя из тока коммутации и выходной мощности.

Драйвер светодиодов

Довольно часто для питания светодиодных источников света применяется именно эта микросхема для построения понижающего или повышающего преобразователя. Высокий КПД, низкое потребление и высокая стабильность выходного напряжения – вот основные преимущества схемной реализации. Есть много схем драйверов для светодиодов с различными особенностями.

Блок питания 30в 2а на мс34063

Как один из многочисленных примеров практического применения можно рассмотреть следующую схему ниже.

Схема работает следующим образом:

При подаче управляющего сигнала внутренний триггер МС блокирован, а транзистор закрыт. И через диод протекает зарядный ток полевого транзистора. При снятии импульса управления триггер переходит во второе состояние и открывает транзистор, что приводит к разряду затвора VT2.

Такое включение двух транзисторов обеспечивает быстрое включение и выключение VT1, что снижает вероятность нагрева из-за практически полного отсутствия переменной составляющей. Для расчета тока, протекающего через светодиоды, можно воспользоваться: I=1,25В/R2.

Зарядное устройство на MC34063

Блок питания 30в 2а на мс34063

Контроллер MC34063 универсален. Кроме, источников питания она может быть применена для конструирования зарядного устройства для телефонов с выходным напряжением 5В. Ниже представлена схема реализации устройства. Ее принцип работы объясняется как и в случае с обычным преобразованием понижающего типа. Выходной ток заряда аккумулятора составляет до 1А с запасом 30%. Для его увеличения необходимо использовать внешний транзистор, например, КТ817 или любой другой.

Источник: instrument.guru

Преобразователь питания на MC34063

Мощное Зарядное Устройство Для Смартфонов На MC34063A



Как-то давно я делал похожее устройство того же функционала, но в базовой комплектации ему очень не хватало тока для полноценной зарядки смартфона, всего около 500 мА. Устройство пыхтело изо всех сил, но микросхема перегревалась, и это отрицательно сказывалось на КПД и работоспособности в целом.

Напоминаю, чтобы не заморачиваться — можно купить крутой готовый PowerBank на свой вкус 🙂

Тут одному товарищу на курсовую работу понадобилось сделать Power Bank, поэтому за основу была взята схема с внешним ключевым элементом на полевом транзисторе.

Просто так подключить полевой транзистор на выход открытого эмиттера не получится, применён драйвер, выполненный из диода и pnp транзистора.

Схема представлена ниже, все необходимые расчётные формулы указаны на картинке, в дополнение могу предложить калькулятор, по которому можно рассчитать резисторы обратной связи для получения необходимого напряжения (для зарядки смартфона необходимо 5 В).

Для 5 Вольт выходного напряжения подойдут резисторы на 1к и 3 к, 1к — тот, который на землю. Как пользоваться калькулятором — написано по первой ссылке в статье.

Блок питания 30в 2а на мс34063

Развести плату не составило труда, фото ниже, файл в конце статьи.

Блок питания 30в 2а на мс34063

Использовались smd элементы вперемешку с выводными.

Конечная реализация устройства позволяет заряжать любой смартфон при соответствующем переходнике. Ток вполне может доходить до 2А, при этом ни одна деталь не греется. Конкретно в этой реализации на выходе был USB разъём.

По сути вы видите STEP-UP преобразователь на MCP34063A + MOSFET транзистор для усиления тока.

Блок питания 30в 2а на мс34063 Блок питания 30в 2а на мс34063 Блок питания 30в 2а на мс34063

Если нужно питать от маленького напряжения, как от литий-ионного аккумулятора, на затвор подавать импульсы через диод Шоттки.

Файл платы в формате lay.

Рекламы на сайте у нас, как видите, нет. Если информация на сайте была для вас ценной — поддержите материально, нам будет приятно 😉

Ещё один полезный сайт

Совсем недавно все самые полезные компоненты электроники мы начали собирать в нашем магазинчике. Эти вещи проверены временем и опытом как лично нашим, так и наших друзей. Зайдите, вдруг вы найдёте там для себя что-то полезное 🙂

Источники питания. Часть 2 — Импульсные преобразователи

Первая часть статьи, посвященная батареям и аккумуляторам.
DC-DC преобразование
Для изменения напряжения постоянного тока с минимальными потерями используются DC-DC преобразователи, работающие по принципу Широтно-Импульсной Модуляции (ШИМ, она же PWM по басурмански).

Если не читал мои прошлые статьи, где я подробно разжевал принцип работы ШИМ, то я кратенько тебе напомню. Основной принцип тут в том, что напряжение подается не сплошным потоком, как в линейных стабилизаторах, а краткими импульсами и с большой частотой.

Блок питания 30в 2а на мс34063
Готовый девайс

То есть у тебя на выходе ШИМ контроллера, например, сначала в течении десяти микросекунд напряжение, к примеру, двенадцать вольт, потом идет пауза. Скажем, те же десять микросекунд, когда на выходе напряжения вообще нет. Затем все повторяется, словно мы быстро-быстро включаем и выключаем рубильник.

Таким образом у нас получаются прямоугольные импульсы. Если вспомнить матан, а конкретно интегрирование, то после интегрирования этих импульсов мы получим площадь под фигурой очерченной импульсами. Таким образом, меняя ширину импульсов и пропуская их через интегратор, можно плавно менять напряжения от нуля до максимума с любым шагом и практически без потерь.

Читайте также:  Как прозвонить двигатель постоянного тока

В качестве интегратора служит конденсатор, он заряжается на пике, а на паузах будет отдавать энергию в цепь. Также туда всегда последовательно ставят дроссель, который тоже служит источником энергии, только он запасает и отдает ток.

