Что такое вулканизация зачем ее проводят

Шиномонтажные мастерские используют технологию «вулканизация» для восстановления поврежденных шин. Это самый эффективный метод быстро и надежно восстановить шину, сохранив свойства резины. Сама технология предполагает получение резины из каучука. Данным способом можно восстановить колесо при проколе, порезе и т. п.

Что такое вулканизация зачем ее проводят

Вулканизация шин – описание

Вулканизация, с химической точки зрения – процесс, при котором макромолекулы каучука «сшиваются» в трехмерную пространственную сетку редкими поперечными связями. Также можно сказать, что это технологический процесс превращения пластичного каучука в резину.

Возможность быстрого и эффективного восстановления применима к большинству изделий резинотехнической промышленности. Но если надувные лодки, бассейны и плавательные круги нуждаются в ремонте по причине неиспользования и ненадлежащего хранения, то шины автомобилей ремонтируются гораздо чаще.

Это связано с большими нагрузками, приходящимися на них.

Вулканизация шин – современный процесс, позволяющий резко снизить затраты на обслуживание колес автомобиля в случае их повреждения.

Прошло то время, когда поврежденные шины из-за невозможности ремонта массово выбрасывались на обочину. Рост числа автомобилей привел к соответствующему росту отрасли авторемонта, в том числе и ремонта колес. Экономнее завулканизировать колесо, чем покупать новое.

Что такое вулканизация зачем ее проводятВулканизация шин – современный процесс, позволяющий резко снизить затраты на обслуживание колес автомобиля в случае их повреждения

На данный момент есть 2 варианта технологии:

  • горячая – каучук обрабатывается под высокой температурой;
  • холодная – повреждение восстанавливается посредством заплатки, присоединяющейся особым клеящим составом.

Горячая вулканизация

Процесс горячей вулканизации шин основан на термической обработке места повреждения с добавлением каучука («сырой резины»). Под воздействием высокой температуры резиновые компоненты скрепляются между собой, создавая пластичный монолитный слой.

Проникая в место пореза, термообработанный каучук полностью заполняет пространство, препятствуя проникновению внутрь покрышки грязи и влаги.

Вкратце процесс горячей вулканизации выглядит следующим образом:

  • Покрышка демонтируется с диска, место пореза аккуратно обрабатывается фрезой (главное – не повредить корд). Обработанное место дополнительно зачищается и обезжиривается. В место пореза в 2 слоя наносится специальный состав. Просушенный поврежденный участок послойно заполняется «сырой резиной», после чего покрышка отправляется на станок для вулканизации шин. Термообработка производится при температуре 120–140°C. Для дополнительной прочности на внутреннюю часть шины наносится специальная кордовая заплатка. После остывания резины место ремонта дополнительно зачищается фрезой, проводится финишная обработка.

Преимущества горячей вулканизации:

  • Цена. Стоимость устранения боковых порезов таких способом ниже, чем покупка новой резины. Надежность. Качественно проведенная вулканизация шин способна сохранить 90% прочности резины. Оперативность ремонта. Ехать с отремонтированным колесом можно сразу после устранения повреждения. Универсальность метода. Выполнять горячую вулканизацию можно при отрицательных температурах зимой, а также в условиях высокой запыленности. Это значит, что при внезапных порезах и отсутствии запаски можно вызвать мобильную шиномонтажку, которая отремонтирует колесо прямо на дороге.

Холодная вулканизация

В наше время воспользоваться этим методом не составляет труда, так как приобрести набор для ремонта можно в каждом магазине авто или вело запчастей. Комплектация такого набора может отличаться, но в каждом есть латки и специальный клей.

Процедура ремонта в этом случае похожа на горячий способ. Также нужно обработать поврежденную поверхность абразивом, удалить резиновую пыль и обезжирить. После высыхания нанести клей на камеру и приклеить заплатку. В этом случае играет роль не продолжительность прижатия, а его сила. Поэтому недостаточно будет просто придавить камнем, необходимо большее усилие.

Что такое вулканизация зачем ее проводятХолодная вулканизация резины своими руками довольно-таки несложный процесс, который можно выполнить, где бы ни находился

Холодная вулканизация резины своими руками довольно-таки несложный процесс, который можно выполнить, где бы ни находился, если есть специальный набор. Однако сырая резина своими руками в домашних условиях не делается. Для таких работ нужно специальное оборудование.

Основные преимущества холодной вулканизации шин:

  • Простота ремонта. Чтобы устранить порез, вам не потребуется специализированное оборудование для вулканизации. Достаточно клея, заплатки и обезжиривающего средства. Возможность оперативного устранения мелких проколов и порезов в дороге. Низкая цена вулканизации (даже в условиях шиномонтажки).
  • При ремонте холодной вулканизацией в шиномонтажной мастерской удается достичь повышенной прочности заплатки. Однако даже строгое соблюдение всех технических нюансов и применение качественных составов не даст 100% гарантии того, что на отремонтированном месте впоследствии не возникнет грыжа. Поэтому восстановленное колесо лучше оставить про запас.
  • Нормы времени для холодной вулканизации шин варьируются в зависимости от температуры окружающей среды, состава клея, площади пореза и толщины резины. Оптимальная прочность для возможности передвижения достигается за 20–30 минут. Полное схватывание осуществляется приблизительно за 2 суток.

Эффективность вулканизации

Любая новая покрышка однозначно лучше отремонтированной. Даже самый маленький сквозной порез нарушает целостность внутреннего кордового слоя, что ведет к неизбежной потери жесткости.

Ремонт боковых порезов шин горячей вулканизацией (видео процесса можно найти в сети) приближает колесо к его естественной прочности лишь на 90%. Этого вполне достаточно для повседневной эксплуатации отремонтированных покрышек в течение 1–2 сезонов.

