Есть ли полярность у варистора

Есть ли полярность у варистора

Что такое варистор?

Для начала следует остановиться на том, что представляет собой это устройство.

  1. Данный прибор – это полупроводниковый резистор, уровень проводимости которого зависит от такого показателя, как величина приложенного напряжения.
  2. Кроме того, он относится к нелинейным типам приборов.

Принцип работы варистора прост. При наличии в электрической цепи нормального уровня напряжения варистор пропускает через себя малый ток. В случае достижения в системе, в силу обстоятельств, предельных значений напряжения, варистор открывается и пропускает все токовые силы . Таким образом, осуществляется регулировка работы электрической цепи.

Маркировка варисторов

Есть ли полярность у варистораВ настоящее время каждый производитель устанавливает свою маркировку на эти типы приборов. Это объясняется тем, что производимые приборы имеют разные технические характеристики. Например, предельно допустимое напряжение или необходимый для функционирования уровень тока.

Наиболее распространенными маркировками является обозначение вида CNR, которая дополняется такими элементами, как 07D390K. Обозначения имеют следующее значение:

  1. CNR – серия варистора. Приборы с данным обозначением являются металлооксидными.
  2. 07 – величина устройства в диаметре (7 миллиметров).
  3. D – дисковый прибор.
  4. 390 – предельно допустимый показатель уровня напряжения.

Основные параметры

Главными параметрами такого прибора являются:

  • Величина напряжения.
  • Предельно допустимый уровень переменного напряжения.
  • Предельно допустимый уровень постоянного напряжения.
  • Максимально возможное поглощение энергии, выраженное в джоулях.
  • Время срабатывания.
  • Допустимые погрешности в работе.

Есть ли полярность у варистораЕсть ли полярность у варистораЕсть ли полярность у варистораЕсть ли полярность у варистора

Как проверить варистор?

Есть ли полярность у варистораДля осуществления диагностики приборов предназначены специальные устройства, которые носят название тестеров. Для проведения проверки тестер необходимо включить и перевести в режим сопротивления. В том случае, если техническое состояние тестируемого аппарата отвечает всем необходимым требованиям, то данные на тестере будут отличаться очень большой величиной.

Если вы решили проверить свой прибор, то также следует удостовериться в его должном внешнем виде. Посмотрите внимательно, нет ли на приборе трещин и не подгорел ли он в каких-нибудь местах. Не стоит игнорировать данный совет и принижать роль внешнего вида аппарата – по утверждениям специалистов, тщательный визуальный осмотр прибора помогает избежать возникновения многих неприятных ситуаций.

Применение варисторов

В современном мире такой вид аппаратов имеют довольно широкую область применения. Они незаменимы в таких областях, как промышленное производство: их устанавливают на оборудовании. Частенько незаменим в бытовом применении. Эти проборы выполняют ряд важнейших функций:

  1. Обеспечивают надежную защиту полупроводниковых устройств – различных типов тиристоров, диодов и стабилизаторов.
  2. Создают высокий уровень электростатической защиты для входов разного рода радиоаппаратуры.
  3. Препятствуют негативному воздействию электромагнитных всплесков в устройствах с высокой индуктивной мощностью.
  4. Используются в качестве элемента для погашения искр в переключателях и другом оборудовании.

Достоинства

Этот вид аппаратов обладает целым рядом неоценимых преимуществ по сравнению с разрядниками и многими другими приборами.

К основным преимуществам можно отнести:

  • Есть ли полярность у варистораВысокую скорость работы.
  • Отслеживание резких перепадов уровня напряжения в системе происходит в безинерционном режиме.
  • Предполагают применение при уровне напряжения в цепи от 12 до 1800 В.
  • Долгий срок эксплуатации.
  • Доступная стоимость.

Недостатки

Однако, наряду с большим количеством преимуществ перед другими приборами прибор имеет также и некоторые недостатки. Среди них можно назвать такие моменты, как:

  1. Есть ли полярность у варистораБольшой размер собственной емкости, вносимой в электрическую цепь. В зависимости от технических характеристик варистора – его конструкции, вида и максимально допустимого уровня напряжения данный показатель может равняться от 80 до 3000 пФ. Однако следует отметить, что в некоторых случаях большой объем вносимой в систему емкости может и сыграть на руку и превратиться в достаточно весомое достоинство. Например, при использовании тиристора в разнообразных фильтрах. В данной ситуации емкость будет ограничивать уровень напряжения в цепи.
  2. Разрядники обладают более высоким показателем предельно допустимой способности рассеивать мощность, нежели варистор. Некоторые производители для увеличения данного показателя существенно увеличивают размеры выпускаемых варисторов. Что следует помнить при установке варистора? В том случае, если вам необходимо включить варистор в самодельную систему, следует знать о некоторых важных моментах.

