Формула томсона для пружинного маятника

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием. 

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника. 

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Формула томсона для пружинного маятника

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

  • Формула периода колебаний
  • T  = t/N
  • T — период [с]
  • t — время [с]
  • N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

  1. Формула частоты
  2. ν  = N/t = 1/T
  3. ν — частота [Гц]
  4. t — время [с]
  5. T — период [с]
  6. N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо xmax.

Она используется в уравнении гармонических колебаний:

Формула томсона для пружинного маятника

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением: 

  • Уравнение гармонических колебаний
  • x = xmaxcos(2πνt)
  • x — координата в момент времени t [м]
  • xmax — амплитуда [м]
  • ν — частота [Гц]
  • t — момент времени [с]
  • π = 3,14

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

  1. Фаза колебаний
  2. φ = 2πνt
  3. φ — фаза [рад]
  4. ν — частота [Гц]
  5. t — момент времени [с]
  6. π = 3,14

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:
Формула томсона для пружинного маятника

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу. 

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Формула томсона для пружинного маятника

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

  • В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.
  • Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Формула томсона для пружинного маятника

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Формула томсона для пружинного маятника

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника Формула томсона для пружинного маятника

  • T — период [с]
  • l — длина нити [м]
  • g — ускорение свободного падения [м/с2]
  • На планете Земля g = 9,8 м/с2
  • π = 3,14

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости. Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника Формула томсона для пружинного маятника

  1. T — период [с]
  2. m — масса маятника [кг]
  3. k — жесткость пружины [Н/м]
  4. π = 3,14

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии. 

Рассмотрим его на примере математического маятника.

Формула томсона для пружинного маятника

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Летняя перезагрузка

Бесплатный телеграм-марафон для мам и пап. Узнайте, как провести семейное лето с пользой, и подготовьтесь к нему уже сейчас!

Пружинный маятник — формулы и уравнения нахождения величин

Время на чтение: 11 минут

Пружинный маятник — колебательная система, которая состоит из тела, подвешенного к пружине. Эта система способна к совершению свободных колебаний.

Подобные системы довольно широко распространены за счет своей функциональной гибкости. Механизмы на основе таких маятников часто используются как элементы средств автоматики. 

В том числе они нашли применение в контактных взрывателях различных боеприпасов, в качестве акселерометров в контурах управления ракет. Так же они активно используются в предохранительных клапанах, устанавливаемых в трубопроводах.

Что такое пружинный маятник

Пружинным маятником в физике называют систему, совершающую колебательные движения под действием силы упругости. 

Приняты следующие обозначения:

  • m — масса тела;
  • k — коэффициент жесткости пружины.

Общий вид маятника:

Формула томсона для пружинного маятника

Особенностями пружинных маятников являются:

  1. Сочетание тела и пружины. Массой пружины обычно в расчетах пренебрегают. Роль тела могут играть различные объекты. На них оказывают действие внешние силы. Груз может крепиться разными способами. Витки пружины, которыми она начинается и заканчивается, изготавливают с учетом повышенной нагрузки;

  2. У любой пружины есть исходное положение, предел сжатия и растяжения. При максимальном сжатии зазора между витками нет. Когда она максимально растянута, возникает необратимая деформация;

  3. Полная механическая энергия появляется с началом процесса обратимого деформирования. В этот момент на объект не оказывает действие сила упругости;

  4. Колебательные движения происходят под влиянием силы упругости. Масштаб влияния определяется несколькими причинами (тип сплава, расположение витков и т. д.). Так как может происходить и сжатие и растяжение, можно сделать вывод, что сила упругости действует в двух противоположных направлениях;

  5. От массы тела, величины и направления прикладываемой силы зависит скорость в плоскости его перемещения. Например, если подвесить груз к пружине и, растянув её, отпустить, то груз будет перемещаться в двух плоскостях: вертикально и горизонтально.

Виды пружинных маятников

Формула томсона для пружинного маятника

Существует два типа данной системы:

  1. Вертикальный маятник — на тело довольно сильно влияет сила тяжести. Это влияние обуславливает увеличение инерционных движений, которые совершает тело в исходной точке.