Холодная вулканизация с использованием профессиональных клеевых составов и в условиях шиномонтажной мастерской также дает надежный результат. Однако при серьезном повреждении корда данный метод требует разбортовки колеса и установки дополнительной заплатки на внутренней части.

Самым распространенным последствием ремонта шин является возникновение грыжи на месте устраненного повреждения. Она также требуют срочного удаления. При повторном появлении вздутий на боковой поверхности покрышки рекомендуется заменить колесо.

Немного истории вулканизации

Открытие вулканизации, как ни странно, связано не с напряженной исследовательской работой, а с банальной халатностью работы. Один из сотрудников Массачусетской резиновой фабрики случайно уронил ком резины, перемешанной с серой, на раскаленную плиту. Резина обуглилась, но не оплавилась.

Произошло это в 1839 году, рабочего звали Чарльзом Гудиером, а потому именно с этого времени ведется отсчет развития вулканизации. В 1844 году появился первый патент, согласно которому каучук следовало подвергать воздействию царской водки и нитрита меди.

Процесс получил свое название от имени древнеримского бога огня Вулкана.

Что такое вулканизация зачем ее проводятИзобретатель нашел собственный режим вулканизации, отметив, что после нее резина становится устойчивой к температурным воздействиям

Изобретатель нашел собственный режим вулканизации, отметив, что после нее резина становится устойчивой к температурным воздействиям. Для этого в химический процесс вовлекается свинец и сера, которые нагреваются до нужной температуры вместе с каучуком. Так получается упругая резина, которая невосприимчива к влиянию солнечных лучей и холода.

В позапрошлом веке для вулканизации использовали только серу, однако со временем к ней стали добавлять немало других веществ, например, сернистый кальций, сернистые щелочи, сернистый мышьяк, свинец, сурьму, цинковые соли, хлористую серу и многие другие вещества с высоким содержанием серы. Вулканизация стала толчком для промышленного производства покрышек. Последнее решение тесто связано с деятельностью англичанина Роберта Томсона, который изобрел «воздушные» колеса в 1846 году и ирландца Джона Данлопа, натянувшим трубку из каучука на велосипедное колесо.

ВУЛКАНИЗАЦИЯ

Что такое вулканизация зачем ее проводят Что такое вулканизация зачем ее проводят Что такое вулканизация зачем ее проводят А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ВУЛКАНИЗАЦИЯ, технол. процесс, в к-ром пластичный каучук превращается в резину. В результате вулканизации фиксируется форма изделия и оно приобретает необходимые прочность, эластичность, твердость, сопротивление раздиру, усталостную выносливость и др. полезные эксплуатационные св-ва. С хим. точки зрения вулканизация — соединение («сшивание») гибких макромолекул каучука в трехмерную пространств. сетку (т. наз. вулканизационную сетку) редкими поперечными хим. связями. Образование сетки происходит под действием спец. хим. агента или (и) энергетич. фактора, напр. высокой т-ры, ионизирующей радиации. Поперечные связи ограничивают необратимые перемещения макромолекул при мех. нагружении (уменьшают пластич. течение), но не изменяют их способности к высокоэластич. деформации (см. Высокоэластическое состояние). Степень сшивания (густоту сетки поперечных связей) характеризуют равновесными модулями растяжения или сдвига, к-рые определяют при сравнительно небольших деформациях, равновесным набуханием в хорошем р-рителе, а также содержанием макромолекул, оставшихся в сшитом образце вне сетки (зольфракция).

Структура вулканизационной сетки. Механизм вулканизации. Вулканизац. сетка имеет сложное строение. В ней наряду с узлами, в к-рых соединяются две макромолекулы (тетрафункциональные узлы), наблюдаются также полифункциональные узлы (соединение в одном узле неск. макромолекул). Св-ва сеток зависят от концентрации поперечных хим. связей, их распределения и хим.

строения, а также от средней мол. массы и ММР вулканизуемого каучука, разветвленности его макромолекул, содержания в сетке зольфракции и др. Оптимальная густота сетки достигается при участии в сшивании всего 1-2% мономерных звеньев макромолекулы. Дефектами сетки м. б. своб.

концы макромолекул, не вошедшие в нее, но к ней присоединенные; сшивки, соединяющие участки одной и той же цепи; захлесты или переплетения цепей и т.д.

Поперечные хим. связи — мостики образуются под действием разл. агентов вулканизации и представляют собой фрагменты молекул самого агента. От хим. состава этих мостиков зависят мн. эксплуатац. характеристики резин, напр.

Читайте также:  Объем масла в поршневом компрессоре

сопротивление термоокислит. старению, скорость накопления остаточных деформаций в условиях сжатия при повыш. т-рах, стойкость к действию агрессивных сред. Влияние хим.

состава и длины поперечных связей на прочность резин при обычной т-ре надежно не установлено.

Строение сетки вулканизатов, наполненных технич. углеродом (сажей), сложнее, чем ненаполненных, из-за сильного физ и хим. взаимод. каучука с наполнителем. Для таких вулканизатов количеств.

связь между параметрами сетчатой структуры и эксплуатац. характеристиками до сих пор не найдена. Однако существуют разнообразные качеств. и полуколичеств.

зависимости, к-рые широко используют для разработки рецептур резин и прогнозирования их поведения при вулканизации.

На практике, чтобы обеспечить высокую производительность оборудования, стремятся к миним. продолжительности вулканизации, но в условиях, обеспечивающих эффективную переработку смесей и получение резин с наилучшими св-вами.

Весь процесс принято подразделять на три периода: 1) индукционный; 2) период формирования сетки; 3) перевулканизация (реверсия). По продолжительности индукц.

периода, когда измеримое сшивание не наблюдается, определяют стойкость резиновой смеси к преждевременной вулканизации (подвулканизации). Последняя затрудняет переработку смеси и приводит к ухудшению кач-ва изделий.