Поэтому такие преобразователи при небольших габаритах легко питают мощную нагрузку и при этом почти не расходуют энергию на лишний нагрев.

Если не догнал, то я для простоты переложил это в понятное «канализационное русло». Смотри на картинку, где ключевой транзистор ШИМ контроллера похож на вентиль, он открывает и закрывает канал.

Конденсатор это банка, накапливающая энергию. Дроссель это массивная турбина, которая, будучи разогнанной потоком, при открытом вентиле, за счет своей инерции прогоняет воду по трубам и после закрытия вентиля.

Конечно, самостоятельно разработать такой источник питания сложно, требуется неслабое образование в области электроники, но не стоит напрягаться по этому поводу.

Умные дядьки из Motorola, STM, Dallas и прочих Philips’ов придумали все за нас и выпустили уже готовые микросхемы содержащие в себе ШИМ контроллер.

Тебе остается его лишь припаять и добавить обвески, которая задает параметры работы, причем изобретать самому ничего не надо, в datasheet’ах подробно расписано что и как подключать, какие номиналы выбирать, а иногда даже дают готовый рисунок печатной платы. Надо лишь немного знать английский 🙂

Блок питания 30в 2а на мс34063
Принцип работы импульсного БП
Блок питания 30в 2а на мс34063
Схема нашего преобразователя
Блок питания 30в 2а на мс34063
Рисунок печатной платы

А сейчас, в порядке практического задания, под моим чутким руководством, ты построишь себе универсальный зарядник для сотового телефона, который можно будет подключать к любому источнику постоянного или переменного напряжения от 8 до 40 вольт. И неважно, что это будет, хоть бортовая сеть автомобиля, связка батареек или какой-нибудь совершенно левый блок питания от свитча или модема, лишь бы не меньше восьми и не больше сорока вольт.

Анализируем задание
Итак, по техзаданию, у нас на входе напряжение может быть как постоянным, так и переменным. А на входе DC-DC должно быть всегда постоянное. Что делать? Правильно, выпрямлять! Перечитай про выпрямители в первой части статьи и воткни на входе схемы диодный мост.

Можно и без него, но тогда источники переменного тока отпадают как класс, да и тебе придется каждый раз определять полярность питающего источника, а это моветон. Поскольку после моста напряжение все равно будет пульсирующим, то повесь в параллель конденсатор. Он его немного сгладит.

Дальше ШИМ контроллер, я рекомендую широко распространенный и любимый всеми электронщиками МС34063х, где на месте «х» может быть любая буква, обычно «А». Тебе он нужен в DIP-8 корпусе, с длинными выводами который.

Надеюсь, ты уже выучил все популярные типы корпусов и теперь сразу представляешь себе как он выглядит. Дальше открываем с диска даташитину и смотрим схему понижающего преобразователя, зовется она Step-Down. Подключаем ее как есть, не меняя ничего. Общий или земля у нас это традиционно минус, а плюс Vin.

Выходом служит Vout в качестве плюса, а в качестве минуса все тот же общий провод. Вот тут главное не перепутать подключение к мобильнику. Поэтому посмотри тестером полярность подачи напряжения на разъем твоей мобилы.

Точный расчет – главное качество инженера!
Такс, схему мы набросали, осталось только ее сконфигурировать. Это не цифровое устройство, поэтому конфигурация тут задается установкой необходимых номиналов резисторов.

Резистор Rsc я обычно заменяю на перемычку из куска провода. Его величина определяет перегрузочную способность. При перемычке преобразователь выдаст все, на что он способен, но может сгореть если от него потребовать невозможное.

Наличие там резистора на 0.33 ома заставит преобразователь заглохнуть при предельной для него перегрузке, чем выше сопротивление Rsc тем при меньшей нагрузке заглохнет преобразователь.

Иногда полезно, когда тебе надо ограничить максимальный выходной ток со стороны источника.

Дроссель L1 выбирается только исходя из индуктивности и перегрузочного тока. На схеме указан дроссель индуктивностью 220 микроГенри, а ток у него должен быть не меньше 500-600 миллиампер (средний ток зарядки любого современного сотового).

Дроссель можно купить готовый, можно намотать самому. В принципе величина индуктивности может очень сильно варьироваться от 50 до 300 микроГенри, работать будет, но КПД возможно снизится. Главное, чтобы по току проходил, иначе будет сильно греться, а потом и вовсе сгорит.

Диод купи тот же, который и указан в схеме, благо он не редкость. Если не найдешь точно такой, то возьми любой диод Шоттки с расчетным током не меньше одного ампера.

Диод Шоттки отличается от обычного диода тем, что у него дикое быстродействие. При смене направления напряжения он закрывается в порядке быстрей чем обычный, не допуская даже малейших утечек тока в обратную сторону.

Через него будет замыкаться цепь катушка – конденсатор – нагрузка, когда транзистор в микросхеме закроется.

Теперь надо задать выходное напряжение. Для этого тебе надо взять тестер и померить сколько вольт выдает твой зарядник для сотового. У меня все зарядники выдают примерно по 7 вольт.

Порывшись в даташите нахожу формулу зависимости выходного напряжения от резисторов R1 и R2
Для Step-Down схемы выглядит она так: Vout=1.25(1+R2/R1).

Чтобы получить напряжение в 7 вольт сопротивление R2 должно быть 4.7 кОм, а R1 должен быть равен 1 кОм. Получим 7.

125 вольта, но это не страшно, невелика погрешность и эти излишки все равно упадут где-нибудь на потерях в проводах. Собственно вот и все, вот мы и разработали с тобой универсальный преобразователь для своих девайсов. Теперь осталось только протравить плату и спаять.

