Из этилена получить ацетилен

Из этилена получить ацетилен Из этилена получить ацетилен Из этилена получить ацетилен

Ацетилен С2Н2 образуется при нагревании простейших углеводородов — метана, этана и этилена — до высоких температур, а также при сухой перегонке многих органических веществ. Он является постоянной составной частью светильного газа каменноугольного происхождения. Ацетилен был открыт в 1836 г. Дэви; подробному исследованию ацетилен и его соединения подверг Бертело (1860). Исторически очень большое значение имел произведенный Бертело синтез ацетилена из элементов, так как это был первый прямой синтез простейшего углеводорода. Бертело показал, что если создать электрическую дугу между угольными электродами в атмосфере водорода, то последний соединяется с углеродом. При температуре около 2500° С (как оказалось впоследствии, реакция начинается выше 1700° С) образуется 3,7% ацетилена, примерно 1,2% метана и следы этана. До недавнего времени основным источником получения ацетилена являлся производимый в громадных количествах ацетиленид кальция С2Са строения

называемый обычно карбидом кальция. Действием на него воды получается ацетилен:

Из этилена получить ацетилен

Эта реакция была открыта Вёлером еще в 1862 г., но практически она была использована лишь тридцать лет спустя.

Карбид кальция получается сплавлением негашеной извести с углем в электрической печи:

Из этилена получить ацетилен

Карбид кальция в чистом виде — белое вещество, совершенно не обладающее взрывчатыми свойствами, которыми отличается большая часть металлических производных ацетилена.

В настоящее время ацетилен получается в промышленности также из парафиновых углеводородов (метана, этана, бутана) или легких нефтяных погонов.

Основным условием образования ацетилена из метана является кратковременное, исчисляемое долями секунды пребывание исходного углеводорода в реакционной зоне при высокой температуре (1400—1600°С) и последующее резкое охлаждение газовой смеси.

Необходимая для протекания реакции высокая температура может быть создана электрической дугой (в этом случае процесс называется электрокрекингом) или сжиганием части исходного или какого-либо другого углеводорода в кислородном или воздушном пламени (процесс, называемый термоокислительным пиролизом).

Во всех случаях в результате реакции образуется сложная газовая смесь, содержащая наряду с ацетиленом непрореагировавшие исходные углеводороды, этилен, водород, высшие ацетиленовые углеводороды, сажу и другие соединения. Чистый ацетилен выделяется обычно из этой смеси в результате серии последовательных операций с помощью селективных растворителей.

Хотя суммарное уравнение этой реакции очень простое

Из этилена получить ацетилен

однако механизм ее сложен и до сих пор неполностью выяснен. Несомненно, что она является радикальной цепной реакцией. Вероятнее всего эта цепь развивается так:

Из этилена получить ацетилен

Этан превращается в этилен, а последний дает ацетилен. Не исключено и возникновение радикалов СН•, соединяющихся с образованием ацетилена.

Ацетилен образуется из элементов с большим поглощением тепла (—58 ккал/моль), поэтому при его сжигании выделяется громадное количество тепла (313 ккал/моль).

Это является причиной чрезвычайной огнеопасности его смесей с воздухом; к тому же пределы взрываемости этих смесей весьма широки — от 3 до 82% ацетилена, тогда как смеси воздуха со светильным газом взрывают лишь при содержании от 5 до 28% светильного газа.

Как соединение эндотермическое ацетилен является веществом взрывчатым, но при атмосферном давлении он не взрывает без детонатора. При повышенном же давлении, и особенно в жидком или твердом состоянии, он взрывает чрезвычайно легко. Сильно взрывчаты многие металлические производные ацетилена, особенно серебряные, ртутные и медные.

Ацетилен обладает наркотическими свойствами.

Смесь ацетилена с воздухом горит ярким пламенем. Когда ацетилен сгорает в смеси с вдуваемым в пламя кислородом, развивается температура, при которой легко могут быть расплавлены многие металлы. Этим пользуются для сварки метал. лов (автогенная сварка).

