Графит температура плавления и кипения

Минералы и горные породы / Описание минерала Графит

Графит температура плавления и кипения Графит температура плавления и кипения

Графит температура плавления и кипения

Графиты — вещества серого цвета с металлическим блеском, аморфного, кристаллического, или волокнистого сложения, жирные на ощупь, удельный вес от 1,9 до 2,6. По внешнему виду графит, имеет металлический свинцово-серый цвет, колеблющейся от серебристого до черного, с характерным жирным блеском.Поэтому потребители зачастую называют явнокристаллические графиты серебристыми, а скрытокристаллические — черными.

На ощупь графит жирен и отлично пачкается. На поверхностях он легко дает черту от серебристого до черной, блестящей. Графит отличается способностью прилипать к твердым поверхностям, что позволяет создавать тонкие пленки при натирании им поверхностей твердых тел.

Графит представляет собой алоторопную форму углерода, которая характеризуется определенной кристаллической структурой, имеющей своеобразное строение.

В зависимости от структурного строения графиты делятся на:

  • явнокристаллические,
  • скрытокристаллические,
  • графитоиды,
  • высокодисперсные графитовые материалы, обычно называемые углями.В свою очередь, явнокристаллические графиты по величине и структуре кристаллов делятся на:
  • плотнокристаллические (Боготольское месторождение графита),
  • чешуйчатые (Тайгинское месторождение графита).

В чешуйчатых графитах кристаллы имеют форму пластинок или листочков. Чешуйки их жирные, пластичные и имеют металлический блеск.

Важнейшие свойства графита

Электрические свойства

Электропроводность графита в 2,5 раза больше электропроводности ртути. При температуре 0 град. удельное сопротивление электрическому току находится в пределах от 0,390 до 0,602 ом. Низкий предел удельного сопротивления для всех видов графита одинаков и равен 0,0075 ом.

Термические свойства

Графит обладает большое теплопроводностью, которая равняется 3,55вт*град/см и занимает место между палладием и платиной.

Коэффициент теплопроводности 0,041( в 5 раз больше, чем у кирпича). У тонких графитовых нитей теплопроводность выше, чем у медных.Температура плавления графита — 3845-3890 С при давлении от 1, до 0,9 атм.Точка кипения доходит до 4200 С.

Температура воспламенения в струе кислорода составляет для явнокристаллических графитов 700-730С. Количество тепла, получаемого при сжигании графита, находится в пределах от 7832 до 7856 ккал.

Магнитные свойства

Графит считается диамагнитным.

Растворимость графита

Химически инертен и не растворяется ни в каких растворителях, кроме расплавленных металлов, особенно тех, у которых высокая точка плавления.

При растворении образуются карбиды, наиболее важными свойствами которых являются карбиды вольфрама, титана, железа, кальция и бора.

При обычных температурах графит соединяется с другими веществами весьма трудно, но при высоких температурах он дает химические соединения со многими элементами.

Упругость графита

Графит не обладает эластичностью, но тем не менее он может быть подвергнут резанию и изгибанию. Графитовая проволока легко сгибается и закручивается в спираль, а при вальцевании дает удлинение около 10%. Сопротивление на разрыв такой проволоки равно 2 кг/мм2, а модуль изгиба равен 836 кг/мм2.

Оптические свойства

Коэффициент светопоглощения графита постоянен для всего спектра и не зависит от температуры лучеиспускания тела; для тонких графитовых нитей он равен 0,77, с увеличением кристаллов графита светопоглащение уже находится в пределах 0,52-0,55.

Жирность и пластичность графита являются важнейшими свойствами, которые дают возможность широко применять его в промышленности. Чем выше жирность графита, тем меньше коэффициент трения. От жирности графита зависит использование его в качестве смазочного материала, а также способность прилипания к твердым поверхностям.

Благодаря этим свойствам имеется возможность создавать тонкие пленки при натирании графитом поверхности твердых тел.

Низкий коэффициент теплового расширения графита и связанная с этим высокая стойкость к температурным напряжениям, является решающим фактором применения его, как важного и незаменимого вспомогательного материала в металлообрабатывающей, чугунолитейной и сталелитейной промышленности, т.е.

всюду, где рабочие поверхности должны предохраняться от прямого воздействия расплавленного металла. Важным преимуществом при таком использовании является также его несмачиваемость, полностью восстановленными металлами и нейтральными шлаками, прочность при высоких температурах.

Применение графита при отливе деталей повышает качество отливов, уменьшает количество брака, и предупреждает образование пригара, на удаление которого требуется большие усилия и затраты.