Этот период особенно важен при вулканизации многослойных изделий, т.к. с увеличением его продолжительности усиливаются слипание отдельных слоев смеси при формировании изделия и совулканизация слоев.

Завершению периода формирования сетки соответствует оптимум вулканизации — время, за к-рое обычно достигается образование вулканизата с наилучшими св-вами. Технически важная характеристика — плато вулканизации, т. е.

отрезок времени, в течение к-рого значения измеряемого параметра, близкие к оптимальным, изменяются сравнительно мало. К перевулканизации приводит продолжение нагревания резины после израсходования агента вулканизации.

Перевулканизация проявляется в дальнейшем повышении жесткости вулканизата (напр., при вулканизации полибутадиена, сополимеров бутадиена со стиролом или акрилонитрилом) или, наоборот, в его размягчении (при вулканизации полиизопрена, бутил-каучука, этилен-пропиленового каучука).

Эти изменения св-в связаны с термической перестройкой вулканизац. сетки, термич. и термоокислит. превращениями макромолекул.

Элементарные р-ции, протекающие при вулканизации, определяются хим. строением каучука и агента вулканизации, а также условиями процесса. Обычно, независимо от характера этих р-ций, различают 4 стадии вулканизации. На первой, охватывающей в основном индукц.

период, агент вулканизации переходит в активную форму: в результате его р-ции с ускорителями и активаторами процесса образуется т. наз. действительный агент вулканизации (ДАВ).

[Применение сравнительно стабильных компонентов вулканизующей системы обусловлено необходимостью относительно длительного (до одного года) их хранения на резиновых заводах, а также сохранения в течение нек-рого времени пластичности резиновой смеси, поскольку в противном случае исключается возможность формования изделия.]

Собственно сшивание охватывает две стадии: а) активацию макромолекул в результате их р-ции с ДАВ, приводящей к образованию полимерного своб. радикала, полимерного иона или активного промежут. продукта присоединения агента вулканизации к макромолекуле; б) взаимод.

двух активированных макромолекул (или активированной и неактивированной) с образованием поперечной связи. На 4-й стадии происходит перестройка «первичных» поперечных связей в термически и химически более устойчивые структуры; при вулканизации каучуков спец. назначения, напр.

полисилоксановых или фторкаучуков, этой цели служит отдельная технол. операция — выдержка в воздушных термостатах.

Специфич. особенности рассмотренных р-ций — высоковязкая среда, а также большой избыток каучука по сравнению с кол-вом агента вулканизации (обычно 1-5% от массы каучука).

Большинство агентов вулканизации плохо растворимо (твердые в-ва) или плохо совместимо (жидкости) с каучуком; поэтому для равномерного диспергирования агента вулканизации в среде каучука в виде частиц (капель) минимально возможного размера применяют спец. диспергаторы, являющиеся ПАВ для данной системы. Хорошим диспергатором служит, напр.

, стеарат цинка, к-рый образуется в резиновой смеси при р-ции стеариновой к-ты с ZnO, применяемыми в кач-ве активаторов серной вулканизации. Присутствие полярных группировок в макромолекуле, полярных нерастворимых в-в в резиновой смеси и ряд др. факторов способствует локальному концентрированию даже р-римых в каучуке агентов вулканизации.

Вследствие этого р-ции, обусловливающие вулканизацию, идут частично как гомогенные (растворенный ДАВ), а частично как гетерогенные [р-ции на границе раздела каучук — частица (капля) ДАВ]. Полагают, что гетерогенные р-ции приводят к образованию сетки с узким ММР отрезков макромолекул между сшивками, благодаря чему повышаются эластичность, динамич.

выносливость и прочность вулканизатов. Статистич. распределение поперечных связей, характерное для гомогенных р-ций, предпочтительнее при получении уплотнит. резин, наиб. важное св-во к-рых — малое накопление остаточных деформаций при сжатии.

Поскольку от доли гетерог. р-ций зависит строение вулканизац. сетки, св-ва вулканизатов определяются не только механизмом хим.

р-ций, но и размером и распределением дисперсных частиц агента вулканизации и ДАВ в каучуке, интенсивностью межмол. взаимод. на межфазной границе и др.

Влияние этих факторов проявляется при смешении каучука с ингредиентами и переработке резиновой смеси. Поэтому св-ва вулканизата зависят от «предыстории» конкретного образца.

Технология вулканизации. Вулканизующие системы. Большинство резиновых смесей подвергается вулканизации при 130-200 °С в спец.

агрегатах (прессы, автоклавы, форматоры-вулканизаторы, солевые ванны, котлы, литьевые машины и др.) с применением разнообразных теплоносителей (перегретый водяной пар, горячий воздух, электрообогрев и др.).

Герметики, резиновые покрытия и др. часто вулканизуют ок. 20 °С («холодная» вулканизация).

Круг агентов вулканизации довольно широк, а выбор их определяется хим. строением каучука, условиями эксплуатации изделий и приемлемым технол. способом проведения вулканизации. Для диеновых каучуков (гомо- и сополимеров изопрена или бутадиена) наиб.

широко применяют т. наз. серную вулканизацию. Ее используют в произ-ве автомобильных покрышек и камер, мн. видов резиновой обуви, РТИ и др. Мировое потребление серы для вулканизации превышает 100 тыс.

т/год (среднее ее содержание в резиновой смеси составляет 1,5% по массе).

Наиб. важные компоненты серной вулканизующей системы — ускорители вулканизации; варьируя их тип и кол-во (при обязательном присутствии активатора вулканизации — смеси ZnO со стеариновой к-той), удается в широких пределах изменять скорость вулканизации, структуру сетки и св-ва резин. Именно хим. строение ускорителя определяет скорость образования и реакц.