Главное НИ В КОЕМ СЛУЧАЕ НЕ СОВАТЬ этот зарядник в РОЗЕТКУ, т.к. там напряжение 220 вольт, а наша схема расчитана на 40 вольт максимум!

Именно два таких преобразователя на 3.3 и на 5 вольт стоят в силовом блоке моего робота.

Кстати, если покопаешься в даташите, то найдешь там и повышающую схему, зовется Step-Up.

Если выкинуть нафиг диодный мост (за ненужностью) и собрать всю конструкцию по Step-Up схеме, то ты сможешь заряжать сотовый телефон от трех, а то и двух пальчиковых батареек, если хватит трех вольт для раскачки микросхемы.

Также тебе никто не мешает порыться в инете и найти DC-DC преобразователь, работающий от 1, а то и от 0.5 вольт и сделать на нем повышающий преобразователь.

Полная версия статьи опубликована в журнале «Хакер» за август 2008

Sepic преобразователь на mc34063

Для питания портативной электронной аппаратуры в домашних условиях зачастую используют сетевые источники питания. Но это не всегда бывает удобно, поскольку не всегда по месту использования имеется свободная электрическая розетка. А если необходимо иметь несколько различных источников питания?

Одно из верных решений это изготовить универсальный источник питания. А в качестве внешнего источника питания применить, в частности, USB-порт персонального компьютера. Не секрет, что в типовом USB-разъеме предусмотрено питание для внешних электронных устройств напряжением 5В и токе нагрузки не более 500 мА.

Но, к сожалению, для нормальной работы большинства переносной электронной аппаратуры необходимо 9 или 12В. Решить поставленную задачу поможет специализированная микросхема преобразователь напряжения на MC34063, которая значительно облегчит изготовление лабораторного блока питания с требуемыми параметрами.

Предельные параметры работы MC34063

  • Регулируемый блок питания KORAD KA3005D Простая и интуитивная работа, быстрый и точный выбор напряжения и тока…
  • Регулируемый блок питания на LM317 Диапазон выходного напряжения 1,25…37В. Высокая стабильность…
  • Блок питания 0…30 В / 3A Набор для сборки регулируемого блока питания…

Некоторое время назад я уже публиковал обзор, где показал как при помощи КРЕН5 сделать ШИМ стабилизатор. Тогда же я упомянул о одном из самых распространенных и наверное самых дешевых контроллеров DC-DC преобразователей. Микросхеме МС34063. Сегодня я попробую дополнить предыдущий обзор.

Вообще, данную микросхему можно считать устаревшей, но тем не менее она пользуется заслуженной популярностью. В основном из-за низкой цены. Я их до сих пор иногда использую в своих всяких поделках. Собственно потому я и решил прикупить себе сотню таких микрух.

Обошлись они мне в 4 доллара, сейчас у того же продавца они стоят 3.7 доллара за сотню, это всего 3.7 цента за штуку. Найти можно и дешевле, но я заказывал их в комплект к другим деталям (обзоры зарядного для литиевого аккумулятора и стабилизатор тока для фонарика).

Есть еще четвертый компонент, который я заказал там же, но о нем в другой раз.

Ну я наверное уже утомил длинным вступлением, потому перейду к обзору. Предупрежу сразу, будет много всяких фото. Пришло это все в пакетиках, замотанное в ленту из пупырки. Такая себе кучка

Сами микросхемы аккуратно запакованы в пакетик с защелкой, на него наклеена бумажка с наименованием. Написано от руки, но проблемы распознать надпись, думаю не возникнет.

Данные микросхемы производятся разными производителями и маркируются так же по разному. MC34063 KA34063 UCC34063 И т.д. Как видно, меняются только первые буквы, цифры остаются неизменными, потому обычно ее называют просто 34063. Мне достались первые, MC34063.

Фото рядом с такой же микрухой, но другого производителя. Обозреваемая выделяется более четкой маркировкой.

Что дальше можно обозреть я не знаю, потому перейду ко второй части обзора, познавательной. DC-DC преобразователи используются во многих местах, сейчас наверное уже тяжело встретить электронное устройство, где их нет.

Существует три основные схемы преобразования, все они описаны в даташите к 34063, а так же в дополнении по ее применению, ну и в еще одном описании. Все описанные схемы не имеют гальванической развязки. Так же, если вы посмотрите внимательно все три схемы, то заметите, что они очень похожи и отличаются перестановкой местами трех компонентов, дросселя, диода и силового ключа.

Сначала самая распространенная. Step-down или понижающий ШИМ преобразователь. Применяется там, где надо понизить напряжение, причем сделать это с максимальным КПД.

Напряжение на входе всегда больше, чем на выходе, обычно минимум на 2-3 Вольта, чем больше разница, тем лучше (в разумных пределах). При этом ток на входе меньше, чем на выходе.

Такую схемотехнику применяют часто на материнских платах, правда преобразователи там обычно многофазные и с синхронным выпрямлением, но суть остается прежней, Step-Down.

В этой схеме дроссель накапливает энергию при открытом ключе, а после закрытия ключа напряжение на дросселе (за счёт самоиндукции) заряжает выходной конденсатор

Следующая схема применяется немного реже первой. Ее часто можно встретить в Power-bank, где из напряжения аккумулятора в 3-4.2 Вольта получается стабилизированные 5 Вольт. При помощи такой схемы можно получить и больше, чем 5 Вольт, но надо учитывать, что чем больше разница напряжений, тем тяжелее работать преобразователю.