Во-первых, всегда нужно помнить, что иногда могут наступать так называемые критические условия – они с большой долей вероятности могут привести к взрыву устройства. Для предотвращения взрыва предназначены специальные устройства – защитные экраны. В них помещается вся конструкция варистора.

Во-вторых, следует не забывать, что кремневые варисторы по своим техническим характеристикам значительно уступают оксидным. Поэтому наиболее оптимальным вариантом является приобретение именно оксидного варистора.

Варисторы — принцип работы, типы и применение

Что такое варистор и для чего он применяется, рассмотрен принцип действия варистров, их вольт-амперная характеристика, приведены основные параметры варисторов отечественного производства, а также параметры для дисковых варисторов серии TVR. Как выглядит из себя варистор который применяется в бытовой радиоаппаратуре, а также внешний вид мощных варистров.

Принцип работы варистора

Варисторы, Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины.

В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рисунок 1), то есть он может работать и на переменном напряжении.

Есть ли полярность у варистора

Рис. 1. Вольт-амперная характеристика варистора.

Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

Достоинством варисторов, по сравнению с газоразрядниками, являются:

  • большее быстродействие;
  • безынерционное отслеживание перепадов напряжений;
  • выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;
  • имеют более низкую стоимость.

Варисторы широко применяются в промышленном оборудовании и приборах бытового назначения:

  • для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;
  • для электростатической защиты входов радиоаппаратуры;
  • для защиты от электромагнитных всплесков в мощных индуктивных элементах;
  • как элемент искрогашения в электромоторах и переключателях.

Виды варисторов

  • Типовое значение времени срабатывания варисторов при воздействии перенапряжения составляет не более 25 наносекунд (нс), но для защиты некоторых видов оборудования его может оказаться недостаточно (для электростатической защиты необходимо не более 1 нс).
  • Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия.
  • Так, например, фирме “S+M Epcos”, благодаря применению при изготовлении варисторов многослойной структуры SIOV-CN и их SMD-исполнения (безвыводная конструкция для поверхностного монтажа), удается добиться времени срабатывания менее 0,5 нс (при расположении таких элементов на печатной плате для получения указанного быстродействия уже необходимо минимизировать индуктивности внешних соединительных проводников).
  • В дисковой конструкции варисторов за счет индуктивности выводов время срабатывания увеличивается до нескольких наносекунд.
  • Малое время срабатывания, высокая надежность, отличные пиковые электрические характеристики в широком диапазоне рабочей температуры при малых размерах ставят многослойные варисторы на первое место при выборе элементов защиты от статических зарядов.

Есть ли полярность у варистора

Рис. 2. Внешний вид варисторов.

Есть ли полярность у варистора

Рис. 3. Внешний вид мощных варисторов.

Например, в области производства сотовых телефонов многослойные варисторы можно считать уже стандартом в защите от статического электричества.

CN-варисторы могут надежно защищать от статических разрядов: клавиатуры, разъемы для подключения факса и модема, соединители зарядных устройств, входы интегральных аналоговых микросхем, выводы микропроцессоров.

Характеристики варисторов

Основными параметрами, которые используют при описании характеристик варисторов, являются:

  • Un — классификационное напряжение, обычно измеряемое при токе 1 мА, — это условный параметр, который указывается при маркировке элементов;
  • Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);
  • Um= — максимально допустимое постоянное напряжение;
  • Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;
  • W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса. 
  • Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;
  • Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда вари-стор пропускает через себя большой ток, она падает до нуля.
Читайте также:  Бензопила партнер 350 заводится и глохнет

От величины W зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор, т. е.:

Есть ли полярность у варистора

Для применения рабочее напряжение у варисторов выбирается исходя из допустимой энергии рассеяния и максимально допустимой амплитуды напряжения. Напряжение ограничения примерно равно квалификационному напряжению (Un) варистора.

