Icm7555 datasheet на русском

В этом материале подробно рассмотрим характеристики, схему подключения, распиновку и аналоги популярной микросхемы NE555. Аналоги полные — AN1555, MC1455, TA7555P, UPC1555, ICM7555, CA555E, UA555TC, M51841P, MC3455P, LM555N и отечественная микросхема 1006ВИ1.

Icm7555 datasheet на русском

А в качестве практики будем использовать её для создания генератора прямоугольных сигналов. В даташите на NE555 показано, как правильно подключить микросхему. Если не уверены в её работоспособности — вот схема тестера таких чипов-таймеров

Icm7555 datasheet на русском

Принципиальная схема генератора на NE555 из документации от производителя

Напряжение подаваемое в схему, должно быть в диапазоне от 5 до 15 В. Для экспериментов были выбраны аккумуляторы 12 В, поэтому чтобы иметь стабильное значение напряжения питания, используется стабилизатор напряжения +5 В.

Icm7555 datasheet на русском

Принципиальная схема генератора на чипе NE555 и LED

Теперь как работает схема. Конденсатор С заряжается током, протекающим через резисторы Ra и Rb. Когда он заряжен, 7-й вывод NE555 закорочен на землю (схема, показывающая внутреннюю структуру NE555 показывает, что он соединен с землей с помощью транзистора).

Icm7555 datasheet на русском

Внутренняя схема микросхемы NE555

Когда он разряжается до определенного уровня, ток перестает течь через вывод 7 NE555 и снова конденсатор заряжается током, протекающим через резисторы Ra и Rb. Цикл зарядки и разрядки конденсатора C влияет на форму волны напряжения, которую получаем на выходе чипа (ножка 3):

Icm7555 datasheet на русском

Форма выходного напряжения и напряжения на конденсаторе

Когда конденсатор заряжается, на выходе NE555 получаем напряжение, которое заставляет ток течь через транзистор BC547B, а после через светодиод, и он светится. При разрядке конденсатора на выходе напряжение составляет около 0 В, поэтому транзистор и светодиод остаются выключенными. Принцип работы поясняется следующими схемами:

Icm7555 datasheet на русском

Схемы, показывающие протекание тока в выбранных точках цепи во время а) зарядки; b) разрядки конденсатора С

Далее как выбрать значения отдельных компонентов в схеме. Начнем с резистора Rd. Предположим, что падение напряжения на светодиоде составляет 2 В, а ток протекающий через него составляет 20 мА.

  • Rd = (Vcc — Ud) / Id
  • Rd = (5 В — 2 В) / 20 мА
  • Rd = 150 Ом

Прежде чем приступить к вычислению сопротивления Rb, измерьте коэффициент усиления. Для данного случая это 330.

  1. Ib = Ic / в
  2. Ib = 20 мА / 330
  3. Ib = 60 мкА
  4. Rb = Vcc / Ib
  5. Rb = 5 В / 60 мкА
  6. Rb = 83 кОм

Выбираем резистор имеющийся в наборе, номиналом Rb = 100 кОм. Коллекторный ток немного изменится (уменьшится), но это не помешает правильной работе схемы и светодиод все равно останется хорошо виден.

  • Как выбрать резисторы Ra и Rb. В этом поможет документация на чип, где можем найти следующие закономерности:
  • — частота прямоугольной волны, полученной на выходе:
  • f = 1 / T = 1,44 / (Ra + Rb) C
  • — время зарядки конденсатора C (в это время выходной сигнал высокий)
  • th = 0,693 (Ra + Rb) C
  • — время разряда конденсатора C (в это время на выходе низкий уровень)
  • tl = 0,693 (Rb) C
  • Поскольку знаем формулы, то можем сделать некоторые предположения: если конденсатор C будет иметь емкость 100 мкФ, он будет заряжаться 4 секунды и разряжаться за 1 секунду.
  • tl = 0,693 (Rb) C
  • 1s = 0,693 x Rb x 0,0001F
  • Rb = 1s / (0,693 x 0,0001F)
  • Rb = 14430 Ом
  • th = 0,693 (Ra + Rb) C
  • 4s = 0,693 (Ra + 14430 Ом) 0,0001F
  • Ra = 43290 Ом
  • Вместо Ra будем использовать резистор 47 кОм, а вместо Rb — резисторы: 10 кОм, 4,7 кОм.

Icm7555 datasheet на русском

  1. Частота меандра, полученная на выходе микросхемы NE555:
  2. f = 1,44 / (Ra + Rb) C
  3. f = 1,44 / (47 кОм + 14,7 кОм) 0,0001F
  4. f = 0,18 Гц

ОК, с теорией достаточно, перейдём к сборке. Вот устройство собранное на макетной плате. Всё заработало сразу (конечно если собрать без ошибок).