способность ДАВ. В случае серной вулканизации он представляет собой полисульфидное соединение ускорителя (Уск) типа Уск-Sх-Уск или Уск-Sx-Zn-Sy-Уск. В результате р-ций ДАВ сметиленовыми группами или (и) двойными связями макромолекулы образуются поперечные связи, содержащие один или неск. атомов серы.

В пром-сти в кач-ве ускорителей серной вулканизации наиб. широко (70% общего объема потребления этих ингредиентов) применяют замещенные тиазолы и сульфенамиды. Первые, напр. 2-меркаптобензотиазол, дибензотиазолилдисульфид, обеспечивают широкое плато вулканизации и высокое сопротивление резин термоокислит.

старению. Сульфенамиды, напр. N-циклогексил-2-бензотиазолилсульфенамид (сульфенамид Ц), морфолилтиабензотиазол (сульфенамид М), уменьшают склонность смесей к преждевременной вулканизации, улучшают формуемость смесей и монолитность изделий, задерживают побочные процессы (напр., деструкцию и изомеризацию каучука).

В присут. ускорителей из группы тиурамов, напр. тетра-метилтиурамдисульфида, дипентаметилентиурамтетрасульфида, получают резины с повыш. теплостойкостью.

Эти соединения, обеспечивающие высокую скорость серной вулканизации, способны вулканизовать диеновые каучуки и без элементной серы. Еще большее ускорение вулканизации наблюдается при использовании т. наз. ультраускорителей-дитиокарбаматов и ксантогенатов. В присут.

первых (диметилдитиокарбамат Zn, диэтилдитиокарбамат диэтиламина) резиновые смеси м. б. вулканизованы в течение короткого времени при 110-125°С. Водорастворимые представители этой группы соединений, напр.

диметилдитиокарбамат Na, используют для вулканизации латексных смесей и нек-рых резиновых клеев. Ксантогенаты, напр. бутилксантогенат Zn, применяют гл. обр. в клеевых композициях, вулканизующихся при 20-100°С.

Первые введенные в практику ускорители серной вулканизации — альдегидамины (продукты конденсации анилина с альдегидами) и гуанидины (гл. обр. дифенилгуанидин) — характеризуются замедленным действием.

Благодаря этому они удобны при получении эбонитов и массивных изделий.

Дифенилгуанидин, кроме того, широко применяют в комбинации с тиазолами для повышения активности последних; разработано большое число двойных систем ускорителей, к-рые обеспечивают более эффективную вулканизацию, чем каждый из них в отдельности.

Для эффективного уменьшения склонности к подвулкани-зации резиновых смесей с серной вулканизующей системой применяют замедлители подвулканизации-N-HH-трозодифениламин, фталевый ангидрид, N-циклогексилтиофталимид. Действие этих ингредиентов сводится к уменьшению скорости р-ций компонентов вулканизующей системы с каучуком или между собой при образовании ДАВ.

С целью получения резин со спец. св-вами в пром-сти расширяется применение таких агентов вулканизации, как орг. пероксиды, алкилфеноло-формальд. смолы, олигоэфиракрилаты и др. непредельные соединения, орг. полигалогенпроизводные, нитрозосоединения и др.

Растет также интерес к вулканизации под действием радиац. излучения и других физ. факторов. Пероксидные и радиац. резины отличаются повыш. теплостойкостью и улучшенными диэлектрич. св-вами; резины, вулканизованные алкилфеноло-формальд.

смолами,- высокой стойкостью к перегретому пару.

Вулканизация каучуков, содержащих в макромолекуле функц. группы, возможна также с помощью соединений, вступающих с этими группами в хим. р-ции. Так, винилпиридиновые каучуки вулканизуются полигалогенпроизводными, галогенсодержащие каучуки (полихлоропрен, хлорсульфированный полиэтилен, хлорбутилкаучук, фторкаучуки) — диаминами и полиолами, уретановые-диизоцианатами.

Читайте также:  Как разрезать чугунную трубу болгаркой видео

===

Исп. литература для статьи «ВУЛКАНИЗАЦИЯ»: Гофманн В., Вулканизация и вулканизующие агенты, пер. с нем., Л., 1968; Блох Г. А., Органические ускорители вулканизации и вулканизирующие системы для эластомеров, Л.

, 1978; Донцов А. А., Процессы структурирования эластомеров, М., 1978; Догадкин Б. А., Донцов А. А., Шершне в В. А., Химия эластомеров, 2 изд., М., 1981; Донцов А. А., Шершнев В. А., «ЖВХО им. Д. И. Менделеева», 1986, т. 31, № 1. А. А.

Донцов.

Страница «ВУЛКАНИЗАЦИЯ» подготовлена по материалам химической энциклопедии.

А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Для чего нужна вулканизация? | Блог Rezina.cc

Вулканизация – это сложный технологический процесс, превращающий пластичный каучук в резину. При этом форма изделия фиксируется, оно становится более эластичным, прочным и твердым.

Резину после вулканизации сложно разорвать, ее эксплуатационные характеристики улучшаются, а выносливость достигает невероятных параметров.

Химики назовут процесс вулканизации «сшиванием» макромолекул каучука в вулканизационную сетку поперечными редкими химическими связями. Для этого используется специальный химический агент.

История вулканизации и ее особенности

Открытие вулканизации, как ни странно, связано не с напряженной исследовательской работой, а с банальной халатностью работы. Один из сотрудников Массачусетской резиновой фабрики случайно уронил ком резины, перемешанной с серой, на раскаленную плиту. Резина обуглилась, но не оплавилась.

Произошло это в 1839 году, рабочего звали Чарльзом Гудиером, а потому именно с этого времени ведется отсчет развития вулканизации. В 1844 году появился первый патент, согласно которому каучук следовало подвергать воздействию царской водки и нитрита меди.

Процесс получил свое название от имени древнеримского бога огня Вулкана. 