Сырые литейные формы и стержни покрываются слоем сухого графитового порошка. Чистый графит имеет низкий коэффициент поглощения нейтронов и самый высокий коэффициент замедления, благодаря чему он незаменим в атомных реакторах. Без графитовых электродов немыслимо развитие черной и цветной, химической промышленности.

Графит прекрасный футеровочный материал электролизеров для получения алюминия. Углеродосодержащие материалы применяются для строительства электропечей и других тепловых агрегатов. Из графита готовятся тигли, лодочки для производства сверхтвердых сплавов.

В химической промышленности материалы из графита незаменимы для производства теплообменников, работающих в агрессивных средах.

А так же для изготовления нагревателей, конденсаторов, испарителей, холодильников, скрубберов, дистилляционных колонн, форсунок, сопел, кранов, деталей для насосов, фильтров.

Отечественная промышленность в большом ассортименте выпускает графитовые электрощетки для различных электрических машин, электрические осветительные угли для прожекторов и для демонстрации и съемок кинофильмов, элементные — гальванических батарей, сварочные и для спектрального анализа, изделия для электровакуумной техники и техники связи.

В машиностроении графит используется как антифрикционный материал для подшипников, колец трения, торцевых и поршневых уплотнений, подпятников.

Минералы и горные породы / Описание минерала Графит

Графит температура плавления и кипения Графит температура плавления и кипения

Графит температура плавления и кипения
Графит температура плавления и кипения
Графит температура плавления и кипения
Графит температура плавления и кипения
Графит температура плавления и кипения

Посмотреть все фотографии Графит

ГРАФИТ

Графит температура плавления и кипения Графит температура плавления и кипения Графит температура плавления и кипения А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ГРАФИТ (нем. Graphit, от греч. grapho-пишу), аллотропная модификация углерода, наиб. устойчивая при обычных условиях. Графит-распространенный в природе минерал. Встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию графита. Различают месторождения кристаллич. графита, связанного с магматич. горными породами или кристаллич. сланцами, и скрытокристаллич. графита, образовавшегося при метаморфизме углей. В кристаллич. сланцах содержание графита составляет 3-20%, в магматич. горных породах 3-50%, в углях 60-85%.

Кристаллическая структура. Кристаллич. решетка графита (рис. 1) гексагональная (а = 0,24612 нм, с = 0,67079 нм, z = 4, пространств. группа C6/mmc, теоретич. плотн. 2,267 г/см3). Состоит из параллельных слоев (базисных плоскостей), образованных правильными шестиугольниками из атомов С.

Углеродные атомы каждого слоя расположены против центров шестиугольников, находящихся в соседних слоях (нижнем и верхнем); положение слоев повторяется через один, а каждый слой сдвинут относительно другого в горизонтальном направлении на 0,1418 нм. Графит температура плавления и кипения

Рис. 1. Кристаллическая решетка графита (природного цейлонского). А, В углеродные слои; пунктирными линиями показана элементарная кристаллич. ячейка.

Известна также модификация с ромбоэдрич. решеткой (а = 0,3635 нм,= 39,49°, z = 4, пространств. группа R3m). Положение плоских слоев в ее структуре повторяется не через один слой, как в гексагон. модификации, а через два. В прир. графите содержание ромбоэдрич. структуры доходит до 30%, в искусственно полученных графитах наблюдается только гексагональная. При 2230-3030oС ромбоэдрич. графит полностью переходит в гексагональный.

Внутри слоя связи между атомами ковалентные, образованы sр2-гибридными орбиталями. Взаимод. между слоями осуществляются ван-дер-ваальсовыми силами.

Для природного (цейлонского) графита межслоевое расстояние при нормальных условиях 0,3354 нм. Энергия связи между слоями гексагон. графита составляет 16,75 Дж/моль (15 °С), 15,1 Дж/моль (-134,15°С).

Энергия связи С—С в слое 167,6 Дж/моль (1118°С).

В кристаллич. решетке графита могут наблюдаться вздутия, искривления углеродных сеток и дефекты тонкого строения. В результате коагуляции вакансий могут образоваться микрополости диам. до 3 мкм.

Объединение отдельных участков этих дефектов приводит к возникновению краевых дислокаций, а также дислокац. петель величиной 0,1-1,0 мкм. Концентрация вакансий в графите увеличивается при его нагревании, напр. при 3650°С она достигает 0,5 атомных %.

Дефекты могут возникать и при внедрении в решетку как углеродных атомов, так и гетероатомов (см. Графита соединения).

Свойства. Графит-жирное на ощупь в-во черного или серо-черного цвета с металлич. блеском. Его св-ва зависят от происхождения или способа получения. наиб. правильные кристаллы образует минерал цейлонских месторождений. Искусственно графит получают: нагреванием смеси кокса или каменного угля с пеком (т. наз. ачесоновский графит); термомех.