  2. Горизонтальный — в таком варианте при движении на груз начинает действовать сила трения, возникающая по причине того, что груз лежит на поверхности.

Формула томсона для пружинного маятника

Сила упругости в пружинном маятнике

До начала деформирования пружина находится в равновесном состоянии. Прикладываемое усилие может как растягивать, так и сжимать её. 

Читайте также:  Отделочно расточной станок 2706п паспорт

Применяя к пружинному маятнику закон сохранения энергии, мы можем рассчитать силу упругости в нем. Упругость прямо пропорциональна расстоянию, на которое сместился груз.

  • Расчёт силы упругости может быть проведен таким образом:
  • Fупр = — k*x
  • где k — коэффициент жесткости пружины (Нм),
  • x – смещение (м).

Уравнения колебаний пружинного маятника

  1. Свободные колебания пружинного маятника описываются с помощью гармонического закона.

     

  2. Если допустить вероятность того, что колебания идут вдоль оси Х, и при этом выполняется закон Гука, то уравнение примет вид:
  3. F(t) = ma(t) = — mw2x(t),
  4. где w — радиальная частота гармонического колебания.

  5. Для проведения расчета колебаний, учитывая все вероятности, применяют следующие формулы:

Формула томсона для пружинного маятника

Период и частота свободных колебаний пружинного маятника

При разработке проектов всегда определяется период колебаний и их частота. Для их измерения используются известные в физике формулы.

Формула томсона для пружинного маятника

  • Изменение циклической частоты покажет формула, приведенная на рисунке:

Формула томсона для пружинного маятника

Факторы, от которых зависит частота:

  1. Коэффициент упругости. На этот коэффициент влияет количество витков, их диаметр, расстояние между ними, длина пружины, жесткость используемого сплава и т. д.

  2. Масса груза. От этого фактора зависит возникающая инерция и скорость перемещения.

Амплитуда и начальная фаза пружинного маятника

  1. Учитывая начальные условия и рассчитав уравнение колебаний, можем точно описать колебания пружинного маятника. 
  2. В качестве начальных условий используются: амплитуда (А) и начальная фаза колебаний (ϕ).

Формула томсона для пружинного маятника

Энергия пружинного маятника

При рассмотрении колебания тел учитывают, что груз движется прямолинейно. Полная механическая энергия тела в каждой точке траектории является константой и равняется сумме его потенциальной энергии и кинетической энергии.

Формула томсона для пружинного маятника

  • Потенциальная энергия:
  1. Кинетическая энергия:
  • Полная энергия:

Расчет имеет особенности. При его проведении нужно учитывать несколько условий:

  1. Колебания проходят в двух плоскостях: вертикальной и горизонтальной.

  2. В качестве равновесного положения выбирается ноль потенциальной энергии. Находясь в этом положении пружина сохраняет свою форму.

  3. Влияние силы трения при расчете не учитывают.

Дифференциальное уравнение гармонических колебаний пружинного маятника 

Отметим, что пружинный маятник — это обобщенное определение. Скорость движения груза (тела) напрямую зависит от комплекса условий, в том числе приложенного к нему усилия.

Пружинный маятник, формулы и примеры

Формула томсона для пружинного маятника Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Формула томсона для пружинного маятника Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Формула томсона для пружинного маятника Формула томсона для пружинного маятника

Рис.1. Пружинный маятник: а) в положении равновесия; б) в состоянии колебаний

Когда пружина не деформирована, тело находится в положении равновесия (рис.1,а). Если растянув или сжав пружину, вывести тело из положения равновесия, на него будет действовать сила упругости со стороны деформированной пружины. Эта сила направлена к положению равновесия и в данном случае является возвращающей силой.

Сила упругости в пружинном маятнике

  • Сила упругости пропорциональна смещению тела (удлинению пружины):
  • здесь — коэффициент жесткости пружины.