Так же есть одна не очень приятная особенность данного решения, выход нельзя отключить «программно». Т.е. аккумулятор всегда подключен к выходу через диод. Так же в случае КЗ ток будет ограничен только внутренним сопротивлением нагрузки и батареи.

Для защиты от этого применяют либо предохранители, либо дополнительный силовой ключ.

Так же как и в прошлый раз, при открытом силовом ключе сначала накапливается энергия в дросселе, после закрытия ключа ток на дросселе меняет свою полярность и суммируясь с напряжением батареи поступает на выход через диод. Напряжение на выходе такой схемы не может быть ниже напряжения на входе минус падение на диоде. Ток на входе больше чем на выходе (иногда значительно).

Третья схема применяется довольно редко, но не рассмотреть ее будет неправильно. Это схема имеет на выходе напряжение обратной полярности, чем на входе. Называется — инвертирующий преобразователь.

В принципе данная схема может как повышать, так и понижать напряжение относительно входного, но из-за особенностей схемотехники чаще используется только для напряжений больше или равных входному. Преимущество данной схемотехники — возможность отключения напряжения на выходе при помощи закрытия силового ключа.

Это так же умеет делать и первая схема. Как и в предыдущих схемах, энергия накапливается в дросселе, а после закрытия силового ключа поступает в нагрузку через обратно включенный диод.

Когда я задумывал данный обзор, то не знал, что лучше выбрать для примера. Были варианты сделать понижающий преобразователь для РоЕ или повышающий для питания светодиода, но как то все это было неинтересно и совсем скучно. Но несколько дней назад позвонил товарищ и попросил помочь ему с решением одной задачки.

Надо было получить выходное стабилизированное напряжение независимо от того, входно больше или меньше выходного. Т.е. нужен был повышающе-понижающий преобразователь. Топология данных преобразователей называется SEPIC (Single-ended primary-inductor converter). Еще пара неплохих документов по данной топологии. , .

Схема данного типа преобразователей заметно сложнее и содержит дополнительный конденсатор и дроссель.

Вот по этой схеме я и решил делать

Для примера я решил делать преобразователь, способный давать стабилизированные 12 Вольт при колебаниях входного от 9 до 16 Вольт. Правда мощность преобразователя невелика, так как используется встроенный ключ микросхемы, но решение вполне работоспособно.

Если умощнить схему, поставить дополнительный полевой транзистор, дроссели на больший ток и т.д. то такая схема может помочь решить проблему питания 3,5 дюйма жесткого диска в машине. Так же, такие преобразователи могут помочь решить проблему получения, ставшего уже популярным, напряжения 3.

3 Вольт от одного литиевого аккумулятора в диапазоне 3-4.2 Вольта. Но для начала превратим условную схему в принципиальную.

После этого превратим ее в трассировку, не будем же мы на монтажной плате все ваять.

В итоге получилась небольшая платка, размеры платы 28х22.5, толщина после запайки деталей — 8мм.

Нарыл по дому всяких разных деталек. Дроссели у меня были в одном из обзоров. Резисторы всегда есть. Конденсаторы частично были, а частично выпаял из разных устройств. Керамический на 10мкФ выпаял из старого жесткого диска (еще они водятся на платах мониторов), алюминиевый SMD взял из старого CD-ROMа.

Спаял платку, получилось вроде аккуратно. Надо было сделать фото на каком нибудь спичечном коробке, но забыл. Размеры платы примерно в 2.5 раза меньше спичечного коробка.

Плата поближе, старался компоновать плату поплотнее, свободного месте не очень много. Резистор 0.25 Ома образован четырьма по 1 Ом параллельно в 2 этажа.

Ну а дальше результаты проверки.

Фотографий много, потому убрал под спойлер

Проверял в четырех диапазонах, но случайно получилось в пяти, не стал этому противиться, а просто сделал еще одно фото. У меня не было резистора на 13КОм, пришлось впаять на 12, поэтому на выходе напряжение несколько занижено.

Но так как плату я делал просто для проверки микросхемы (т.е. сама по себе эта плата больше для меня никакой ценности не несет) и написания обзора, то не стал заморачиваться.

В качестве нагрузки была лампа накаливания, ток нагрузки около 225мА На входе 9 Вольт, на выходе 11.45

На входе 11 Вольт, на выходе 11.44.

На входе 13 вольт, на выходе все те же 11.44

На входе 15 Вольт, на выходе опять 11.44.

После этого думал закончить, но так как в схеме указал диапазон до 16 Вольт, то и проверить решил на 16. На входе 16.28, на выходе 11.44

Решил снять осциллограммы.

Я их так же спрятал под спойлер, так как их довольно много

Я сделал осциллограммы на выходе микросхемы и на выходе БП. В щупе был включен делитель сигнала на 10. 9 Вольт

11 Вольт

  Три схемы очень простых устройств для начинающих (КТ3102)

13 Вольт

15 Вольт. Здесь я изменил время развертки, так как не получалось впихнуть весь период в одно окно.

Это конечно игрушка, мощность преобразователя смешная, хотя и полезная. Но товарищу я подобрал несколько более мощный вариант на Алиэксрессе. Возможно кому то будет и полезно.

Ссылки по теме. Повышающе-понижающий DC-DC преобразователь 7..14В / 9В 0,5А MC34063 sepic Стабилизатор тока светодиодов на микросхеме МС34063 MC34063A описание, схема подключения. Калькулятор DC-DC MC34063

Файл печатной платы, схема, даташит. — ссылка.

В общем вот такой получился спонтанный микрообзор микросхемы.

Резюме

. Микросхемы вполне годные, меня устроили, особенно по этой цене.