обработкой смеси, содержащей кокс, пек, прир. графит и карбидообразующие элементы (рекристаллизованный графит); пиролизом газообразных углеводородов (пирографит). К разновидностям искусственно полученного графита относят также доменный графит (выделяется при медленном охлаждении больших масс чугуна) и карбидный графит (образуется при термич.

Читайте также:  Сплав бронзы состав в процентах

разложении карбидов).

При атм. давлении выше 2000 °С графит возгоняется, в парах обнаружены молекулы, содержащие от одного до семи атомов С. При высоких давлениях и нагревании образуется алмаз (рис. 2). Тройная точка (графит-жидкость-пар): т-ра 4130 К, давл. 12 МПа. наиб. плотность (в зависимости от добавки 2,0-5,0 г/см3) имеет рекристаллизованный графит.

Ниже приводятся термодинамич. св-ва ачесоновского графита: С°p 8,54 Дж/(моль*К), ур-ние температурной зависимости: Сop = а + bТ- сТ2 — dT2 — еТ3 (288^130 К), где а = 4,824, Ъ = 28,627*10-3, с = 3,250*105, d = 13,812*10-6, e = 2,276* 10-9; 104кДж/моль, Soпл 24 Дж/(моль*К); 716,67 кДж/моль (288 К); S^98 5,74 Дж/(моль*К). Для графита разл. происхождения ок. -395 кДж/моль. Графит температура плавления и кипения

Рис. 2. Диаграмма состояния углерода: 1 и 2-области устойчивости соотв. графита и алмаза; 3 -область существования расплава углерода; 4 -линия равновесия графит-алмаз; 5, 6, 7, 8-линии плавления соотв.

графита, метастабильного графита (приблизит. граница существования метастабильного графита в поле алмаза), алмаза и метастабильного алмаза в поле графита (приблизит.

граница); А и В-области существования термодинамически неустойчивых алмаза и графита соответственно.

Высокая анизотропия св-в монокристаллов графита обусловлена строением его кристаллич. решетки. В направлении базисных плоскостей тепловое расширение графита до 427 °С отрицательно (т.е. графит сжимается), его абс. значение с повышением т-ры уменьшается. Выше 427 °С тепловое расширение становится положительным.

Температурный коэф. линейного расширения равен -1,2*10-6 К-1 (до -73oС), 0 (427 °С), 0,7*10-6 К-1 (выше 727°С). В направлении, перпендикулярном базисным плоскостям, тепловое расширение положительно, температурный коэф. линейного расширения практически не зависит от т-ры и превышает более чем в 20 раз среднее абс.

значение этого коэф. для базисных плоскостей. Температурный коэф. линейного расширения поликристал-лич. графита очень быстро увеличивается в интервале —100-0 °С, затем рост его замедляется; для наиб. распространенных графитов эти коэф. одинаковы и равны 0,2*10-8 К-1 в интервале 0-500°С и 0,4*10-9 К»1 выше 1000°С.

Для монокристаллов графита отношение значений теплопроводности в направлениях, параллельном и перпендикулярном базисным плоскостям (коэф. анизотропии k), может достигать 5 и более.

Теплопроводность [Вт/(м*К)] в направлении базисных плоскостей для графитов: цейлонского 278,4 (k = 3,2), камберлендского 359,6 (k = 6), канадского 522,0 (k = 6), пирографита 475-2435 (k = 100-800).

Наивысшей теплопроводностью (большей, чем у Си) обладает рекристаллизованный графит с добавками карбидов Ti и Zr. Теплопроводность искусственно полученного поликристаллич. графита сильно зависит от его плотности и составляет 92,22, 169,94 и 277,44 Вт/(м*К) при плотности соотв.

1,41, 1,65 и 1,73 г/см3. На кривой температурной зависимости теплопроводности имеется максимум, положение и величина к-рого зависят от размеров и степени совершенства кристаллов.

Электрич. проводимость монокристаллов графита в направлении, параллельном базисной плоскости (0,385*10-6 Ом*м), близка к металлической, в перпендикулярном-в сотни раз меньше, чем у металлов (52,0*10-6 Ом*м). Величина принимает миним. значение в интервале 0-1000 °С, положение минимума смещается в область низких т-р тем больше, чем совершеннее кристаллич. структура. Наивысшую электрич. проводимость имеет рекристаллизованный графит.

Монокристаллы графита диамагнитны, магн. восприимчивость велика в направлении, перпендикулярном базисным плоскостям ( -22*10-3), и незначительна в параллельном направлении ( -0,5*10-3). Знак коэф. Холла меняется с положительного на отрицательный при 2100°С.