В положении, соответствующем максимальному отклонению тела от положения равновесия (смещение тела равно амплитуде колебаний) сила упругости максимальна, поэтому максимально и ускорение тела.

По мере приближения тела к положению равновесия удлинение пружины уменьшается, и, следовательно, уменьшается ускорение тела, которое обусловлено силой упругости. Достигнув положения равновесия, тело не остановится, хотя в этот момент сила упругости равна нулю.

Скорость тела в момент прохождения им положения равновесия имеет максимальное значение, и тело по инерции будет двигаться дальше, растягивая пружину. Возникающая при этом сила упругости будет тормозить тело, так как теперь она направлена в сторону, противоположную движению тела.

Дойдя до крайнего положения, тело остановится и начнет движение в противоположном направлении. Движение тела будет повторяться в описанной последовательности.

Таким образом, причинами свободных колебаний пружинного маятника является сила упругости деформированной пружины (возвращающая сила) и инертность тела.

Период свободных колебаний пружинного маятника

Период свободных колебаний пружинного маятника определяется по формуле:

Примеры решения задач

Формула томсона для пружинного маятника

Понравился сайт? Расскажи друзьям!

Формулы пружинного маятника в физике

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Формула томсона для пружинного маятника

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

[ddot{x}+{omega }^2_0x=0left(1
ight),]

  • где ${щu}^2_0=frac{k}{m}$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:
  • где ${omega }_0=sqrt{frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; ${(omega }_0t+varphi )$ — фаза колебаний; $varphi $ и ${varphi }_1$ — начальные фазы колебаний.
  • В экспоненциальном виде колебания пружинного маятника можно записать как:

[x=A{cos left({omega }_0t+varphi
ight)=A{sin left({omega }_0t+{varphi }_1
ight) } }left(2
ight),] [Re ilde{x}=Releft(Acdot exp left(ileft({omega }_0t+varphi
ight)
ight)
ight)left(3
ight).]

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

[T=2pi sqrt{frac{m}{k}}left(4
ight).]

Так как частота колебаний ($
u $) — величина обратная к периоду, то:

[
u =frac{1}{T}=frac{1}{2pi }sqrt{frac{k}{m}}left(5
ight).]

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).

  1. Амплитуду можно найти как:
  2. начальная фаза при этом:
  3. где $v_0$ — скорость груза при $t=0 c$, когда координата груза равна $x_0$.

[A=sqrt{x^2_0+frac{v^2_0}{{omega }^2_0}}left(6
ight),] [tg varphi =-frac{v_0}{x_0{omega }_0}left(7
ight),]

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

[E_p=-frac{dF}{dx}(8)]

учитывая, что для пружинного маятника $F=-kx$,

Формула томсона для пружинного маятника

  • тогда потенциальная энергия ($E_p$) пружинного маятника равна:
  • Закон сохранения энергии для пружинного маятника запишем как:
  • где $dot{x}=v$ — скорость движения груза; $E_k=frac{m{dot{x}}^2}{2}$ — кинетическая энергия маятника.
  • Из формулы (10) можно сделать следующие выводы:

[E_p=frac{kx^2}{2}=frac{m{{omega }_0}^2x^2}{2}left(9
ight).] [frac{m{dot{x}}^2}{2}+frac{m{{omega }_0}^2x^2}{2}=const left(10
ight),]

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Пример 1

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac{м}{с}$?

Решение. Сделаем рисунок.

Формула томсона для пружинного маятника

  1. По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:
  2. где $E_{pmax}$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax }$ — кинетическая энергия шарика, в момент прохождения положения равновесия.
  3. Потенциальная энергия равна:

[E_{pmax}=E_{kmax }left(1.1
ight),] [E_{kmax }=frac{mv^2}{2}left(1.2
ight).] [E_{pmax}=frac{k{x_0}^2}{2}left(1.3
ight).]

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

[frac{mv^2}{2}=frac{k{x_0}^2}{2}left(1.4
ight).]