При помощи узкого ацетилено-кислородного пламени можно разрезать стальные балки и другие массивные стальные предметы. В месте прикосновения пламени металл окисляется, а получающиеся окислы плавятся.

Требуемый для автогенной сварки ацетилен получают из карбида на месте применения или доставляют в стальных баллонах, где он содержится растворенным в ацетоне под давлением 12—15 ат.

Баллон заполняют пористой массой, адсорбирующей раствор ацетилена; в этих условиях ацетон растворяет около 300 объемов ацетилена. Попытки хранить в баллонах жидкий ацетилен были оставлены вследствие ряда происшедших взрывов.

Кислород окисляет ацетилен при 300° С с образованием формальдегида и окиси углерода; вероятно, промежуточно образуется кетен:

Из этилена получить ацетилен

Ацетилен, получение, свойства, химические реакции

Из этилена получить ацетиленИз этилена получить ацетиленИз этилена получить ацетиленИз этилена получить ацетиленИз этилена получить ацетилен

  • Ацетилен, C2H2 – органическое вещество класса алкинов, непредельный углеводород.
  • Ацетилен, формула, газ, характеристики
  • Физические свойства ацетилена
  • Химические свойства ацетилена
  • Получение ацетилена в промышленности и лаборатории
  • Химические реакции – уравнения получения ацетилена
  • Применение и использование ацетилена
  • Взрывоопасность ацетилена и безопасность при обращении с ним

Ацетилен, формула, газ, характеристики:

Ацетилен (также – этин) – органическое вещество класса алкинов, непредельный углеводород, состоящий из двух атомов углерода и двух атомов водорода.

Химическая формула ацетилена C2H2. Структурная формула ацетилена СH≡CH. Изомеров не имеет.

Строение молекулы ацетилена:

Из этилена получить ацетилен

Ацетилен имеет тройную связь между атомами углерода.

Ацетилен – бесцветный газ, без вкуса и запаха. Однако технический ацетилен содержит примеси – фосфористый водород, сероводород и пр., которые придают ему резкий запах.

Легче воздуха. Плотность по сравнению с плотностью воздуха 0,9.

Очень горючий газ. Пожаро- и взрывоопасен.

Ацетилен относится к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей.

Смеси ацетилена с воздухом взрывоопасны в очень широком диапазоне концентраций. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

Ацетилен требует большой осторожности при обращении. Может взрываться от удара, при нагреве до 500 °C или при сжатии выше 0,2 МПа при комнатной температуре.

Струя ацетилена, выпущенная на открытый воздух, может загореться от малейшей искры, в том числе от разряда статического электричества с пальца руки.

Для хранения ацетилена используются специальные баллоны, заполненные пористым материалом, пропитанным ацетоном. В них ацетилен хранится в виде раствора с ацетоном.

Малорастворим в воде. Очень хорошо растворяется в ацетоне. Хорошо растворяется в других органических веществах (бензине, бензоле и пр.)

Ацетилен обладает незначительным токсическим действием.

Физические свойства ацетилена:

Наименование параметра: Значение:
Цвет без цвета
Запах без запаха
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м3 1,0896
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м3 1,173
Температура плавления, °C -80,8
Температура кипения, °C -80,55
Тройная точка, °C 335
Температура самовоспламенения, °C 335
Давление самовоспламенения, МПа 0,14-0,16
Критическая температура*, °C 35,94
Критическое давление, МПа 6,26
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 2,1 до 100
Удельная теплота сгорания, МДж/кг 56,9
Температура пламени, °C 3150-3200
Молярная масса, г/моль 26,038

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства ацетилена:

Химические свойства ацетилена аналогичны свойствам других представителей ряда алкинов. Поэтому для него характерны следующие химические реакции:

  1. 1. галогенирование ацетилена:
  1. СH≡CH + Br2 → CHBr=CHBr  (1,2-дибромэтен);
  2. CHBr=CHBr + Br2 → CHBr2-CHBr2   (1,1,2,2-тетрабромэтан).
  3. Реакция протекает стадийно с образованием производных алканов.
  4. В ходе данной реакции ацетилен обесцвечивает бромную воду.
  1. 2. гидрогалогенирование ацетилена:

СH≡CH + HBr → CH2=CHBr  (бромэтен).