Надеюсь, что обзор будет полезен. Если есть идеи по доработке, буду рад выслушать. Наверняка где нибудь накосячил, так как писал без шпаргалок, потому если заметили ошибки, сильно не ругайте.

Хинт по 34063

Многие знают, что так как эта микросхема не является полноценным ШИМ контроллером, а скорее ЧИМ, т.е. у нее частота имеет свойство «плавать» в зависимости от напряжения и нагрузки. Из-за этого дроссель может неприятно «жужжать».

Избавиться от этого эффекта поможет резистор номиналом 300-680к, подключенный между выводом подключения времязадающего конденсатора и выходом на точку соединения дросселя, диода и силового ключа микросхемы (для схемы Step-Down).

На других топологиях не проверял, но думаю, что тоже поможет.

А вот так выглядит кристалл 34063 при более детальном рассмотрении в электронный микроскоп.

Описание схемы преобразователя

Ниже представлена принципиальная схема варианта источника питания, позволяющего получить 9В или 12В из 5В USB-порта компьютера.

За основу схемы взята специализированная микросхема MC34063 (ее российский аналог К1156ЕУ5). Преобразователь напряжения MC34063 представляет собой электронную схему управления DC / DC — преобразователем.

Она имеет температурно-компенсированный источник опорного напряжения (ИОН), генератор с изменяемым рабочим циклом, компаратор, схему ограничения по току, выходной каскад и сильноточный ключ. Эта микросхема специально изготовлена для использования в повышающих, понижающих и инвертирующих электронных преобразователях с наименьшим числом элементов.

Выходное напряжение, получаемое в результате работы, устанавливается двумя резисторами R2 и R3. Выбор номинала резисторов производится из расчета, что на входе компаратора (вывод 5) должно быть напряжение равное 1,25 В. Вычислить сопротивление резисторов для схемы можно используя несложную формулу:

Uвых= 1,25(1+R3/R2)

Зная необходимое выходное напряжение и сопротивление резистора R3, можно довольно легко определить сопротивление резистора R2.

Так как выходное напряжение определяется резисторным делителем, можно значительно улучшить схему, включив в схему переключатель, позволяющий получать всевозможные значения по мере необходимости. Ниже приведен вариант преобразователя MC34063 на два выходных напряжения (9 и 12 В)

Ниже описана схема повышающе-понижающего преобразователя. За основу преобразователя была взята хорошо известная микросхема MC34063.

Как следует из названия — описанный ниже преобразователь способен как повышать, так и понижать входное напряжение, в зависимости от его величины, выдавая при этом на выходе стабильные 9В.

Данный преобразователь при входном напряжении 7..14В выдаёт на выходе стабильные 9В при токе нагрузки до 0,5А.

Построен преобразователь по топологии sepic, которая обеспечивает меньшие по сравнению с топологией boost пульсации тока и кроме этого, позволяет получить выходное напряжение как больше входного, так и меньше входного.

В качестве силового ключа используется n-канальный MOSFET как наиболее экономичное с точки зрения КПД решение.

У этих транзисторов минимальное сопротивление в открытом состоянии и как следствие — минимальный нагрев (минимальная рассеиваемая мощность).

Поскольку микросхемы серии 34063 не приспособлены для управления полевыми транзисторами, то лучше применять их совместно со специальными драйверами (например, c драйвером верхнего плеча полумоста IR2117, как вот здесь) — это позволит получить более крутые фронты при открытии и закрытии силового ключа.

Однако, при отсутствии микросхем драйверов, можно вместо них использовать «альтернативу для бедных»: биполярный pnp-транзистор с диодом и резистором (в данном случае можно, поскольку исток полевика подключен к общему проводу).

При включении MOSFET затвор заряжается через диод, биполярный транзистор при этом закрыт, а при отключении MOSFET биполярный транзистор открывается и затвор разряжается через него.

  1. L1, L2 — катушки индуктивности по 90 мкГн (можно взять в старых, сломанных CRT-мониторах, они там как раз парами стоят, или намотать толстым проводом на кольцах с материнок)
  2. С1 — входной фильтр, электролит 1000 мкФ/16В
  3. С2 — керамика на 22 мкФ (можно взять с плат сломанных винчестеров, там обычно стоят толстые керамические кондёры на 10 мкФ и на 22 мкФ)
  4. С3 — выходной фильтр, электролит 330 мкФ/25В

С4, R4 — снаббер, номиналы 2,7 нФ, 4,7 Ом, соответственно. Во многих случаях без него вообще можно обойтись. Номиналы элементов снаббера сильно зависят от конкретной разводки. Расчёт проводят экспериментально, уже после изготовления платы.

  • С5 — фильтр по питанию микрухи, керамика на 0,1 мкФ
  • С6 — времязадающий конденсатор, керамика 270 пФ
  • D1 — мощный диод Шоттки S10S40C (с материнки)
  • D2 — диод Шоттки (подойдёт любой)

R1, R2 — делитель напряжения. Для выхода 9 В номиналы резисторов 20 кОм и 3,2 кОм, соответственно.

R3 — резистор 4,7 кОм

T1 — силовой транзистор MOSFET, 6035AL (с материнки)

РадиоКот :: Преобразователь питания на MC34063

Рассказать в:

Целью разработки было создать ИП для питания компьютера в автомобиле. Малогабаритный и с хорошими характеристиками. Простой в изготовлении, используя подручные средства, т.е. элементы от старых РС БП или мамок, от ненужной телефонной зарядки и т.д., и т.п. и возможностью вырезать плату за 20 минут бормашиной, В результате родилась такая схема.