Изобретатель нашел собственный режим вулканизации, отметив, что после нее резина становится устойчивой к температурным воздействиям. Для этого в химический процесс вовлекается свинец и сера, которые нагреваются до нужной температуры вместе с каучуком. Так получается упругая резина, которая невосприимчива к влиянию солнечных лучей и холода.

В позапрошлом веке для вулканизации использовали только серу, однако со временем к ней стали добавлять немало других веществ, например, сернистый кальций, сернистые щелочи, сернистый мышьяк, свинец, сурьму, цинковые соли, хлористую серу и многие другие вещества с высоким содержанием серы. Вулканизация стала толчком для промышленного производства покрышек. Последнее решение тесто связано с деятельностью англичанина Роберта Томсона, который изобрел «воздушные» колеса в 1846 году и ирландца Джона Данлопа, натянувшим трубку из каучука на велосипедное колесо.

Зачем нужна вулканизация шин?

Вулканизация покрышек – это один из инструментов ремонта повреждений резины. Как правило, при этом используются специальные пластыри, предназначенные для холодной и горячей вулканизации.

В процессе жидкость для ремонта камер взаимодействует с активным слоем пластыря-заплаты. Чтобы обработать поверхность материалов и места дефектов, используется спеццемент BL.

Для фиксации и соединения элементов и деталей конструкции применяются клеи.

Различают холодную и горячую вулканизацию:

• Без термической обработки две резиновые составляющие скрепляются в процессе холодной вулканизации. При этом пластырь с адгезивным слоем крепится внутри покрышки.

Этот процесс протекает достаточно медленно, а потому при средней температуре окружающей среды в 20 С, шина после установки пластыря должна простоять сутки. Если же за окном холоднее, для полного завершения процесса потребуется двое суток.

Чтобы процесс прошел верно, не следует ни в чем отклоняться от технологии. Для закрепления эффекта стоит воспользоваться дополнительными средствами для резины уже после окончания вулканизации;

• Если для скрепления материалов используется воздействие высокой температуры, речь идет о горячей вулканизации. Для данного процесса используется так называемая «сырая резина» — пластичная смесь, которая восстанавливает места повреждения резины. Услуга вулканизации доступна во многих сервисных центрах.

Чтобы шины служили достаточно долго и не нуждались в вулканизации, следует приобретать их в проверенных виртуальных торговых площадках, например,Rezina.cc. Здесь работают опытные специалисты, которые смогут дать ответы на любые вопросы. Преимущества интернет-магазина – разумная ценовая политика и оперативная доставка без предварительной платы.

ВУЛКАНИЗА́ЦИЯ

Авторы: В. А. Шершнёв

ВУЛКАНИЗА́ЦИЯ, пре­вра­ще­ние кау­чу­ка в ре­зи­ну. При В. гиб­кие ли­ней­ные или раз­ветв­лён­ные мак­ро­мо­ле­ку­лы кау­чу­ка свя­зы­ва­ют­ся по­пе­реч­ны­ми хи­мич. свя­зя­ми в еди­ную про­стран­ст­вен­ную сет­чатую струк­ту­ру. В. – за­клю­чи­тель­ный тех­но­ло­гич.

про­цесс пе­ре­хо­да пла­сти­че­ско­го кау­чук­со­дер­жа­ще­го ма­те­риа­ла в уп­ру­гую эла­стич­ную ре­зи­ну (вул­ка­ни­зат).

Ре­зи­на те­ря­ет спо­соб­ность к пла­сти­че­ским де­фор­ма­ци­ям, рас­тво­ре­нию в уг­ле­во­до­род­ных сре­дах и про­яв­ля­ет спо­соб­ность к боль­шим об­ра­ти­мым де­фор­ма­ци­ям в со­че­та­нии с вы­со­ки­ми проч­но­стью, мо­ду­ля­ми уп­ру­го­сти, ог­ра­ни­чен­ным на­бу­ха­ни­ем в рас­тво­ри­те­лях, ус­той­чи­во­стью к мно­го­крат­ным де­фор­ма­ци­ям, спо­соб­но­стью амор­ти­зи­ро­вать удар­ные на­груз­ки, стой­ко­стью к те­п­ло­вым, ат­мо­сфер­ным и др. воз­дей­ст­ви­ям. От­кры­тие В. не­за­ви­си­мо Ч. Гудь­и­ром (США) в 1839 и Т. Хэн­ко­ком (Ве­ли­ко­бри­та­ния) в 1843 да­ло на­ча­ло раз­ви­тию ре­зи­но­вой про­мыш­лен­но­сти.

По из­ме­не­нию свойств кау­чу­ка про­цесс В. де­лит­ся на неск. пе­рио­дов: ин­дук­ци­он­ный (до на­ча­ла об­ра­зо­ва­ния по­пе­реч­ных свя­зей), глав­ный (рез­кое уве­ли­че­ние плот­но­сти сет­ки по­пе­реч­ных свя­зей), оп­ти­мум В.

(дос­ти­же­ние за­дан­ной ве­ли­чи­ны плот­но­сти сет­ки и со­хра­не­ние её при даль­ней­шем на­гре­ва­нии), пе­ре­вул­ка­ни­за­ция (уп­лот­не­ние сет­ки) или ре­вер­сия (рас­пад об­ра­зо­вав­шей­ся сет­ки). Тех­но­ло­гич. приё­мы осу­ще­ст­в­ле­ния В.

раз­но­об­раз­ны, но их сущ­ность за­клю­ча­ет­ся в на­гре­ва­нии го­ря­чим воз­ду­хом, пе­ре­гре­тым во­дя­ным па­ром и др. те­п­лоно­си­те­ля­ми ре­зи­но­вой сме­си, со­дер­жа­щей не­об­хо­ди­мые ком­по­нен­ты: кау­чук, вул­ка­ни­зую­щие аген­ты, ус­ко­ри­те­ли и ак­ти­ва­то­ры В., ино­гда за­мед­ли­те­ли преж­де­вре­мен­ной В.