Для ориентировочных расчетов рекомендуется, чтобы на переменном напряжении оно не превышало Uвх

Защита входа блоков питания с помощью варисторов и термисторов

  • Качественные блоки питания обеспечивают долговременную надежную и безаварийную работу вычислительного оборудования и другой техники.
  • Так как при майнинге используются мощные импульсные источники питания, питающие дорогостоящее оборудование, то их выход из строя влечет за собой весьма неприятные последствия.
  • В связи с этим стоит разобраться с некоторыми особенностями их работы, которые помогут избежать поломок, вызванных непониманием процессов, происходящих внутри импульсных источников питания.

Переходные процессы в радиоэлектронной аппаратуре и вычислительной технике

При эксплуатации любых электрических приборов в момент переключения возникают нелинейные переходные процессы, которые в некоторых случаях незаметны, а иногда приводят к выходу устройства из расчетного режима работы, что сопровождается повышенной нагрузкой на его элементы и может привести их к выходу из строя.

Переходные процессы всегда возникают в момент коммутации цепей с нагрузкой, имеющей индуктивный и/или емкостной характер. В большинстве случаев они являются вредными для работы устройства, поэтому конструкторы аппаратуры обычно предпринимают меры для их сведения до минимума.

Так как любой участок цепи имеет в той или иной мере LC-параметры, то нелинейные процессы всегда происходят в любой электронике. В мощных блоках питания, использующихся для майнинга, установлены конденсаторы и катушки большой емкости/индуктивности, поэтому переходные процессы в них могут быть очень значительными.

Кратковременный всплеск переменного напряжения, значительно превышающий нормальное значение:

Во время включения в работу блока питания большой мощности в его контурах протекают импульсы тока огромной величины. Всплески напряжения, вызванные переходными процессами, могут многократно превышать номинальное напряжение, протекающее в сети.

Всплески напряжения (voltage spikes), возникающие на графике синусоидального переменного напряжения, вследствие переходных процессов (transients):

Для борьбы со всплесками напряжения в момент включения блоков питания в них устанавливаются специальные защитные элементы.

Они обычно справляются со своей ролью, но иногда, при нештатных ситуациях, не справляются со своими задачами.

Чтобы не допускать их возникновения (или хотя бы свести до минимума), нужно знать принципы работы, назначение и состав защитных элементов на входе импульсного блока питания.

Зачем нужны защитные цепи на входе импульсных блоков питания

В качественных импульсных блоках питания обычно устанавливаются входные цепи, которые решают ряд проблем, среди которых:

Для защиты входных цепей блока питания от всплесков напряжения и тока используются варисторы (varistors) и термисторы, а также предохранители, варисторы, а также разрядники (surge arresters).

MOV-варистор и термисторы с позитивным и негативным коэффициентом сопротивления:

Как обеспечивается защита от всплесков напряжения и тока на входе блока питания?

За защиту от всплесков напряжения на входе импульсного БП в рабочем режиме обычно отвечают варисторы и разрядники. Для защиты от бросков тока на входе применяют предохранители, а также термисторы.

Простейшая схема включения защитного варистора в блоке питания:

Схема включения защитных элементов на входе импульсного источника тока с применением варисторов и разрядников:

Варистор — что это?

Варистор — это резистор, сопротивление которого изменяется в зависимости от приложенного напряжения. В нормальных условиях оно очень большое (мегаОмы) и не оказывает особого влияния на работу электрической цепи при параллельном включении.

Вольт-амперная характеристика варистора:

При значительном повышении напряжения на варисторе сопротивление падает, это приводит к поглощению энергии всплеска и выделении ее в виде тепла.

Варисторы нужны для защиты радиоэлектронных устройств от бросков высокого напряжения за счет того, что их сопротивление резко падает с увеличением поданного на них напряжения:

Это спасает другие компоненты от выхода из строя, хотя иногда приводит к выгоранию самого варистора, спасающего своим героическим поведением более дорогие электронные элементы. Варисторы устанавливаются на входе БП перед диодным выпрямителем, так как они дополнительно выполняют фильтрующую функцию — гашение помех, возникающих при выключении диодного моста.

Варистор TVR 14471 на входе блока питания Be Quiet Dark Power Pro мощностью 1200 ватт с платиновым сертификатом:

Для чего в блоке питания применяются термисторы?