Управляющей микросхемой выбрана МС34063, за дешевизну доступность, удобный тип корпуса и главное наличие некоторого количества их у меня. Но можно было при должном подходе умощнить таким образом, любую микросхему с аналогичными функциями. Работу схемы рассказывать нет смысла, думаю, она очевидна, Остановлюсь только на важных, на мой взгляд, моментах.

Микросхему выпускают множество производителей, в моем распоряжении было три типа, выяснилось, что образец под гордым названием КА34063 склонен возбуждаться, визуально это выражалось в свисте дросселя, хотя свои параметры с незначительным ухудшением конструкция при этом сохраняла. Эффект был устранен установкой по питанию микросхемы дроссель. Это решение не принципиально, можно было обойтись и резистором или еще лучше кренкой вольт на 6-7-8-9.

  Как Изготовить Кошку Для Лазания По Деревьям

Цепочка R3-VD1-R4 в базе КТ315, это попытка сэкономить несколько миллиампер, не открывая выходной транзистор микросхемы, используем только предвыходной. Для правильного понимания ситуации смотрите описание на микросхему.

Резистор R5 компромиссный вариант между хорошим фронтом на затворе полевого транзистора и потребляемым током в этой цепи, оптимально 1К. Резистор несколько греется, необходимая мощность 0,5Вт.

Для получения наилучшего КПД, необходимо максимально открыть полевой транзистор, для этого, в этом его включении, требуется подать на затвор импульс амплитудой выше, чем Uпит вольт на 10. Необходимое для этого напряжение снимается с дросселя дополнительной обмоткой. Такой вариант показал несколько лучшие результаты, чем традиционный способ, через емкость с истока полевого транзистора.

Отдельно остановлюсь на том, что с этой схемы, в дополнение к основному Uвых можно получить любые необходимые стабилизированные напряжения любой полярности. Идея заключается в том, что в дросселе DR3 присутствует импульс со стабилизированным действующим значением равным Uвых.

Используя это, снимаем необходимые нам напряжения с дросселя вторичными обмотками. Направление намотки важно. Количество витков дополнительной обмотки рассчитывается довольно просто.

Например, Uвых 5в, а намотано в основной обмотке, например 10 витков, следовательно, что бы получить 10в, на дополнительной обмотке нужно намотать 20витков.

Преобразователь предназначался, как я ранее говорил для питания компьютера в автомобиле. В одном из зксперементальных вариантов я с него получали 5В и дополнительно 12В 800ма для питания монитора по способу как на схеме >Uвых. Идея себя отлично оправдала. при Uвх от 6 до 29 вольт выходные напряжения оставались неизменными.

Но решено было отказаться от такого питания монитора из соображений лишнего тепловыделения преобразователем. Стоит оговориться, что без нагрузки на Uвых идея не работает, в силу того, что микросхема выдает очень короткий импульс, годный только для зарядки выходного электролита до Uвых.

Но при нагрузке уже в 0,1А все встает на свои места.

Фильтр по питанию в данный преобразователь сознательно не ставился. Для питания магнитолы монитора и компьютера у меня стоят дополнительный маленький аккумулятор выполняющий роль UPS и развязка с фильтрами на каждое из устройств, ставить еще один фильтр не было смысла.

Параметры схемы: КПД 89%. Uвх 6-40В (40в теоретически, реально пробовал до 29В, но не вижу причин схеме не работать и при напряжении до Vcc max микросхемы) Uвых выбираем исходя из ваших потребностей.

Задается делителем на резисторах R1 R2, они должны при вашем Uвых обеспечить на 5й ножке микросхемы 1.25В.

И соответственно необходимо подобать число витков на дополнительной обмотке дросселя… Выходной ток, определятся только элементами VT2 VD3 DR3, и подходящим радиатором, для диода и транзистора. Конструкция рассчитывалась на ток нагрузки до 10А.

, но при экспериментах, в данном варианте преобразователь нагружался и до 20А, прекрасно выдерживал этот ток десятки минут. Правда, с падением КПД на пару процентов. Для долговременной работы с такой нагрузкой как минимум необходимо увеличить размер радиатора для силовых элементов. Потребляемый ток без нагрузки менее 25мА

Конструкция: Плата в зеркальном виде под ЛУТ. размер 34Х84 мм.

  • Сборочный чертеж:
  • Плата в сборе.
  • Конструктивно плата рассчитана для корпуса купленного в «Чип и Дип»: называется «G0123 корпус для РЭА 90х38х30мм

  Fubag in 203 схема ремонт частые поломки

Транзистор VT3 и диод VD2 крепятся на боковую стенку корпуса через изолирующую теплопроводящую прокладку. Площадь внешней поверхности приблизительно 130см. Основное количества тепла выделяет диод VD3 и меньше транзистор VT2, приблизительно 3Вт на двоих при нагрузке 5А. Температура корпуса при этом 38-39С, после получаса работы..

Детали:

В моем варианте 5В 10А, стоят R1 1.2k, R2 3.6k, VT2 SUB70N03, VD2 SBL2040CT. Диод VD3 любой быстрый от КД522 до любых импортных, которые в избытке присутствуют в непригодном компьютерном железе, только конечно не те, что стоят в выпрямителе 220в 50Гц в БП.

Теперь про трансформатор DR3. В стремлении получить максимально возможный КПД я постарался сделать его с наименьшим количеством потерь. Во-первых сердечник: Кольцо из пресспермалоя, желтого цвета. Взято из РС БП, встречаются два типоразмера 23мм и 27мм.

У 23мм при этих токах и этой частоте маловата мощность, и как следствие сердечник сильно греется, поэтому выбрано 27мм.