(под­вул­ка­ни­за­ции), на­пол­ни­те­ли и др. Про­цесс осу­ще­ст­в­ля­ет­ся в прес­сах, ав­то­кла­вах, кот­лах, со­ле­вых ван­нах при нор­маль­ном или по­вы­шен­ном дав­ле­нии.

Вы­бор вул­ка­ни­зую­щих аген­тов оп­реде­ля­ет­ся гл. обр. хи­мич. струк­ту­рой кау­чу­ка и ус­ло­вия­ми экс­плуа­та­ции из­де­лия. Кау­чу­ки, имею­щие в мак­ро­мо­ле­ку­лах двой­ные свя­зи (напр., на­ту­раль­ный кау­чук, син­те­тич. изо­пре­но­вые, бу­та­дие­но­вые), обыч­но вул­ка­ни­зу­ют се­рой и се­ро­со­дер­жа­щи­ми со­еди­не­ния­ми при на­гре­ва­нии – т.

 н. сер­ная В. Для по­лу­че­ния ре­зин со спец. свой­ст­ва­ми при­меня­ют В. по­ли­функ­цио­наль­ны­ми со­еди­не­ния­ми (фе­но­ло-фор­маль­де­гид­ны­ми смо­ла­ми, али­фа­тич. или аро­ма­тич. по­ли­гало­ге­ни­да­ми, ре­ак­ци­он­но­спо­соб­ны­ми оли­го­эфи­рак­ри­ла­та­ми и др.). Кау­чу­ки, не со­дер­жа­щие двой­ных свя­зей (напр.

, крем­ний­ор­га­ни­че­ские, фтор­кау­чу­ки), вул­ка­ни­зу­ют ор­га­нич. пе­рок­си­да­ми, дей­ст­ви­ем вы­со­ких темп-р или из­лу­че­ний вы­со­ких энер­гий. В. кау­чу­ков, в мак­ро­мо­ле­ку­лах ко­то­рых есть функ­цио­наль­ные груп­пы (напр.

, ак­ри­лат­ных, ви­нил­пи­ри­ди­но­вых, хло­ро­пре­но­вых, уре­та­но­вых), про­во­дят с по­мо­щью со­еди­не­ний, всту­паю­щих в хи­мич. ре­ак­ции по этим груп­пам.

Ре­жим В. (темп-ру, дав­ле­ние и пр.) вы­би­ра­ют с учё­том те­п­ло­фи­зич. ха­рак­те­ри­стик кау­чу­ков (те­п­ло­про­вод­ность кау­чу­ков зна­чи­тель­но ни­же те­п­ло­про­вод­но­сти ме­тал­лов). Да­же при вве­де­нии тех­нич.

уг­ле­ро­да в ка­че­ст­ве ак­тив­но­го на­пол­ни­те­ля те­п­ло­про­вод­ность сме­си по­вы­ша­ет­ся не­дос­та­точ­но для бы­ст­ро­го и рав­но­мер­но­го про­гре­ва­ния за­го­тов­ки бу­ду­ще­го из­де­лия, осо­бен­но тол­сто­стен­но­го или мно­го­слой­но­го. Для В. мно­го­слой­ных из­де­лий (напр.

, шин) под­би­ра­ют ре­зи­но­вые сме­си та­ким об­ра­зом, что­бы бо­лее ре­ак­ци­он­но­спо­соб­ные ока­за­лись внут­ри за­го­тов­ки, ме­нее ре­ак­ци­он­но­спо­соб­ные – в её на­руж­ных час­тях. Ино­гда для бо­лее рав­но­мер­но­го про­гре­ва­ния мас­сив­ных из­де­лий при­ме­ня­ют то­ки вы­со­кой час­то­ты.

Со­вер­шен­ст­во­ва­ние тех­но­ло­гич. приё­мов В. на­прав­ле­но на бо­лее ка­че­ст­вен­ное управ­ле­ние про­цес­сом с по­мо­щью ком­пь­ю­те­ров и ав­то­ма­ти­зир. сис­тем, ор­га­ни­за­цию не­пре­рыв­ных про­цес­сов из­го­тов­ле­ния ма­те­риа­лов и из­де­лий (напр., фор­мо­вая В.

в ап­па­ра­тах ка­ру­сель­но­го ти­па, про­из-во транс­пор­тёр­ных лент, ли­но­ле­ума, про­ре­зи­нен­ных тка­ней, шпри­цуе­мых из­де­лий за­дан­но­го про­фи­ля и др.).

Вулканизация

Технологический процесс, в котором пластичный каучук превращается в резину. В результате вулканизации фиксируется форма изделия и оно приобретает необходимые прочность, эластичность, твердость, сопротивление раздиру, усталостную выносливость и другие полезные эксплуатационные свойства.

С химической точки зрения вулканизация – соединение («сшивание») гибких макромолекул каучука в трехмерную пространств. сетку (так называемую вулканизационную сетку) редкими поперечными химическими связями. Образование сетки происходит под действием специального химического агента или (и) энергетического фактора, например высокой температуры, ионизирующей радиации.

Поперечные связи ограничивают необратимые перемещения макромолекул при механическом нагружении (уменьшают пластичное течение), но не изменяют их способности к высокоэластичной деформации характеризуют равновесными модулями растяжения или сдвига, которые определяют при сравнительно небольших деформациях, равновесным набуханием в хорошем растворителе, а также содержанием макромолекул, оставшихся в сшитом образце вне сетки (зольфракция).

Структура вулканизационной сетки. Механизм вулканизации.

Вулканизационная сетка имеет сложное строение. В ней наряду с узлами, в которых соединяются две макромолекулы (тетрафункциональные узлы), наблюдаются также полифункциональные узлы (соединение в одном узле несколько макромолекул).