Вид собранной схемы 555 на монтажной плате

Кроме того, предлагаем скачать полезную программу, которая рассчитает все параметры схемы.

Icm7555 datasheet на русском

Скриншот программы расчета элементов для микросхемы NE555

Простая программка для расчёта схем на таймере NE555, позволяет выполнять расчёт генераторов с различной скважностью и генераторов одиночных импульсов. Она очень проста в использовании, достаточно ввести значения в соответствующие поля и получим готовый результат.

   Форум по микросхеме

   Форум по обсуждению материала NE555: ХАРАКТЕРИСТИКИ, РАСПИНОВКА, АНАЛОГИ

Простые схемы ШИМ генераторов на одной микросхеме — ICM7555, MAX998

  • Журнал РАДИОЛОЦМАН, октябрь 2013
  • Budge Ing, Maxim Integrated
  • EDN

Icm7555 datasheet на русском

Генераторы широтно-импульсно модулированных сигналов (ШИМ) интегрированы практически в любое устройство импульсного преобразования мощности. В статье будут показаны два способа реализации автономных аналоговых ШИМ генераторов. При необходимости улучшить характеристики генераторов их можно модифицировать, добавив в каждый по одной микросхеме.

Устройства, состоящие из одной микросхемы, могут быть сделаны по двум схемам. В одной используется интегральный таймер ICM7555, а в другой – маломощный компаратор MAX998. Мы рассмотрим обе схемы.

Схема 1: использование маломощного таймера в качестве ШИМ генератора

Таймер ICM7555 включается согласно Рисунку 1.  

Icm7555 datasheet на русском
Рисунок 1. ШИМ генератор и таймер на одной микросхеме.

На Рисунке 1 ширина импульса на выводе 3 модулируется управляющим напряжением VCONTROL, приложенным к выводу 5. Лабораторные измерения схемы были выполнены при напряжении питания 5 В.

На Рисунках 2…5 показаны выходные ШИМ сигналы при трех различных управляющих напряжениях: 1 В, 2 В и 4 В. Конденсатор C1 заряжается напряжением источника питания VSUPPLY до уровня VCONTROL и разряжается от VCONTROL/2 до уровня земли.

При отсутствии внешнего управляющего напряжения напряжение VCONTROL составляет 2/3 от VSUPPLY.

Icm7555 datasheet на русском
Рисунок 2. Выход ШИМ генератора при управляющем напряжении, равном 1 В.
Icm7555 datasheet на русском
Рисунок 3. Выход ШИМ генератора при управляющем напряжении, равном 2 В.
Icm7555 datasheet на русском
Рисунок 4. Выход ШИМ генератора при отсутствии управляющего напряжения.
Icm7555 datasheet на русском
Рисунок 5. Выход ШИМ генератора при управляющем напряжении, равном 4 В.

Представленные осциллограммы иллюстрируют влияние управляющего напряжения, приложенного к выводу 5, на изменения пороговых напряжений двух внутренних компараторов. В отсутствие управляющего напряжения (Рисунок 4) пороги заряда и разряда C1 определяются внутренней структурой таймера и составляют 1/3 и 2/3 от напряжения питания.

Этими порогами, равноудаленными от напряжения питания и земли, устанавливается коэффициент заполнения равный 50%. При изменении управляющего напряжения изменяется время заряда C1, за которое напряжение на конденсаторе должно достичь VCONTROL, и время разряда, в течение которого напряжение спадает до VCONTROL/2.

Читайте также:  Как и чем согнуть фанеру в домашних условиях своими руками

Этот процесс приводит к модуляции ширины выходного импульса.

Время заряда определяется формулой

Icm7555 datasheet на русском

  1. где
  2. R = R1, C =C1.
  3. Время разряда можно вычислить из выражения
  4. Схема 2: генератор ШИМ с компаратором
  5. Компаратор MAX998 включается согласно Рисунку 6.
Рисунок 6. ШИМ генератор и компаратор.

Ширина выходного импульса модулируется под управлением напряжения, приложенного к R1. При напряжении питания 5 В были проведены лабораторные измерения, результаты которых представлены на Рисунках 7…9, демонстрирующих формы выходных сигналов ШИМ при управляющем напряжении, равном 1 В, 2 В и 4 В.

Рисунок 7. Выход ШИМ генератора при управляющем напряжении, равном 1 В.
Рисунок 8. Выход ШИМ генератора при управляющем напряжении, равном 2 В.
Рисунок 9. Выход ШИМ генератора при управляющем напряжении, равном 3 В.
  • Приложенное к микросхеме MAX998 управляющее напряжение устанавливает пороговые напряжения, определяющие моменты начала заряда и разряда C1. Верхний порог равен
  • а нижнее пороговое напряжение равно VCONTROL/2. Время заряда можно найти из формулы
  • Время разряда описывается выражением  
  • где
  • R = R1, C =C1.
  • Варианты ШИМ генераторов на двух микросхемах

Необходимо отметить, что управляющее напряжение в обеих схемах изменяет не только длительность импульсов, но и их частоту. Добавив в каждую из схем по одному компаратору, можно зафиксировать частоту выходных сигналов.