Во-вторых, провод: Исходя из таблицы соответствия сечения провода и токов, следует, что при 25С на ток 6А необходимо иметь провод диаметром 2мм Индуктивность: по всем расчетам необходима от 10мкГн, а для уменьшения пульсаций на выходе, хорошо бы иметь индуктивность побольше. В результате намотано провода диметром 1.

9мм сколько влезло на кольцо, приблизительно 1.5 метра, получилось индуктивность 56мкГн. В конечном итоге при нагрузке 5А, трансформатор не греется и имеется огромный запас мощности на случай подключения дополнительных устройств. Вторичная обмотка любым тонким проводом какой есть (ну естественно не стоит связываться с 0.05 или 0.

08мм, просто неудобно), реально использовался провод 0.18мм. Число витков в два раза больше чем в первичной обмотке. Дросселя DR1 и DR2 намотаны на первых попавшихся 6мм гантельках, проводом, какой был: 0.18мм до заполнения, получилось где-то 300-500мкГн.

DR2 можно заменить на резистор ом на 100, следует учесть, что в этой точке большой импульсный ток, и без должного демпфера диоды КД522, к примеру, перегорают сразу, так что дроссель — лучший выход из положения DR4 тоже необязательно ставить, но с точки зрения уменьшения пульсаций на выходе он полезен. Как элемент, был взят первый попавшийся от PC БП с приглянувшимся по толщине стержневым сердечником и проводом.. Для защиты на все случаи жизни на входе стоит самовосстанавливающийся предохранитель на 4А.

Раздел: [Преобразователи напряжения (инверторы)] Сохрани статью в: Оставь свой комментарий или вопрос:

Драйвер светодиодов

Довольно часто для питания светодиодных источников света применяется именно эта микросхема для построения понижающего или повышающего преобразователя. Высокий КПД, низкое потребление и высокая стабильность выходного напряжения – вот основные преимущества схемной реализации. Есть много схем драйверов для светодиодов с различными особенностями.

Как один из многочисленных примеров практического применения можно рассмотреть следующую схему ниже.

Схема работает следующим образом:

При подаче управляющего сигнала внутренний триггер МС блокирован, а транзистор закрыт. И через диод протекает зарядный ток полевого транзистора. При снятии импульса управления триггер переходит во второе состояние и открывает транзистор, что приводит к разряду затвора VT2.

Такое включение двух транзисторов обеспечивает быстрое включение и выключение VT1, что снижает вероятность нагрева из-за практически полного отсутствия переменной составляющей. Для расчета тока, протекающего через светодиоды, можно воспользоваться: I=1,25В/R2.

Схема включения на понижение напряжения и стабилизации

Из схемы видно, что ток в выходном транзисторе ограничивается резистором R1, а времязадающим компонентов для установки необходимой частоты преобразования является конденсатор C2.

Индуктивность L1 накапливает в себе энергию при открытом транзисторе, а по его закрытию разряжается через диод на выходной конденсатор.

Коэффициент преобразования зависит от соотношения сопротивлений резисторов R3 и R2.

ШИМ-стабилизатор работает в импульсном режиме:

При открытии биполярного транзистора индуктивность набирает энергию, которая затем накапливается на выходной ёмкости. Такой цикл повторяется постоянно, обеспечивая стабильный выходной уровень. При условии наличия на входе микросхемы напряжения 25В на ее выходе оно составит 5 В с максимальным выходным током до 500мА.

Напряжение можно увеличить путем изменения типа отношения сопротивлений в цепи обратной связи, подключенной к входу. Также он используется в качестве разрядного диода в момент действия обратной ЭДС, накопленной в катушке в момент ее заряда при открытом транзисторе.

  Транзистор кт3107а параметры цоколевка аналоги

Применяя такую схему на практике, можно изготовить высокоэффективный понижающий преобразователь. При этом микросхема не потребляет избыток мощности, которая выделяется при снижении напряжения до 5 или 3,3 В. Диод предназначен для обеспечения обратного разряда индуктивности на выходной конденсатор.

Импульсный режим понижения напряжения позволяет значительно экономить заряд батареи при подключении устройств с низким потреблением.

Например, при использовании обычного параметрического стабилизатора на его нагрев во время работы уходило по меньшей мере до 50% мощности.

А что тогда говорить, если потребуется выходное напряжение в 3,3 В? Такой понижающий источник при нагрузке в 1 Вт будет потреблять все 4 Вт, что немаловажно при разработке качественных и надёжных устройств.

https://www.youtube.com/watch?v=GyUo1ZEcvLw\u0026t=29s

Как показывает практика применения MC34063, средний показатель потерь мощности снижается как минимум до 13%, что стало важнейшим стимулом для ее практической реализации для питания всех низковольтных потребителей.

А учитывая широтно-импульсный принцип регулирования, то и нагреваться микросхема будет незначительно. Поэтому для ее охлаждения не потребуется радиаторов. Средний КПД такой схемы преобразования составляет не менее 87%.

Регулирование напряжения на выходе микросхемы осуществляется за счёт резистивного делителя. При его превышении выше номинального на 1,25В компоратор переключает триггер и закрывает транзистор. В этом описании рассмотрена схема на понижение напряжения с выходным уровнем 5В. Чтобы изменить его, повысить или уменьшить, необходимо будет изменить параметры входного делителя.

Для ограничения тока коммутационного ключа применяется входной резистор. Рассчитываемый как отношение входного напряжения к сопротивлению резистора R1.

Чтобы организовать регулируемый стабилизатор напряжения к 5 выводу микросхемы подключается средняя точка переменного резистора. Один вывод к общему проводу, а второй к питанию.