Прочностные св-ва графита изменяются с увеличением т-ры. Для большинства искусств.

графитов с повышением т-ры возрастает в 1,5-2,5 раза, достигая максимума при 2400-2800°С;увеличивается в 1,3-1,6 раза в интервале 2200-2300 °С; модули упругости и сдвига возрастают в 1,3-1,6 раза в интервале 1600-2200 °С.

С повышением т-ры до 3000 °С и выше прочностные св-ва довольно резко снижаются и при 3200 °С приближаются к св-вам при 20 °С В интервале 20-2000 °С графит хрупок.

В диапазоне 2200-2600 °С наблюдается большая остаточная деформация, достигающая 0,35-1,5% в зависимости от вида графита. Для искусственно полученного поликристаллич. графита 9,8-14,7 МПа, 19,6-21,6 МПа, 24,5-29,4 МПа; коэф. Пуассона 0,20-0,27; твердость по Бринеллю 392-588 МПа, по шкале Мооса 1-2. наиб. высокие прочностные св-ва имеет рекристаллизованный графит.

Хорошие антифрикционные св-ва графита обусловлены легкостью скольжения одного углеродного слоя относительно другого под действием малых сдвиговых напряжений в направлении базисных плоскостей. Коэф.

трения по металлам (для рабочих скоростей до 10 м/с) составляют 0,03-0,05. Для пирографита под действием напряжений в направлении, перпендикулярном базисным плоскостям, он составляет 0,4-0,5; пирографит м. б.

использован в кач-ве фрикционного материала.

После облучения графита нейтронами его физ. св-ва изменяются: увеличивается, а прочность, модуль упругости, твердость, теплопроводность уменьшаются на порядок. После отжига при 1000-2000 °С св-ва восстанавливаются до прежних значений. Графит обладает низким сечением захвата тепловых нейтронов (0,38*10-30 м2).

Характерная особенность искусственно полученного графита-его пористость, оказывающая существенное влияние практически на все св-ва графита. Объем пор от 2-3% для пирографита до 80-85% для др. видов графитов.

Для описания зависимости, модуля упругости, теплопроводности, р от пористости применяют эмпирич. выражение: где Рi и Рoi—св-ва соотв. пористого и непористого графитов,-общая пористость,-параметр для i-того св-ва.

Графит весьма инертен при нормальных условиях. Окисляется О2 воздуха до СО2 выше 400°С, СО2-выше 500 °С. Т-ра начала р-ций тем выше, чем совершеннее кристаллич. структура графита. Окисление ускоряется в присут. Fe, V, Na, Cu и др. металлов, замедляется в присут. С12, соед. фосфора и бора.

С молекулярным азотом графит практически не реагирует, с атомарным при обычной т-ре образует цианоген C2N2, в присут. Н2 при 800°C-HCN. В условиях тлеющего разряда графит с N2 дает парацианоген (CN)X, где х2. С оксидами азота выше 400 °С образует СО2, СО и N2, с Н2 при 300-1000 °С-СН4. Галогены внедряются в кристаллич.

решетку графита, давая соед. включения (см. Графита соединения).

С большинством металлов и их оксидов, а также со мн. неметаллами графит дает карбиды. Со всеми щелочными металлами, нек-рыми галогенидами, оксифторидами, галогеноксидами, оксидами и сульфидами металлов образует соед.

включения, с нитридами металлов выше 1000 °С- твердые р-ры нитридов и карбидов, с боридами и карбидами-эвтектич. смеси с т-рами плавления 1800-3200°С. Графит стоек к действию к-т, р-ров солей, расплавов фторидов, сульфидов, теллуридов, орг. соед., жидких углеводородов и др.

, реагирует с р-рами щелочей, жидкими окислителями и рядом хлор- и фторорг. соединений.

Наиб, химически и термически стоек пирографит. Он практически непроницаем для газов и жидкостей, при 600 °С его стойкость к окислению во мн. раз выше, чем у других графитов. В инертной среде пирографит работоспособен при 2000 °С в течение длительного времени.

Получение. Кристаллич. графит извлекают из руд методом флотации, руды скрытокристаллич. графит используют без обогащения.

Исходное сырье для получения графита-нефтяной или метал-лургич. кокс, антрацит и пек. Отдельные частицы исходных углеродных материалов в результате карбонизации при обжиге связываются в монолитное твердое тело, к-рое затем подвергают графитации (кристаллизации).

По одному из методов кокс или антрацит измельчают и смешивают с пеком в определенных соотношениях, прессуют при давл. до 250 МПа, а затем подвергают обжигу при 1200°С и графитации при нагр. до 2600-3000 °С. Для уменьшения пористости полученный графит пропитывают синтетич. смолой или жидким пеком, после чего снова подвергают обжигу и графитации.