  • Из (1.4) выразим искомую величину:
  • Вычислим начальное (максимальное) смещение груза от положения равновесия:
  • Ответ. $x_0=1,5$ мм

[x_0=vsqrt{frac{m}{k}}.] [x_0=1cdot sqrt{frac{0,36}{1600}}=1,5 cdot {10}^{-3}(м).]

Пример 2

Задание. Пружинный маятник совершает колебания по закону: $x=A{cos left(omega t
ight), } $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$.
В какой момент времени это произойдет?

  1. Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:
  2. Потенциальную энергию колебаний груза найдем как:
  3. В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:
  4. Ответ. $t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}
    ight) }$

[F=-kx=-kA{cos left(omega t
ight)left(2.1
ight). }] [E_p=frac{kx^2}{2}=frac{kA^2{{cos }^2 left(omega t
ight) }}{2}left(2.2
ight).] [frac{E_{p0}}{F_0}=-frac{A}{2}{cos left(omega t
ight) } o t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}
ight) }.]

: формулы равноускоренного прямолинейного движения.

Формула томсона для пружинного маятника

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Физика. 11 класс

Колебательные процессы возможны не только в механических системах. При определенных условиях и в электрических цепях возникают колебания силы тока и напряжения и других электромагнитных величин. Какие это условия? Как вычислить период электромагнитных колебаний? Какие аналогии существуют между колебаниями различной природы? 

Электрической емкостью C конденсатора называют физическую величину, характеризующую его способность накапливать электрические заряды и равную отношению заряда q конденсатора к напряжению U между его обкладками:  Единицей электрической емкости в СИ является 1 фарад (1 Ф).Энергия электростатического поля конденсатора: .Энергія магнитного поля катушки с током:  ,  L — индуктивность катушки, I — сила тока в цепи. Единицей индуктивности в СИ является 1 генри (1 Гн).Возникновение электродвижущей силы (ЭДС) в замкнутом проводящем контуре при изменении магнитного потока, проходящего сквозь него, называется явлением электромагнитной индукции. Под явлением самоиндукции понимают возникновение в замкнутом проводящем контуре ЭДС индукции, создаваемой вследствие изменения силы тока в самом контуре.Правило Ленца: возникающий в замкнутом проводящем контуре индукционный ток имеет такое направление, при котором созданный им магнитный поток через поверхность, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

Рассмотрим электрическую цепь, состоящую из последовательно со­еди­ненных конденсатора электроемкостью С и катушки индуктивностью L  (рис. 52, а), называемую колебательным контуром или LC-контуром.

Если электрическое сопротивление контура можно считать равным нулю (R = 0), то его называют идеальным. Идеальный колебательный контур является упрощенной моделью реального колебательного контура.

Подключив (при помощи ключа К) источник тока, зарядим конденсатор до напряжения U0, сообщив ему заряд q0 (рис. 52, б). Следовательно, в начальный момент времени (t = 0) конденсатор заряжен так, что на его обкладке 1 находится заряд +q0, а на обкладке 2 — заряд −q0, при этом . Электрическое поле, созданное зарядами обкладок конденсатора, обладает энергией 

Формула томсона для пружинного маятника

Рассмотрим процесс разрядки конденсатора в колебательном контуре. После соединения заряженного конденсатора с катушкой (при помощи ключа К) (рис.

52, в) он начнет разряжаться, так как под действием электрического поля, создаваемого зарядами на обкладках конденсатора, свободные электроны будут перемещаться по цепи от отрицательно заряженной обкладки к положительно заряженной.

На рис. 52, в стрелкой показано начальное направление тока в электрической цепи.

Таким образом, в контуре появится нарастающий по модулю электрический ток, сила I(t) которого будет изменяться с течением времени (рис. 53, а). Но мгновенная разрядка конденсатора невозможна, вследствие явления самоиндукции. Действительно, в катушке индуктивности возникнет изменяющийся во времени магнитный поток, который вызовет появление ЭДС самоиндукции.