Работает система преобразования в полосе частот 100кГц, при изменении индуктивности она может быть изменена. При уменьшении индуктивности повышается частота преобразования.

Типовая схема включения

Чтобы запустить контроллер достаточно обеспечить несколько условий, реализовать которые можно, имея в кармане пару конденсаторов, индуктивность, диод и несколько резисторов. Схема подключения контроллера зависит от требований, которые будут предъявлены к ней.

Если необходимо изготовить ШИМ-стабилизатор, что довольно часто применяется на практике. Схема работает исключительно на понижение выходного напряжения, которое зависит от отношения сопротивлений, включенных в обратной связи.

Выходное напряжение формируется делителем в соотношении 1:3 и поступает на вход внутреннего компаратора.

Типовая схема включения состоит из следующих компонентов:

  • 3 резистора;
  • диод;
  • 3 конденсатора;
  • индуктивность.

Рассматривая схему на понижение напряжения или его стабилизации можно увидеть, что она оснащена глубокой обратной связью и достаточно мощным выходным транзистором, который прямотоком пропускает через себя напряжение.

Преобразователь напряжения на MC34063

L 1 — накопительный дроссель. Это, в общем-то, элемент преобразования энергии. С 1 — времязадающий конденсатор, он определяет частоту преобразования. Максимальная частота преобразования для микросхем составляет порядка кГц.

R 2 , R 1 — делитель напряжения для схемы компаратора. На неинвертирующий вход компаратора подается напряжение 1,25 В от внутреннего регулятора, а на инвертирующий вход — с делителя напряжения.

Когда напряжение с делителя становится равным напряжению от внутреннего регулятора — компаратор переключает выходной транзистор.

Заголовок сообщения: расчет обвязки MC Сообщение это по ссылке на калькулятор all-audio.pro

Описание микросхемы

Стабилизация и преобразование напряжения — это немаловажная функция, которая используется во многих устройствах.

Это всевозможные регулируемые источники питания, преобразующие схемы и высококачественные встраиваемые блоки питания.

Большинство бытовой электроники сконструированного именно на этой МС, потому что она имеет высокие рабочие характеристики и без проблем коммутирует достаточно большой ток.

MC34063 имеет встроенный осциллятор, поэтому для работы устройства и старта преобразования напряжения в различные уровни достаточно обеспечить начальное смещение путем подключения конденсатора ёмкостью 470пФ.

Этот контроллер пользуется огромной популярностью среди большого количества радиолюбителей. Микросхема хорошо работает во многих схемах.

А имея несложную топологию и простое техническое устройство, можно легко разобраться с принципом ее работы.

Как ШИМ рассматривать этот контроллер не стоит, так как в нем отсутствует немаловажный компонент – устройство коррекции ошибки. Из-за чего на выходе микросхемы может возникать погрешность.

А для исключения ошибки на выходе рекомендуется подключать хотя бы простой LC-фильтр.

Также она является одной из самых доступных в ценовом диапазоне, поэтому большинство полезных устройств сконструированы именно на этом контроллере.

Микросхема имеет небольшой запас по мощности, поэтому в критических режимах она вполне сможет выстоять, но кратковременно.

Поэтому при разработке любых устройств на базе этого ШИМ следует грамотно выбирать параметры компонентов и производить расчет MC34063 в соответствии с режимами работы.

А чтобы облегчить процесс расчета параметров устройств на базе этой интегральной схемы, можно воспользоваться mc34063 калькулятором.

Редакторы сайта советуют ознакомиться с основами теоретической электротехники для начинающих.

Параметры микросхемы

MC34063 реализован в стандартном DIP-8 корпусе с 8 выводами. Также имеются компоненты для поверхностного монтажа без конкурса. ШИМ-контроллер MC34063 изготовлен достаточно качественно, о чем говорят немалые параметры, позволяющие создавать многофункциональные устройства с широкими возможностями. К основным рабочим характеристикам относятся:

  • Диапазон напряжений, которыми может манипулировать контроллер — от 3 до 40В.
  • Максимальный коммутируемый ток на выходе биполярного транзистора — 1,5А.
  • Напряжение питания — от 3 до 50В.
  • Ток коллектора выходного транзистора — 100мА.
  • Максимальная рассеиваемая мощность — 1,25Вт.

Выбирая за основу этот ШИМ-контроллер, вы обеспечите себя надёжным практическим макетом, который даст возможность качественно изучить особенности работы импульсных устройств и преобразователей напряжения.

Применяется микросхема во многих устройствах:

  • понижающие источники питания;
  • повышающие преобразователи;
  • зарядные устройства для телефонов;
  • драйверы для светодиодов и другие.

Σ Калькулятор для расчета понижающего, повышающего или инвертирующего преобразователя на MC34063

Очень часто встаёт вопрос о том, как получить требуемое для схемы питание напряжение, имея источник с отличным от требуемого напряжения. Такие задачи делятся на две: когда: нужно уменьшить или увеличить напряжение до заданного.

В этой статье будет рассмотрен первый вариант. Как правило, можно применить линейный стабилизатор , но у него будут большие потери по мощности, так как разность в напряжениях он будет преобразовывать в тепло. Здесь на помощь приходят импульсные преобразователи.

Вашему вниманию предлагается простенький и компактный преобразователь на MC Эта микросхема очень универсальна, на ней можно реализовывать понижающие, повышающие и инвертирующие преобразователи с максимальным внутренним током до 1,5А.

Но в статье рассмотрен только понижающий преобразователь, остальные будут рассмотрены позже.

Ссылка на основную публикацию
Adblock
detector