В произ-ве графита повыш. плотности пропитку, обжиг и графитацию повторяют до пяти раз.

Из смеси, содержащей кокс, пек, прир. графит и до 20% тугоплавких карбидообразующих элементов (напр., Ti, Zr, Si, Nb, W, Та, Мо, В), получают рекристаллизованный графит. Исходную шихту нагревают в графитовых прессформах до т-ры, на 100-150 °С превышающей т-ру плавления эвтектич. смеси карбида с углеродом, под давл. 40-50 МПа в течение неск. десятков минут.

Пирографит получают пиролизом газообразных углеводородов с осаждением образовавшегося углерода из газовой фазы на подложку из графита. Осадки имеют кристаллич. структуру разл. степени совершенства — от турбостратной неупорядоченной (пироуглерод) до упорядоченной графитовой (пирографит).

Читайте также:  Конфирмат для лдсп 16 мм

Применение. Графит используют в металлургии для изготовления плавильных тиглей и лодочек, труб, испарителей, кристаллизаторов, футеровочных плит, чехлов для термопар, в кач-ве противопригарной «присыпки» и смазки литейных форм. Он также служит для изготовления электродов и нагревательных элементов электрич.

печей, скользящих контактов для электрич. машин, анодов и сеток в ртутных выпрямителях, самосмазывающихся подшипников и колец электромашин (в виде смеси с Al, Mg и Pb под назв.

«графаллой»), вкладышей для подшипников скольжения, втулок для поршневых штоков, уплотнительных колец для насосов и компрессоров, как смазка для нагретых частей машин и установок. Его используют в атомной технике в виде блоков, втулок, колец в реакторах, как замедлитель тепловых нейтронов и конструкц.

материал (для этих целей применяют чистый графит с содержанием примесей не более 10-2% по массе), в ракетной технике — для изготовления сопел ракетных двигателей, деталей внеш. и внутр. теплозащиты и др., в хим. машиностроении — для изготовления теплообменников, трубопроводов, запорной арматуры, деталей центробежных насосов и др.

для работы с активными средами. Графит используют также как наполнитель пластмасс (см. Графитопласты), компонент составов для изготовления стержней для карандашей, при получении алмазов. Пирографит наносится в виде покрытия на частицы ядерного топлива. См. также Угле графитовые материалы.

Наиб. кол-во прир. графита добывают в СССР, ЧССР, Южной Корее, Мексике, Австрии, ФРГ, лучшие сорта крупнокристаллич. графита-на Цейлоне и Мадагаскаре. Произ-во графита сосредоточено в промышленно развитых странах (Великобритания, СССР, США, Франция, ФРГ, Япония) и достигает сотен тыс. тонн в год.

===

Исп. литература для статьи «ГРАФИТ»: Веселовский В. С, Угольные и графитовые конструкционные материалы, М., 1966; Шулепов С. В., Физика углеграфитовых материалов, М., 1972; Рекристаллизованный графит, М., 1979; Костиков В. И., Варенков А. Н., Взаимодействие металлических расплавов с углеродными материалами, М., 1981.

В. И. Костиков.

Страница «ГРАФИТ» подготовлена по материалам химической энциклопедии.

А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Графит: температура плавления, кипения, физические свойства

Графит (от др.-греч. γράφω — пишу) — минерал, неметалл из класса самородных элементов. Гексагональная модификация углерода. Формула: С. Первоначально английские пастухи, открывшие минерал в XVI веке, приняли графит за свинец.

Графит температура плавления и кипения

Блеск металловидный, жирный или графит матовый. Твердость 1-2. Удельный вес 2,09-2,23 г/см3. Пишет на бумаге, пачкает руки. Жирен на ощупь. Цвет железно-черный, стально-серый. Черта черная. Спайность весьма совершенная. Сплошные чешуйчатые, плотные или землистые массы, вкрапления и кристаллы в виде шестиугольных пластинок. Сингония гексагональная.

Физические свойства графита являются следующими:

  1. Не растворяется в кислоте.
  2. Пределы температуры плавления — 3845—3890 °C, кипение начинается при 4200 °C
  3. Во время сжигания 1 кг графита выделяется 7832 ккал тепла.
  4. После нагревания приобретает твердую и хрупкую структуру.

Это далеко не все свойства графита. Есть еще параметры, которые делают этот элемент уникальным.

Графиту присущи следующие характеристики:

  • цвет графита является темно-серым с металлическим отливом,
  • теплоемкость графита составляет 0.720 кДЖ
  • удельное сопротивление графита составляет 800.000 · 10 − 8 (Ом · Метр).