  1. 3. гидратация ацетилена (реакция Михаила Григорьевича Кучерова, 1881 г.):
Читайте также:  Сколько киловатт потребляет сварочный инвертор

CH≡CH + H2O  →  [CH2=CH-OH] (енол) → CH3-CH=O (уксусный  альдегид ) (kat = HgSO4, Hg(NO3)2).

  1. 4. тримеризация ацетилена (реакция Николая Дмитриевича Зелинского, 1927 г.):

3СH≡CH → C6H6 (бензол) (kat = активированный уголь, to = 450-500 оС).

Реакция тримеризации ацетилена является частным случаем реакции полимеризации ацетилена и происходит при пропускании ацетилена над активированным углем при температуре 450-500 оС.

  1. 5. димеризация ацетилена:
  • СH≡CH + СH≡CH → CH2=CH-С≡CH (винилацетилен) (kat = водный раствор CuCl и NH4Cl).
  • Реакция димеризации ацетилена является частным случаем реакции полимеризации ацетилена.
  • 2СH≡CH + 5О2 → 4CО2 + 2H2О.
  • Ацетилен горит белым ярким пламенем.
  • Протекание реакции и её продукты определяются средой, в которой она протекает.
  1. 8. восстановления ацетилена:

СH≡CH + Н2 → C2H4 (этилен) (kat = Ni, Pd или Pt, повышенная to);

СH≡CH + 2Н2 → C2H6 (этан) (kat = Ni, Pd или Pt, повышенная to).

Получение ацетилена в промышленности и лаборатории. Химические реакции – уравнения получения ацетилена:

Ацетилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. действия воды на карбид кальция:

CаС2 + H2О → Cа(ОH)2 + C2H2.

  1. 2. дегидрирования метана:

2CH4  → C2H2 + 3H2 (при to > 1500 оС).

  1. 3. дегидрирования этилена:
  1. CH2=CH2→ СH≡CH +H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 400-600 °C).
  2. Ацетилен в промышленности получают следующими способами и методами:
  3. Сначала получают известь из карбоната кальция.

CаСО3 → CаО + CO2. (to = 900-1200 оС).

Затем получают карбид кальция, сплавляя оксид кальция и кокс в электропечах при температуре 2500-3000 °С.

CаО + 3С → CаС2 + CO. (to = 2500-3000 оС).

  • Далее карбид кальция обрабатывают водой по известной реакции.
  • CаС2 + H2О → Cа(ОH)2 + C2H2.
  • В итоге получается ацетилен высокой чистоты – 99,9 %.
  1. 5. высокотемпературным крекингом метана:

Высокотемпературный крекинг метана осуществляется по известной реакции дегидирования метана в электродуговых печах при температуре 2000-3000 °С и напряжении между электродами 1000 В. Выход ацетилена составляет 50 %.

  1. 6. различными способами пиролиза метана:

Разновидностью высокотемпературного крекинга метана являются регенеративный пиролиз (Вульф-процесс), окислительный пиролиз (Заксе-процесс или BASF-процесс), гомогенный пиролиз, пиролиз в среде низкотемпературной плазмы.

Так, в ходе регенеративного пиролиза сначала сжигают метан и разогревают насадку печи до 1350-1400 °С. Затем через разогретую насадку на доли секунды пропускают метан, в результате образуется ацетилен.

В ходе окислительного пиролиза метан смешивают с кислородом и сжигают. Образующееся тепло служит для нагрева остатка метана до 1600 °С, который дегидрирует в ацетилен. Выход ацетилена составляет 30-32 %.