В Схеме 1 пилообразное напряжение с вывода 6 необходимо подать на вход второго компаратора. Это напряжение будет задавать коэффициент заполнения выходных импульсов постоянной частоты. Аналогично, в Схеме 2 на второй компаратор подается пилообразное напряжение с инвертирующего входа MAX998.

NE555: datasheet на русском, описание и схема включения

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования.

На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе.

Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует.

Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймер на биполярных транзисторах имеет один существенный недостаток, связанный с переходом выходного каскада из одного состояния в противоположное. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА, увеличивая тепловые потери.

Решение проблемы заключается в установке полярного конденсатора ёмкостью до 0,1 мкФ между выводом управления (5) и общим проводом. Благодаря ему, повышается стабильность при запуске и надёжность всего устройства.

Кроме того, для повышения помехоустойчивости цепь питания дополняют неполярным конденсатором 1 мкФ.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Icm7555 datasheet на русском

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера.

Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде.

Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

Icm7555 datasheet на русском

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.
Читайте также:  Пробник скрытой проводки своими руками

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Icm7555 datasheet на русском

t=1,1*R*C.

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Icm7555 datasheet на русском

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Icm7555 datasheet на русскомИз данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности – Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ.

Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ.

По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне.

Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ.

Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Icm7555 datasheet на русскомПрактический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

  • Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:
  • t=1,1*R1*C1=1,1*200000*0,0000047=1,03 c.
  • Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(UВЫХ-ULED)/ILED,

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Icm7555 datasheet на русском

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Ne555: datasheet на русском, описание и схема включения

Перед тем, как перейти к примеру устройства реле, рассмотрим структуру микросхемы. Все дальнейшие описания будут делаться для микросхемы серии NE555 производства Texas Instruments.

Как видно из рисунка, основа — это RS-триггер с инверсным выходом, управляемый выходами с компараторов. Положительный вход верхнего компаратора называется THRESHOLD, отрицательный вход нижнего — TRIGGER. Другие входы компараторов подключены к делителю напряжения питания из трех резисторов по 5 кОм.

Как вы скорее всего знаете, RS-триггер может находиться в устойчивом состоянии (обладает эффектом памяти, объемом 1 бит) либо в логическом «0», либо в логической «1». Как он функционирует:

Резисторы по 5 кОм в количестве 3-х штук делят напряжение питания на 3, что приводит к тому, что опорное напряжение верхнего компаратора (вход «–» компаратора, он же, вход CONTROL VOLTAGE микросхемы) составляет 2/3 Vcc. Опорное напряжение нижнего — 1/3 Vcc.

С учетом сказанного, можно составить таблицы состояний микросхемы относительно входов TRIGGER, THRESHOLD и выхода OUT

Читайте также:  Шабровка направляющих токарного станка

Обратите внимание, что выход OUT — это инвертированный сигнал с RS-триггера

THRESHOLD 2/3 Vcc
TRIGGER 1/3 Vcc OUT остается без изменений OUT = лог «0»

В нашем случае, для создания реле времени применяется такая хитрость: входы TRIGGER и THRESHOLD объединяются вместе и к ним подается сигнал с RC-цепочки. Таблица состояний в таком случае будет выглядеть так:

OUT
THRESHOLD, TRIGGER 2/3 Vcc OUT = лог «0»

Схема включения NE555 для такого случая следующая:

После подачи питания конденсатор начинает заряжаться, что приводит к постепенному увеличению напряжения на конденсаторе с 0В и далее. В свою очередь, напряжение на входах TRIGGER и THRESHOLD будет наоборот, убывать, начиная с Vcc+.

Как видно из таблицы состояний, на выходе OUT присутствует логический «0» после подачи питания Vcc+, а переключение выхода OUT в логическую «1» произойдет, когда на указанных входах TRIGGER и THRESHOLD напряжение опустится ниже 1/3 Vcc.

Важен тот факт, что время задержки реле, то есть промежуток времени между подачей питания и зарядкой конденсатора до момента переключения выхода OUT в логическую «1», можно рассчитать по очень простой формуле:

T = 1.1 * R * C И как видите, это время не зависит от напряжения питания. Следовательно, при проектировании схемы реле времени можно не заботиться о стабильности питания, что значительно позволяет упростить схемотехнику.

Далее приведем рисунок варианта исполнения микросхемы в DIP-корпусе и покажем расположения выводов чипа:

Также стоит упомянуть, что кроме 555 серии производится серия 556 в корпусе с 14-ю выводами. Серия 556 содержит два таймера 555.