Термистор — это резистор, изменяющий свое сопротивление из-за температуры.

В блоках питания обычно используют термисторы с негативным температурным коэффицентом (NTC, Negative Temperature Coefficient), включенные последовательно с нагрузкой.

В холодном состоянии они имеют сопротивление 6-12 Ом, поэтому при включении блока питания происходит их разогрев. Из-за нагрева сопротивление NTC-термисторов падает до 0.

5-1 Ома и они уже не оказывают существенного влияния на работу устройства.

  1. В дорогих блоках питания после успешного старта блока питания термисторы отключаются, ток начинает проходить через проводник с нулевым сопротивлением, что обеспечивает холодное состояние термистора (постоянную готовность к повторному включению БП), а также экономит электроэнергию, которая попусту рассеивается во время работы источника питания в штатном режиме.
  2. Благодаря тому, что термистор принимает на себя «часть удара» в момент включения, остальные компоненты не страдают.
  3. Простейшая схема включения защитного термистора на входе блока питания:
  • Варисторы обеспечивают защиту высоковольтной части блока питания от всплесков напряжения, а термисторы — от большого тока.
  • Варистор VZ1 и термистор TR101 на схеме блока питания Chieftec APS-550S мощностью 550W:

К чему может привести экономия на варисторах и термисторах в блоке питания?

В бюджетных блоках питания производители экономят на элементной базе и не устанавливают варисторов. Для защиты таких БП стоит использовать сетевые фильтры или UPS, имеющие в своем составе варисторы. Стоимость такой защиты оправдана значительным снижением возможного ущерба, который может появится в случае сгорания источника питания, питающего дорогостоящий компьютер.

В некоторых случаях защита от всплесков напряжения/тока, обеспечивающаяся варисторами и термисторами, не срабатывает.

Это может происходит в случае неисправности варистора/термистора, а также если такой элемент нагрет и производится его включение расчете на его состояние при обычной температуре.

Ситуация с медленным остыванием защитных варисторов (термисторов) может возникнуть в случае слишком быстрого повторного включения работавшего блока питания.

Если термистор не успевает остыть после выключения БП, то в момент повторной подачи высокого напряжения защита, обеспечиваемая гашением энергии на его высоком сопротивлении, не обеспечивается. Это может привести к плачевным последствиям.

Нагретый варистор не поглощает энергию импульса, появляющегося в момент включения из-за заряда емкостей электролитических конденсаторов и накопления энергии в индуктивностях, что обычно приводит к пробою транзисторов в высоковольтной части БП.

Читайте также:  Тутовое дерево (шелковица): описание, распространение, уход

Благодаря этому, импульс высокого напряжения, поступающий на защищаемое устройство, гасится на варисторе. При сильном нагреве варистора в нем могут произойти необратимые изменения, приводящие к пробою или обрыву.

Пример платы дешевого блока питания Green Vision GV-PS S400:

Как определить исправность варисторов и термисторов?

  1. На схемах блоков питания варисторы и термисторы имеют похожие обозначения в виде резистора с корпусом, перечеркнутым «клюшкой».

    Варисторы обычно стоят параллельно источнику тока и маркируются обозначением VR:

  2. Термисторы обозначаются похоже:
  3. Термисторы обычно включаются последовательно с нагрузкой, их сопротивление значительно меньше варисторов.

  4. Проверка исправности варистора/термистора состоит в проведении двух действий:
  • визуальный осмотр на наличие повреждений, следов прогара, взудтий и прочих безобразий;
  • проверка сопротивления омметром — исправный варистор должен иметь большое сопротивление (несколько мегаОм) в обоих направлениях при комнатной температуре, терморезистор на входе блока питания — несколько Ом. При прозвонке варистора следует обращать внимание на место его установки. Если параллельно ему включены другие электронные элементы, то проверять сопротивление нужно после выпаивания варистора с платы.

Что делать майнерам для сведения к минимуму проблем из-за переходных процессов в блоках питания?

При наладке компьютеров, в том числе использующихся для майнинга, иногда возникают ситуации, когда из-за зависания системы приходится часто принудительно выключать-включать блок питания.