Согласно правилу Ленца ЭДС самоиндукции стремится противодействовать вызвавшей ее причине, т. е. увеличению по модулю силы тока. Вследствие этого, модуль силы тока в колебательном контуре будет в течение некоторого промежутка времени плавно возрастать от нуля до максимального значения I0, определяемого индуктивностью катушки и электроемкостью конденсатора (рис.

53, б).

Формула томсона для пружинного маятника

При разрядке конденсатора энергия его электрического поля превращается в энергию магнитного поля катушки с током. Согласно закону сохранения энергии суммарная энергия идеального колебательного контура остается постоянной с течением времени. Следовательно, уменьшение энергии электрического поля конденсатора равно увеличению энергии магнитного поля катушки:

где q(t) — мгновенное значение заряда конденсатора и I(t) — сила тока в катушке в некоторый момент времени t после начала разрядки конденсатора.

В момент полной разрядки конденсатора (q = 0) сила тока в катушке I(t) достигнет своего максимального по модулю значения I0 (см. рис. 53, б).

В соответствии с законом сохранения энергии запасенная в конденсаторе энергия электрического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:

После разрядки конденсатора сила тока в катушке начинает убывать по модулю. Это также происходит не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создает индукционный ток. Он имеет такое же направление, как и уменьшающийся по модулю ток в цепи, и поэтому «поддерживает» его.

В результате, к моменту исчезновения тока заряд конденсатора достигнет максимального значения q0. При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно. Далее процесс повторится, отличаясь лишь тем, что электрический ток в контуре будет проходить в противоположном направлении (см. рис. 53, а).

Таким образом, в идеальном LC-контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.

Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без пополнения энергии от внешних источников и без потерь энергии на тепловыделение и излучение.

Таким образом, существование свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора, вызванной возникновением ЭДС самоиндукции в катушке. Заметим, что заряд q(t) конденсатора и сила тока I(t) в катушке достигают своих максимальных значений q0 и I0 в различные моменты времени (см. рис.

53, а, б)  (со сдвигом на ).Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальным значениям заряда на каждой из обкладок), называется периодом свободных (собственных) электромагнитных колебаний в контуре. Получим формулу для периода свободных электромагнитных колебаний в контуре, используя закон сохранения энергии по аналогии с механическими колебаниями. Поскольку полная энергия идеального LC-контура, равная сумме энергий электрического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство:

. (1)

Процессы, происходящие в колебательном контуре, аналогичны колебаниям пружинного маятника. Для полной механической энергии пружинного маятника в любой момент времени:

. (2)

где k — жесткость пружины, m — масса груза, x — проекция смещения тела от положения равновесия, vx — проекция его скорости на ось Ox.Проанализируем соотношения (1) и (2). Видно, что энергия электрического поля конденсатора  является аналогом потенциальной энергии упругой деформации пружины .

 Соответственно, энергия магнитного поля катушки ,  которая обусловлена упорядоченным движением зарядов, является аналогом кинетической энергии груза .Следовательно, аналогом координаты x(t) пружинного маятника при колебаниях в электрическом контуре является заряд конденсатора q(t).

Тогда, соответственно, аналогом проекции скорости груза vx(t) будет сила тока I(t) в колебательном контуре, поскольку сила тока характеризует скорость изменения заряда конденсатора со временем.

Следуя проведенной аналогии, заменим в формуле для периода колебаний пружинного маятника  жесткость k на и массу m на индуктивность L. Тогда для периода свободных колебаний в LC-контуре получим формулу:

. (3)

которая называется формулой Томсона.Исходя из сказанного, сведем рассмотренные аналогии между физическими величинами при электромагнитных и механических колебаниях в таблицу 6.Для наблюдения и исследования электромагнитных колебаний применяют электронный осциллограф, на экране которого наблюдают осцилло­грамму колебаний U(t) (рис. 54).