Свойства сеток зависят от концентрации поперечных химических связей, их распределения и химического строения, а также от средней молярной массы и ММР вулканизуемого каучука, разветвленности его макромолекул, содержания в сетке зольфракции и других. Оптимальная густота сетки достигается при участии в сшивании всего 1-2% мономерных звеньев макромолекулы.

Дефектами сетки могут быть свободные концы макромолекул, не вошедшие в нее, но к ней присоединенные; сшивки, соединяющие участки одной и той же цепи; захлесты или переплетения цепей и так далее.

Поперечные химические связи – мостики образуются под действием различных агентов вулканизации и представляют собой фрагменты молекул самого агента.

От химического состава этих мостиков зависят многие эксплуатационные характеристики резин, например сопротивление термоокислительному старению, скорость накопления остаточных деформаций в условиях сжатия при повышенных температурах, стойкость к действию агрессивных сред.

Влияние химического состава и длины поперечных связей на прочность резин при обычной температуре надежно не установлено.

Читайте также:  Как подобрать шунт для амперметра

Строение сетки вулканизатов, наполненных техническим углеродом (сажей), сложнее, чем ненаполненных, из-за сильного физического и химического взаимодействия каучука с наполнителем. Для таких вулканизатов количеств.

связь между параметрами сетчатой структуры и эксплуатационные характеристиками до сих пор не найдена.

Однако существуют разнообразные качественные и полуколичественные зависимости, которые широко используют для разработки рецептур резин и прогнозирования их поведения при вулканизации.

  • На практике, чтобы обеспечить высокую производительность оборудования, стремятся к минимальной продолжительности вулканизации, но в условиях, обеспечивающих эффективную переработку смесей и получение резин с наилучшими свойствами. Весь процесс принято подразделять на три периода:
  • 1) индукционный;
  • 2) период формирования сетки;
  • 3) перевулканизация (реверсия).

По продолжительности индукционного периода, когда измеримое сшивание не наблюдается, определяют стойкость резиновой смеси к преждевременной вулканизации (подвулканизации).

Последняя затрудняет переработку смеси и приводит к ухудшению качества изделий.

Этот период особенно важен при вулканизации многослойных изделий, так как с увеличением его продолжительности усиливаются слипание отдельных слоев смеси при формировании изделия и совулканизация слоев.

Завершению периода формирования сетки соответствует оптимум вулканизации – время, за которое обычно достигается образование вулканизата с наилучшими свойствами.

Технически важная характеристика – плато вулканизации, то есть отрезок времени, в течение которого значения измеряемого параметра, близкие к оптимальным, изменяются сравнительно мало. К перевулканизации приводит продолжение нагревания резины после израсходования агента вулканизации.

Перевулканизация проявляется в дальнейшем повышении жесткости вулканизата (например, при вулканизации полибутадиена, сополимеров бутадиена со стиролом или акрилонитрилом) или, наоборот, в его размягчении (при вулканизации полиизопрена, бутил-каучука, этилен-пропиленового каучука).

Эти изменения свойств связаны с термической перестройкой вулканизационной сетки, термическими и термоокислительными превращениями макромолекул.

Элементарные реакции, протекающие при вулканизации, определяются химическим строением каучука и агента вулканизации, а также условиями процесса. Обычно, независимо от характера этих реакций, различают 4 стадии вулканизации.

На первой, охватывающей в основном индукционный период, агент вулканизации переходит в активную форму: в результате его реакции с ускорителями и активаторами процесса образуется так называемый действительный агент вулканизации (ДАВ).

(Применение сравнительно стабильных компонентов вулканизующей системы обусловлено необходимостью относительно длительного (до одного года) их хранения на резиновых заводах, а также сохранения в течение некоторого времени пластичности резиновой смеси, поскольку в противном случае исключается возможность формования изделия.)

Собственно сшивание охватывает две стадии:

а) активацию макромолекул в результате их реакции с ДАВ, приводящей к образованию полимерного свободного радикала, полимерного иона или активного промежуточного продукта присоединения агента вулканизации к макромолекуле;

б) взаимодействие двух активированных макромолекул (или активированной и неактивированной) с образованием поперечной связи.

На 4-й стадии происходит перестройка «первичных» поперечных связей в термически и химически более устойчивые структуры; при вулканизации каучуков специального назначения, например полисилоксановых или фторкаучуков, этой цели служит отдельная технологическая операция – выдержка в воздушных термостатах.

Специфические особенности рассмотренных реакций – высоковязкая среда, а также большой избыток каучука по сравнению с количеством агента вулканизации (обычно 1-5% от массы каучука).

Большинство агентов вулканизации плохо растворимо (твердые вещества) или плохо совместимо (жидкости) с каучуком; поэтому для равномерного диспергирования агента вулканизации в среде каучука в виде частиц (капель) минимально возможного размера применяют специальные диспергаторы, являющиеся ПАВ для данной системы.

Хорошим диспергатором служит, например, стеарат цинка, который образуется в резиновой смеси при реакции стеариновой кислоты с ZnO, применяемыми в качестве активаторов серной вулканизации.

Присутствие полярных группировок в макромолекуле, полярных нерастворимых веществ в резиновой смеси и ряд других факторов способствует локальному концентрированию даже растворимых в каучуке агентов вулканизации.

Вследствие этого реакции, обусловливающие вулканизацию, идут частично как гомогенные (растворенный ДАВ), а частично как гетерогенные (реакции на границе раздела каучук – частица (капля) ДАВ). Полагают, что гетерогенные реакции приводят к образованию сетки с узким ММР отрезков макромолекул между сшивками, благодаря чему повышаются эластичность, динамическую выносливость и прочность вулканизатов. Статистическое распределение поперечных связей, характерное для гомогенных реакций, предпочтительнее при получении уплотнительных резин, наиболее важное свойство которых – малое накопление остаточных деформаций при сжатии.