В ходе гомогенного пиролиза метан и кислород сжигают в печи при температуре 2000 °С. Затем предварительно нагретый до 600 °С остаток метана пропускают через печь, в результате образуется ацетилен.

При пиролизе в среде низкотемпературной плазмы метан нагревают струей ионизированного газа (аргона или водорода).

Применение и использование ацетилена:

  1. – как сырье в химической промышленности для производства уксусной кислоты, этилового спирта, растворителей, пластических масс, синтетических каучуков, ароматических углеводородов,
  2. – для газовой сварки и резки металлов,
  3. – для получения технического углерода,
  4. – как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды.

Взрывоопасность ацетилена и безопасность при обращении с ним:

  • Ацетилен обладает взрывоопасными свойствами.
  • Поэтому обращение с ацетиленом требует строгого соблюдения правил техники безопасности.
  • Ацетилен горит и взрывается даже в отсутствии кислорода и других окислителей.
  • Смеси ацетилена с воздухом взрывоопасны в очень широком диапазоне концентраций.
  • Струя ацетилена, выпущенная на открытый воздух, может загореться от малейшей искры, в том числе от разряда статического электричества с пальца руки.

Взрываемость ацетилена зависит от множества факторов: давления, температуры, чистоты ацетилена, содержания в нем влаги, наличия катализаторов и пр. веществ и ряда других причин.

Температура самовоспламенения ацетилена при нормальном – атмосферном давлении колеблется в пределах 500-600 °C.

  При повышении давления существенно уменьшается температура самовоспламенения ацетилена. Так, при давлении 2 кгс/см2 (0,2 МПа, 1,935682 атм.) температура самовоспламенения ацетилена равна 630 °C.

А при давлении 22 кгс/см2 (2,2 МПа, 21,292502 атм.) температура самовоспламенения ацетилена равна 350 °С.

Присутствие в ацетилене частиц различных веществ увеличивают поверхность его контакта и тем самым снижает температуру самовоспламенения при атмосферном давлении.

Например, активированный уголь снижает температуру самовоспламенения ацетилена до 400 °С, гидрат оксида железа (ржавчина) – до 280-300 °С, железная стружка – до 520 °С, латунная стружка – до 500-520 °С, карбид кальция – до 500 °С, оксид алюминия – до 490 °С, медная стружка – 460 °С, оксид железа – 280 °С, оксид меди – до 250 °С.

Взрывоопасность ацетилена уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

При определенных условиях ацетилен реагирует с медью, серебром и ртутью образуя взрывоопасные соединения. Поэтому при изготовлении ацетиленового оборудования (например, вентилей баллонов) запрещается применять сплавы, содержащие более 70 % Cu.

Для хранения и перевозки ацетилена используются специальные стальные баллоны белого цвета (с красной надписью «А»), заполненные инертным пористым материалом (например, древесным углём). При этом ацетилен хранится и перевозится в указанных баллонах в виде раствора ацетилена в ацетоне под давлением 1,5-2,5 МПа.

Примечание: © Фото //www.pexels.com, //pixabay.com

карта сайта

как получить ацетилен реакция ацетилен этен 1 2 вещество кислород водород связь является углекислый газ бромная вода
уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение ацетилена
напишите уравнение реакций ацетилен

Ацетилен: свойства и все характеристики

Из этилена получить ацетилен Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Из этилена получить ацетилен Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Из этилена получить ацетилен

Мало растворим в воде и очень хорошо в ацетоне. В виде ацетонового раствора его хранят в стальных баллонах, заполненных каким-нибудь инертным пористым материалом. Смеси ацетилена с воздухом взрывоопасны.

Из этилена получить ацетилен

Рис. 1. Строение молекулы ацетилена.

Таблица 1. Физические свойства ацетилена.