Таблица 6. Сопоставление физических величин, характеризующих механические и электромагнитные колебания
Механические колебания пружинного маятника Электромагнитные колебания в идеальном колебательном контуре
m (масса тела) L (индуктивность катушки)
k (жесткость пружины) (величина, обратная емкости)
x(t) (координата тела) q(t) (заряд конденсатора)
vx(t) (проекция скорости тела) I(t) (сила тока)
 (потенциальная энергия упругой деформации пружины)  (энергия электрического поля конденсатора)
 (кинетическая энергия груза)  (энергия магнитного поля катушки) 
 (период колебаний)  (период колебаний)
 (циклическая частота колебаний)  (циклическая частота колебаний)

Зависимость заряда конденсатора от времени имеет такой же вид, как и зависимость координаты тела, совершающего гармонические колебания, от времени:

.

Также по гармоническому закону изменяются сила тока (но с другой начальной фазой) в цепи и напряжение на конденсаторе.

Зависимость силы тока от времени в цепи колебательного контура имеет такой же вид, как и проекции скорости тела, совершающего гармонические колебания, от времени:

где, .

Зависимость напряжения на конденсаторе в колебательном контуре в соответствии с определением электроемкости 

Для определения начальной фазы φ0 и максимального заряда q0 необходимо знать заряд конденсатора и силу тока в катушке в начальный момент времени (t = 0).Отметим, что колебательный контур, в котором происходит только обмен энергией между конденсатором и катушкой, называется закрытым.

Полная энергия идеального колебательного контура (R = 0) с течением времени сохраняется, поскольку в нем при прохождении тока теплота не выделяется. Реальный колебательный контур всегда имеет некоторое электрическое сопротивление R, которое обусловлено сопротивлением катушки и соединительных проводов.

Это приводит к тому, что электромагнитные колебания в реальном контуре с течением времени затухают, тогда как в идеальном контуре они считаются происходящими сколь угодно долго.

Таким образом, механическим аналогом идеального колебательного контура является пружинный маятник без учета трения, а механическим аналогом реального колебательного контура — пружинный маятник с учетом трения.Колебательный LC-контур широко используется в современных микросхемах для средств электроники и электротехнического оборудо­вания.

Механические колебания

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний 
u — это величина, обратная периоду: 
u =1/T. Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

  • Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:
  • (1)
  • Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому — амплитуда колебаний.

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой. Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

  1. (2)
  2. (3)
  3. Измеряется циклическая частота в рад/с (радиан в секунду).
  4. В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1):
  5. .

График функции (1), выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1.

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

.

График гармонических колебаний в этом случае представлен на рис. 2.

Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

.

График колебаний представлен на рис. 3.

Рис. 3. Закон синуса

Уравнение гармонических колебаний

  • Вернёмся к общему гармоническому закону (1). Дифференцируем это равенство:
  • . (4)
  • Теперь дифференцируем полученное равенство (4):
  • . (5)
  • Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :
  • . (6)
  • Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:
  • . (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением.

Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными ;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6), (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий — по начальным значениям координаты и скорости.

Пружинный маятник

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

. (8)

Если (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

  1. Тогда соотношение (8) принимает вид:
  2. или
  3. .
  4. Мы получили уравнение гармонических колебаний вида (6), в котором
  5. .
  6. Циклическая частота колебаний пружинного маятника, таким образом, равна:
  7. . (9)
  8. Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:
  9. . (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10).

Математический маятник

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

  • Запишем для маятника второй закон Ньютона:
  • ,
  • и спроектируем его на ось :
  • .

Если маятник занимает положение как на рисунке (т. е. ), то:

.

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

  1. .
  2. Итак, при любом положении маятника имеем:
  3. . (11)

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11):

  • ,
  • или
  • .
  • Это — уравнение гармонических колебаний вида (6), в котором
  • .
  • Следовательно, циклическая частота колебаний математического маятника равна:
  • . (12)
  • Отсюда период колебаний математического маятника:
  • . (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6).

Рис. 6. Затухающие колебания
  1. Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).
  2. Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:
  3. .

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний.

Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими.

Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7.

Рис. 7. Резонанс

Мы видим, что вблизи частоты наступает резонанс — явление возрастания амплитуды вынужденных колебаний.

Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе.

При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

Ссылка на основную публикацию
Adblock
detector