Поскольку от доли гетерогической реакций зависит строение вулканизационной сетки, свойства вулканизатов определяются не только механизмом химических реакций, но и размером и распределением дисперсных частиц агента вулканизации и ДАВ в каучуке, интенсивностью межмолекулярного взаимодействия на межфазной границе и других. Влияние этих факторов проявляется при смешении каучука с ингредиентами и переработке резиновой смеси. Поэтому свойства вулканизата зависят от «предыстории» конкретного образца.

Технология вулканизации. Вулканизующие системы.

Большинство резиновых смесей подвергается вулканизации при 130-200°С в специальных агрегатах (прессы, автоклавы, форматоры-вулканизаторы, солевые ванны, котлы, литьевые машины и другие) с применением разнообразных теплоносителей (перегретый водяной пар, горячий воздух, электрообогрев и другие). Герметики, резиновые покрытия и другие часто вулканизуют около 20°С («холодная» вулканизация).

Круг агентов вулканизации довольно широк, а выбор их определяется химическим строением каучука, условиями эксплуатации изделий и приемлемым технологическим способом проведения вулканизации.

Для диеновых каучуков (гомо- и сополимеров изопрена или бутадиена) наиболее широко применяют так называемую серную вулканизацию. Ее используют в производстве автомобильных покрышек и камер, многих видов резиновой обуви, РТИ и других.

Мировое потребление серы для вулканизации превышает 100 тысяч т/год (среднее ее содержание в резиновой смеси составляет 1,5% по массе).

Наиболее важные компоненты серной вулканизующей системы – ускорители вулканизации; варьируя их тип и количество (при обязательном присутствии активатора вулканизации – смеси ZnO со стеариновой кислотой), удается в широких пределах изменять скорость вулканизации, структуру сетки и свойства резин.

Именно химическое строение ускорителя определяет скорость образования и реакционную способность ДАВ. В случае серной вулканизации он представляет собой полисульфидное соединение ускорителя (Уск) типа Уск-Sх-Уск или Уск-Sx-Zn-Sy-Уск. В результате реакций ДАВ с1085-21.

jpgметиленовыми группами или (и) двойными связями макромолекулы образуются поперечные связи, содержащие один или несколько атомов серы.

В промышленности в качестве ускорителей серной вулканизации наиболее широко (70% общего объема потребления этих ингредиентов) применяют замещенные тиазолы и сульфенамиды.

Первые, например 2-меркаптобензотиазол, дибензотиазолилдисульфид, обеспечивают широкое плато вулканизации и высокое сопротивление резин термоокислительному старению.

Сульфенамиды, например N-циклогексил-2-бензотиазолилсульфенамид (сульфенамид Ц), морфолилтиабензотиазол (сульфенамид М), уменьшают склонность смесей к преждевременной вулканизации, улучшают формуемость смесей и монолитность изделий, задерживают побочные процессы (например, деструкцию и изомеризацию каучука).

В присутствии ускорителей из группы тиурамов, например тетра-метилтиурамдисульфида, дипентаметилентиурамтетрасульфида, получают резины с повышенной теплостойкостью.

Эти соединения, обеспечивающие высокую скорость серной вулканизации, способны вулканизовать диеновые каучуки и без элементной серы. Еще большее ускорение вулканизации наблюдается при использовании так называемых ультраускорителей-дитиокарбаматов и ксантогенатов.

В присутствии первых (диметилдитиокарбамат Zn, диэтилдитиокарбамат диэтиламина) резиновые смеси могут быть вулканизованы в течение короткого времени при 110-125°С.

Водорастворимые представители этой группы соединений, например диметилдитиокарбамат Na, используют для вулканизации латексных смесей и некоторых резиновых клеев. Ксантогенаты, например бутилксантогенат Zn, применяют главным образом в клеевых композициях, вулканизующихся при 20-100°С.

Первые введенные в практику ускорители серной вулканизации – альдегидамины (продукты конденсации анилина с альдегидами) и гуанидины (главным образом дифенилгуанидин) – характеризуются замедленным действием.

Благодаря этому они удобны при получении эбонитов и массивных изделий.

Дифенилгуанидин, кроме того, широко применяют в комбинации с тиазолами для повышения активности последних; разработано большое число двойных систем ускорителей, которые обеспечивают более эффективную вулканизацию, чем каждый из них в отдельности.

Для эффективного уменьшения склонности к подвулканизации резиновых смесей с серной вулканизующей системой применяют замедлители подвулканизации-N-HH-трозодифениламин, фталевый ангидрид, N-циклогексилтиофталимид. Действие этих ингредиентов сводится к уменьшению скорости реакций компонентов вулканизующей системы с каучуком или между собой при образовании ДАВ.

С целью получения резин со специальными свойствами в промышленности расширяется применение таких агентов вулканизации, как органические пероксиды, алкилфеноло-формальдные смолы, олигоэфиракрилаты и другие непредельные соединения, органические полигалогенпроизводные, нитрозосоединения и другие.

Растет также интерес к вулканизации под действием радиационного излучения и других физических факторов.

Пероксидные и радиационные резины отличаются повышенной теплостойкостью и улучшенными диэлектрическими свойствами; резины, вулканизованные алкилфеноло-формальдными смолами, – высокой стойкостью к перегретому пару.

Вулканизация каучуков, содержащих в макромолекуле функцианальные группы, возможна также с помощью соединений, вступающих с этими группами в химические реакции. Так, винилпиридиновые каучуки вулканизуются полигалогенпроизводными, галогенсодержащие каучуки (полихлоропрен, хлорсульфированный полиэтилен, хлорбутилкаучук, фторкаучуки) – диаминами и полиолами, уретановые-диизоцианатами.

Гладкова Наталья

Ссылка на основную публикацию
Adblock
detector