В этом случае стоит делать перерыв на несколько минут перед повторным включением блока питания, чтобы он успел остыть. Это одинаково важно и для дорогих блоков питания, в которых установлен полный набор защитных элементов, включая варисторы и терморезисторы.

Это связано с тем, что они не успевают восстановиться в случае очень быстрого повторного включения устройства с горячими внутренними компонентами.

При выборе блоков питания следует обращать внимание на наличие в них цепей защиты. Наличие варистора на входе источника питания обычно свидетельствует о стремлении его изготовителей обеспечить высокое качество и надежность изделия.

  • Если в использующемся на компьютере блоке питания не установлены входные защитные цепи, содержащие варисторы, блокировочные конденсаторы и термисторы, то стоит дополнительно установить качественный сетевой фильтр-удлинитель, содержащий хотя бы минимальный набор элементов, включающий варистор.
  • Фотография платы качественного сетевого фильтра с варисторами:
  • Варистор синего цвета на входе сетевого фильтра среднего качества:
  • Дешевый, якобы сетевой фильтр, на самом деле являющийся простым удлинителем/разветвителем с выключателем (не содержит варисторов и других защитных элементов):

При покупке входного фильтра следует учитывать, что большинство устройств, продаваемых в торговых сетях под таким названием на самом деле являются простыми удлинителями/разветвителями розеток, в лучшем случае содержащими узел защиты от короткого замыкания. Элементы защиты от бросков напряжения содержатся только в единицах из них.

В случае перебоев в работе компьютеров (не только тех, которые используются для майнинга), стоит дать время на остывание устройства перед его очередным включением. В противном случае еще не успевшие остыть защитные элементы не смогут выполнить свою функцию, что с большой степенью вероятности приведет к поломке.

Как проверить варистор мультиметром: пошаговая инструкция

Общие сведения

Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.

Рисунок 1 — УГО варистора.

Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.

  Как можно определить фазу и ноль мультиметром и не только

Способы проверки

Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.

Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.

Есть три способа проверить варистор быстро и просто:

  1. Визуальный осмотр.
  2. Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
  3. Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.

Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает.

Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.

Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:

Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.

Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов.

Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.

На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.

Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.

Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.

На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев.

Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра.

Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.

  Как правильно выбрать мощный паяльник для дома

Источник: samelectrik.ru

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает.

В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона.

При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Вам это будет интересно Характеристика и схема подключения электросчётчика СО-505

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания.

Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя.

Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Вам это будет интересно Математическая запись закона Джоуля-Ленца и его применение

  Как сделать шунт для амперметра сварочного аппарата

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания.

Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов.

Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Проверка варистора мультиметром, определяем работоспособность

Каждая радиодеталь в электрической схеме имеет свое предназначение. Одни меняют параметры, другие являются сигнализаторами состояния или исполнителями команд.

Есть радиоэлементы, отвечающие за безопасность и защиту (речь идет не о банальных предохранителях). Например, варистор, который резко меняет свои характеристики при скачках напряжения.

Это свойство используется в системах защиты блоков питания и коммутационных устройств. Кроме того, он используется в качестве простейшего фильтра импульсного напряжения. Деталь недорогая, но достаточно эффективная.

Если ваш удлинитель или электроприбор не выполняет свою функцию после скачка напряжения, не торопитесь вникать в устройство схемы. Иногда достаточно знать, как проверить варистор мультиметром.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Свойства варистора

Основное свойство варистора заключается в его особенности сокращать своё собственное сопротивление в зависимости от поступающего на него напряжения.

Чем выше подаётся напряжение, тем более меньшим сопротивлением он начинает обладать.

Варисторы подключаются в электрическую плату параллельно защищаемому устройству, в штатном режиме варистор работает при номинальном напряжении того устройства, которое он защищает.

В обычном режиме электричество проходящее сквозь варистор ничтожно мало, и поэтому он в подобных условиях выполняет роль изолятора.

Если возникает резкий скачок электричества варистор из-за нелинейной своей характеристики мгновенно сокращает значение своего сопротивления до десятых долей Ома и снимает нагрузку с общей сети, защищая ее, излучая теплом излишек полученной энергии. В подобных ситуациях сквозь варистор может мгновенно проходить напряжение силой в тысячи ампер.

Варистор совершенно безынерционный прибор, как только увеличивается напряжение в сети, в нём тотчас же падает его сопротивление.

Ссылка на основную публикацию
Adblock
detector