Кристаллы встречаются редко. Кристаллическая структура графита обусловливает его отличия от алмаза — другой аллотропной формы углерода, в котором атомы прочно связаны друг с другом по всем направлениям.

Кристаллическая структура графита определяет и его малую твердость, легкость растирания, ощущение жирности, весьма совершенную спайность, непрозрачность, металловидный блеск, высокую электропроводность.

Отличительные признаки. Для графита характерна небольшая твердость (графит мягкий), графит легко пишет на бумаге, имеет более или менее постоянный стально-серый, железно-черный цвет. Графит можно спутать с молибденитом. В отличие от молибденита графит растирается пальцами в черную пыль (молибденовый блеск растирается в светло-серый порошок).

Химические свойства. С кислотами не взаимодействует. При нагревании с селитрой дает вспышку. Кусочек цинка, помещенный на поверхности графита и смоченный каплей медного купороса, выделяет пятно меди (отличие от молибденита).

Разновидность: Шунгит—аморфная разность графита.

Графит температура плавления и кипения

Известные крупные месторождения графита образовались в результате изменения осадочных отложений органогенного происхождения (каменных углей, битумов и т. п.) под действием контактного или глубинного (регионального) метаморфизма.

  • В отдельных случаях графит образовался в результате непосредственной кристаллизации из магм, богатых углеродом, или восстановления известняков, захваченных магматическими породами.
  • Наибольшее практическое значение имеет графит метаморфического происхождения.
  • Встречается в контактовой зоне каменного угля с магматическими породами, в гнейсах, в кристаллических сланцах, в мраморах, в контактах магматических пород с известняками, в виде вкраплений в кислых, средних и основных магматических породах, в пневматолитовых образованиях.

Спутники. В контактах магматических пород с известняками: апатит, флогопит. В пневматолитовых образованиях: кварц, полевой шпат, каолинит, апатит, биотит, титаномагнетит. В гнейсах: каолинит.

Графит температура плавления и кипения

Графит используется очень широко. Можно сказать, что нет ни одной отрасли, где бы он в той или иной степени ни применялся.

Необходим графит главным образом в металлургической промышленности для изготовления огнеупорных тиглей и для покрытия поверхности литейных форм с целью предохранения отливки от пригара формовочной земли; кроме того, в электропромышленности — в производстве электродов и дуговых углей, в производстве карандашей, черных красок, черной копировальной бумаги, типографской краски или же китайской туши.

Используется также как смазочное вещество (в тех случаях, когда вследствие высокого нагрева нельзя применять масла) и в паровых котлах в качестве антинакипного средства. В последнее время применяется для изготовления графитовых блоков «атомных котлов» и изготовления космической техники.

Из графита получают искусственный алмаз. Графитовая жидкость применяется при объемном прессовании деталей автомобилей. Штампы, обволакиваемые этим веществом, обеспечивают высокую чистоту поверхности стальных заготовок, что исключает их последующую обтирку на шлифовальных станках.

Месторождения

  1. Графит температура плавления и кипения
  2. Имеются несколько граффито-носных провинций: Украинская, Уральская, Тунгусская (Ногинское, Курейское), Верхне-Саянская (Ботогольское), Уссурийская и другие.
  3. Крупные месторождения графита имеются в Южной Корее, Мексике (штат Сонора), Малагасийской Республике, Шри-Ланке, Индии, ФРГ и Швеции.

Свойства графита

  • Характеристики
  • Физические свойства
  • Добыча
  • Применение

Слово графит в переводе с греческого обозначает «пишу». Минерал с таким названием у природе образуется при высокой температуре в вулканических горных породах.

Характеристики графита

Графит температура плавления и кипения

Графит является представителем класса самородных элементов высокой прочности. Его структура обладает большим количеством слоев.

В природе встречается два вида графита:

  • крупнокристаллический,
  • мелкокристаллический.

По величине кристаллов и по их расположению относительно друг друга в природе встречаются следующие типы графитов:

  • явнокристаллические,
  • скрытокристаллические.

У графита структура является достаточно слоистой. Каждый из слоев обладает волнистой формой. Она является слабовыраженной.

Графит представляет собой один из элементов, который состоит преимущественно из кристаллов разных размеров. Они имеют пластичную структуру и небольшие чешуйки по краям. По своей прочности они могут сравниться алмазами.

Кристаллическая решетка графита состоит из большого количества слоев, которые имеют различное расположение относительно друг друга.

Сегодня не редко производится искусственный графит, который создается из смеси различных веществ. Он используется в разных отраслях человеческой жизнедеятельности. Графит, полученный искусственным путем, обладает большим количеством видов.