Молекулярная формула СH≡CH (C2H2)
Молярная масса, г/моль 26
Плотность, г/л 1,0896
Температура плавления, oС -80,8
Температура кипения, oС -83,6

Получение ацетилена

  • Выделяют промышленные и лабораторные способы получения ацетилена. Так, в промышленности ацетилен получают путем высокотемпературного крекинга метана:
  • 2CH4→ СH≡CH +3H2.
  • В лаборатории ацетилен получают гидролизом карбида кальция:
  • CaC2 +2H2O = Ca(OH)2 + C2H2.
  • Кроме вышеперечисленных реакций, для получения ацетилена используют реакции дегидрирования алканов и алкенов:
  • CH3-CH3→ СH≡CH +2H2;
  • CH2=CH2→ СH≡CH +H2.

Химические свойства ацетилена

  1. Ацетилен вступает в реакции присоединения, протекающие по нуклеофильному механизму, такие как:
  2. — гидрирование
  3. СH≡CH +H2O→ [CH2=CH-OH] → CH3-CH=O (H2SO4 (18%), t = 90oC);
  4. — галогенирование
  5. СH≡CH +Br2→CHBr=CHBr + Br2 →CHBr2-CHBr2;
  6. — гидрогалогенирование
  7. СH≡CH +HСl→ CH2=CHCl + HCl → CH3-CHCl2.
  8. Кроме этого ацетилен способен образовывать соли при взаимодействии с активными металлами (1) и оксидом серебра (2):
  9. 2СH≡CH +2Na→2 СH≡C-Na + H2 (1);
  10. СH≡CH + Ag2O→ Ag- С≡C-Ag↓ + H2O (2).
  11. Он способен тримеризоваться:
  12. 3C2H2→ C6H6 (t = 600oC, kat = Cactive).
Читайте также:  Установка манометров на трубопроводах гост

Применение ацетилена

Ацетилен является исходным продуктом для многих важнейших химических производств. Например, из ацетилена получают различные галогенпроизводные, такие как тетрахлорэтан и трихлорэтилен, являющиеся хорошими растворителями, а также винилхлорид, служащий мономером для получения поливинилхлорида. Кроме этого ацетилен используется для получения синтетических каучуков.

Примеры решения задач

Из этилена получить ацетилен

Понравился сайт? Расскажи друзьям!

В помощь учащимся. получение этилена и ацетилена. 9 класс

Из этилена получить ацетилен
           Получение
этилена.

     1. Крекинг алканов (метана, t° около
1500°С) – промышленный         способ

                                         2СН4 →
СН2=СН2+ 2Н2↑ 
      2. Дегидратация
спиртов при повышенной температуре (выше 140° C) в присутствии
водоотнимающих реагентов – получение в лаборатории.

Получаем этилен нагреванием
смеси этилового спирта с концентрированной серной кислотой в соотношении 1:3. Серная
кислота играет роль водоотнимающего средства. При нагревании смеси выделяется
этилен.

                                  СН3-СН2-ОН → СН2=СН2
+ Н2О

                                                                            этанол               этилен

 

Реакции
элиминирования идут в соответствии с правилом Зайцева: 
Отщепление атома водорода
в реакциях дегидрогалогенирования и дегидратации происходит преимущественно от
наименее гидрогенизированного атома углерода. Собираем этилен в цилиндр способом
вытеснения воды (этилен – бесцветный газ, малорастворимый в воде, немного легче
воздуха: Mr (воздуха)=29, а Mr (С2Н4)=28). Затем поджигаем
полученный газ. Этилен сгорает на воздухе немного коптящим пламенем с
образованием углекислого газа и воды.    С2Н4  + 3О2  = 2СО2 + 2Н2О

     3. Дегалогенирование дигалогеналканов,
имеющих атомы галогена у соседних атомов углерода, при действии активных
металлов:

                               СН2Br- СН2Br + Mg → СН2=СН2
+ MgBr2

Из этилена получить ацетилен

 Получение
ацетилена.