Исполнительные устройства автоматизации полива

Основным исполнительным устройством автоматизации полива является электронный клапан с регулировкой потока воды и без. Вторые дешевле, проще в обслуживании и управлении.

Хорошо зарекомендовали себя клапаны производства американской компании Hunter. Для разных целей используются клапаны c проходным диаметром 1, 1.5, и 2 дюйма с наружной или внутренней резьбой.

Существует множество управляемых кранов и других производителей.

Если на вашем участке случаются проблемы с подачей воды, приобретайте электромагнитные клапаны с датчиком потока. Это предотвратит выгорание соленоида при падении давления воды или прекращении водоснабжения.

Промышленные датчики температуры и влажности

При наличии средств, все эти приборы можно приобрести в заводском исполнении.

Это может быть отдельно вынесенный датчик влажности для индикации, или встроенный сенсор с подключением к системе «умный дом». Многие датчики позволяют получать информацию дистанционно, с передачей по сети интернет или на мобильный планшет.

В данном материале есть описание различных типов сенсоров: каждый из них хорош для конкретных условий применения. Не обязательно выбирать самый дорогой и защищенный от агрессивной внешней среды прибор, если он будет использоваться в помещении.

Равно как датчик влажности почвы для горшков комнатных растений, не сможет контролировать обширные грядки в теплице или на поле.

Принцип работы

Датчик для измерения влажности почвы выполнен в виде вилки с двумя электродами, которыми погружается в грунт на расстояние до 40 мм. При подключении питания на электродах создаёться напряжение.

Если почва сухая, её сопротивление велико и через датчик между электродами течёт слабый ток. Если земля влажная — её сопротивление становится меньше, а ток датчика между электродами соответственно увеличивается.

По итоговому аналоговому сигналу можно судить о степени увлажнения почвы.

Максимальное напряжение на выходе не превышает 75% от напряжения питания модуля , т.е. сигнальный диапазон датчика равен:

  • 0–3,5 В при питании 5 В:
  • 0–2 В при питании 3,3 В.

На показания датчика также влияют следующие факторы:

  • Степень погружения датчика в почву.
  • Тип почвы, её химические и физические свойства.
  • Наличие и количество примесей в воде.

Электроды датчика покрыты золотом, чтобы предотвратить пассивную коррозию, когда он выключен. Избавиться от электролитической коррозии, вызванной протекающим током, невозможно, поэтому сенсор резистивного типа рекомендуется запитывать через силовой ключ.

То есть, включать его только на время измерений, чтобы максимально продлить ресурс. В плане эксплуатации это доставляет неудобство, поэтому рекомендуем обратить внимания на ёмкостный датчик влажности почвы, который в силу своего исполнения неподвержен корозии.

Сборка и тестирование

Соберите схему на печатной плате (PCB), чтобы минимизировать время и ошибки сборки. Односторонняя печатная плата для частотомера показана на рис. 3 (просмотр в формате PDF), а компоновка ее компонентов на рис. 4 (просмотр в формате PDF).

Загрузите PDF-файлы печатных плат и компонентов (Рис. 3, 4): нажмите здесь

Тщательно соберите компоненты и перепроверьте на любую пропущенную ошибку. Используйте кабель с низкой емкостью для подачи сигнала от источника генератора на частотомер. Подключите источник известной частоты (например, сигнал калибровки осциллографа) ко входу счетчика и отрегулируйте триммер VR1 для отображения частоты на 7-сегментных дисплеях.

electronicsforu.com

Применение датчиков на практике

Датчики используются для следующих задач:

  • поддержание заданного микроклимата в жилых и офисных помещениях: обеспечение комфортного пребывания людей;
  • обеспечение необходимых параметров воздуха на складах и в хранилищах: например, архивы, музеи или овощебазы;
  • сохранение заданной влажностной среды при работе с биологическими объектами: инкубаторы, лаборатории, медицинские учреждения;
  • обеспечение климатических условий на производстве сухих смесей или с применением чувствительной к влажности технике;
  • контроль в котельных или водоочистительных станциях: предотвращение образования конденсата;
  • соблюдение гигиенических норм в любых помещениях: высокая влажность способствует развитию плесени и грибка.

Книги по электронике

Эта книга является логическим продолжением первой книги издательств «Ремонт и Сервис 21» и «СОЛОН-ПРЕСС» (серия РЕМОНТ, выпуск 93) по теме программного ремонта сотовых телефонов.

В этом издании приводятся материалы по инженерному программированию и ремонту более 120 моделей телефонов SAMSUNG и около 100 — MOTOROLA.

В книге рассматриваются программные пакеты, которые широко распространены как среди профессионалов, так и начинающих.

Ссылка на основную публикацию
Adblock
detector