В современном мире планируется из графита добывать золото. Ученые выяснили, что в одной тонне графита содержится примерно 18 граммов золота. Данное количество золотой руды присуще золотым месторождениям. В настоящее время получать золото из графита есть возможность не только в нашей стране, но и в других государствах мира.

Физические свойства графита

Графит температура плавления и кипения

Одним из главных свойств графита является его способность проводить электрический ток. Его физические свойства отличаются от параметров алмаза тем, что у него не такой высокий уровень твердости. Его структура является изначально довольно мягкой. Однако после нагревания она становится твердой и хрупкой. Материал начинает рассыпаться.

Читайте также:  Нарушение технологического процесса производства

Физические свойства графита являются следующими:

  1. не растворяется в кислоте.
  2. плавление графита при температурах меньше 3800 градусов Цельсия невозможно.
  3. после нагревания приобретает твердую и хрупкую структуру.

Это далеко не все свойства графита. Есть еще параметры, которые делают этот элемент уникальным.

Графиту присущи следующие характеристики:

  • температура плавления графита составляет 3890 градусов Цельсия,
  • цвет графита является темно-серым с металлическим отливом,
  • теплоемкость графита составляет 0.720 кДЖ
  • удельное сопротивление графита составляет 800.000 · 10 − 8 (Ом · Метр).

Внимание: Единственный параметр из всех характеристик графита, который зависит от вида элемента, является теплопроводность графита. Она составляет 278,4 до 2435 Вт/(м*К).

Таблица. Физические свойства графита

ХарактеристикиНаправление потокаТемпература, °С 20200400600800
Коэффициент теплопроводности λ, Вт/(м°С) графита:
— кристаллический || 354,7 308,2
— естественный _|_ 195,4 144,2 112,8 91,9 75,6
— прессованный || 157 118,6 93,0 69,8 63,9
— искусственный с р=1,76 г/см3 _|_ 104,7 81,4 69,8 58,2
— то же, с р=1,55 г/см3 || 130,3 102,3 79,1 63,9 53,5
Сопротивление разрыву σпц, МН/м2  || 14,2 15,2 15,9 16,5 17,6
_|_ 10,3 11,3 12,0 12,5 13,7
Модуль упругости Е, МН/м2  || 5880 7100 7350 7500 7840
_|_ 2700 3040 3200 3630 3920
Удельная теплоемкость с, кДж/(кг0С) 0,71 1,17 1,47 1,68 1,88
Электросопротивление рэ104, Омсм 16 13 11 10 9
Коэффициент линейного расширения α·106, 1/°С || 7,2*1 8,5*2 10,0*3 13,0*4
_|_ 4,0*1 5,5*2 6,8*3 9,3*4
|| 1,8*1 1,55*2 1,45*3 1,40*4

Добыча графита

Добыча графита является сложным процессом. Для этого создано большое количество разновидностей оборудования. Оно используется для добычи и дробления элемента. Залежи графита обычно находятся глубоко под землей. Именно по этой причине чаще всего используются бурильные установки, которые позволяют добраться до месторождения этого элемента.

Графит температура плавления и кипения

Как известно такой материал, как графит обладает большим количеством уникальных качеств. Именно они обуславливают сферы его применения. Благодаря тому. что данный материал обладает устойчивостью к высоким температурам его применяют для производства футеровочных плит.

Применение графита используется и в сфере ядерной промышленности. Там он играет важную роль при замедлении нейтронов.

Получение алмаза из графита тоже возможно. В современном мире есть возможность получать синтетический алмаз, который по своим качествам и внешнему виду будет напоминать природный материал.

Пиролитический графит представляет собой особую форму такого элемента, как графит. Данная его разновидность нашла широкое применение в сфере микроскопических исследований.

Его применяют в качестве калибровочного материала. Чаще всего его используют в сканирующей туннельной микроскопии и в атомно-силовой микроскопии. Данная разновидность графита относится к разряду синтетических.

Его получение возможно при нагревании кокса и пека.

Благодаря графиту можно получать активные металлы с химической точки зрения путем электролиза. Данный метод использования элемента объясняется тем, что у графита достаточно хорошая электропроводность.

При производстве пластмассовых изделий графит тоже нашел свое применение. Его используют для наполнения пластмассы.

Самым известным методом использования графита является производство стержней для обычных простых карандашей, к которым так привыкли люди.

Физические свойства углерода C (графита). Теплопроводность графита

Физические свойства графита при температуре от 20 до 800 °С

В таблице представлены физические свойства графита в интервале температуры от 20 до 800 °С.

Свойства указаны в направлении, как параллельно, так и перпендикулярно главной оси кристаллов графита.

Теплопроводность графита указана для следующих типов: кристаллический, естественный, прессованный искусственный. По данным таблицы видно, что теплопроводность графита при увеличении его температуры снижается.

Удельная (массовая) теплоемкость углерода при комнатной температуре составляет величину 710 Дж/(кг·град) и при нагревании увеличивается. Плотность углерода находится в диапазоне от 1400 до 1750 кг/м3.

Даны следующие физические свойства графита различной плотности:

  • теплопроводность графита, Вт/(м·град);
  • сопротивление разрыву, МН/м2;
  • модуль упругости графита, МН/м2;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • удельное электрическое сопротивление, Ом·м;
  • коэффициент теплового линейного расширения (КТлР), 1/град.

Свойства углерода (графита) в зависимости от температуры

В таблице представлены теплофизические свойства углерода (графита) в зависимости от температуры. Свойства углерода в таблице указаны при температуре от 100 до 2000К в направлении вдоль (параллельно), так и перпендикулярно главной оси кристаллов углерода.

Приведены следующие свойства углерода (графита):

  • коэффициент теплового линейного расширения (КТлР), 1/град;
  • удельная (массовая) теплоемкость, Дж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град).

Теплопроводность графита в зависимости от плотности

В таблице представлены значения теплопроводности графита различной плотности при температуре 20 °С. Теплопроводность графита указана при направлении теплового потока вдоль главной оси кристаллов и в размерности Вт/(м·град).

По данным таблицы видно, что теплопроводность графита с увеличением плотности заметно увеличивается. Плотность графита в таблице приведена в размерности 103·кг/м3, то есть в т/м3. Плотность графита изменяется в интервале от 1400 до 1750 кг/м3.

Теплопроводность графита в зависимости от температуры

В таблице представлены значения теплопроводности графита плотностью 1650…1720 кг/м3 в зависимости от температуры.

Теплопроводность графита указана при направлении теплового потока, как вдоль, так и поперек главной оси кристаллов, указано также отношение теплопроводности в этих направлениях (оно постоянно и равно приблизительно 1,5).

Значения теплопроводности графита приведены в интервале температуры от 20 до 1800 °С. По значениям в таблице видно, что теплопроводность графита с увеличением температуры уменьшается.

Теплопроводность реакторного графита плотностью 1700 кг/м3 в зависимости от температуры

В таблице представлены значения теплопроводности реакторного графита плотностью 1700 кг/м3 в зависимости от температуры. Теплопроводность указана в направлении теплового потока, идущего, как параллельно, так и перпендикулярно прессованию графитовых стержней.

Значения теплопроводности реакторного графита приведены в интервале температуры от 100 до 1700 К.

Теплопроводность измельченного графита

В таблице дана теплопроводность измельченного графита (углерода) в зависимости от размера частиц при температуре 20 °С. Размер частиц определялся в зависимости от количества отверстий в сите на 1 квадратный сантиметр (3, 6, 16 отв/см2 и сухая сажа).

Теплопроводность графита указана в размерности Вт/(м·град). Плотность графита в таблице указана в 103·кг/м3, то есть в т/м3.

Теплопроводность слоя графитовых частиц в зависимости от его пористости

В таблице представлены значения теплопроводности слоя графитовых частиц (частиц углерода) при пористости от 0,4 до 0,7. Следует отметить, что при увеличении пористости слоя его теплопроводность снижается.

Коэффициент теплового расширения (КТР) углерода (графита) в зависимости от температуры

В таблице указаны значения коэффициента линейного теплового расширения (КТР) углерода (графита) в зависимости от температуры.

КТР в таблице приводится для различных сортов графита: пиролитический графит, графит на основе нефтяного кокса, графит на основе ламповой сажи.

Коэффициент линейного теплового расширения графита приведен в интервале температуры от 100 до 700 °С в размерности 1/град.

Теплоемкость углерода в зависимости от температуры

В таблице представлены значения теплоемкости углерода в зависимости от температуры. Удельная теплоемкость углерода (графита) указана в интервале температуры от 200 до 2000 К.

Теплоемкость углерода в таблице дана массовая и выражена в размерности кДж/(кг·град). По данным в таблице видно, что теплоемкость углерода с увеличением температуры растет.

Теплоемкость природного углерода (графита) при низких температурах

В таблице даны значения атомной (на 1 моль вещества) и удельной теплоемкости углерода при низких температурах. Теплоемкость углерода (графита) указана в интервале температуры от -260 до 17 °С.

Атомная теплоемкость углерода выражена в размерности Дж/(моль·град). Удельная теплоемкость углерода (массовая — на 1 кг массы) выражена в размерности кДж/(кг·град).

  • По значениям в таблице хорошо видно, что атомная и удельная теплоемкости углерода (графита) с увеличением температуры растут и при очень низких отрицательных температурах.
  • Источники:
Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]