  •  1. Пиролиз алканов (метана, t° >
    1500°С) – промышленный способ
  •                                           2СН4 →
    СН≡СН+ 3Н2↑
  •  2. Пиролиз
    этана или этилена – промышленный способ:
  •                                          СН3-СН3 → СН2=СН2 + Н2↑
  •                                          СН2=СН2
    → СН≡СН+ Н2↑
  •  3. Гидролиз карбида кальция – получение
    в лаборатории: 

Ацетилен в лаборатории получают действием воды на
карбид кальция. Карбид кальция очень энергично взаимодействует с водой. Для
замедления реакции на практике можно использовать насыщенный раствор поваренной
соли.

В этом случае реакция протекает более спокойно. Прильем из
капельной воронки раствор хлорида натрия в колбу с карбидом кальция.
Наблюдаем  выделение газа. Это —
ацетилен.

Вторым продуктом реакции является гидроксид кальция.

                                        СаС2
+ 2Н2О → С2Н2 + Са(ОН)2

Карбид
кальция образуется при нагревании смеси оксида кальция СаО (жженой извести) и
кокса до 2500°С:

                                             СаО + 3С → СаС2
+ СО↑

Вследствие
большой энергоемкости этот метод экономически менее выгоден.

Автор статьи: Давыденко О.В.

Ацетилен | это… Что такое Ацетилен?

Ацетиле́н (по ИЮПАК — этин) — ненасыщенный углеводород C2H2. Имеет тройную связь между атомами углерода, принадлежит к классу алкинов.

Физические свойства

При нормальных условиях — бесцветный газ, малорастворим в воде, легче воздуха. Температура кипения −83,8 °C.

При сжатии разлагается со взрывом, хранят в баллонах, заполненных кизельгуром или активированным углем, пропитанным ацетоном, в котором ацетилен растворяется под давлением в больших количествах.

Взрывоопасный. Нельзя выпускать на открытый воздух. C2H2 обнаружен на Уране и Нептуне.

Химические свойства

Ацетилено-кислородное пламя(температура «ядра» 2621 °C)

Для ацетилена (этина) характерны реакции присоединения:

HC≡CH + Cl2 -> СlСН=СНСl

Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекула высокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м³.

При сгорании в кислороде температура пламени достигает 3150 °C. Ацетилен может полимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в 400 °C.

Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так ацетилен вытесняет метан из эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра и одновалентной меди.

  • Ацетилен обесцвечивает бромную воду и раствор перманганата калия.
  • Основные химические реакции ацетилена (реакции присоединения, сводная таблица 1.):
  • Основные химические реакции ацетилена (реакции присоединения, димеризации, полимеризации, цикломеризации, сводная таблица 2.):

История

Открыт в 1836 г. Э. Дэви, синтезирован из угля и водорода (дуговой разряд между двумя угольными электродами в атмосфере водорода) М. Бертло (1862 г.).

Способ производства

В лаборатории ацетилен получают действием воды на карбид кальция см. видео данного процесса (Ф. Вёлер, 1862 г.),

  1. CaC2+ 2 Н2О = С2Н2↑ + Са(ОН)2
  2. а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:
  3. 2СН4 = С2Н2↑ +3Н2↑

Применение

Ацетиленовая лампа

Ацетилен используют:

  • для сварки и резки металлов,
  • как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (см. карбидная лампа),
  • в производстве взрывчатых веществ (см. ацетилениды),
  • для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.
  • для получения технического углерода
  • в атомно-абсорбционной спектрофотометрии при пламенной атомизации
  • в ракетных двигателях(вместе с аммиаком)[2]

Безопасность

Поскольку ацетилен растворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры.

Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест».

Ацетилен — газ с самой высокой температурой пламени!

Ацетилен химическое соединение углерода и водорода. Ацетилен легче воздуха, 1 м3 при 20°С и 760 мм рт. ст. имеет массу 1,091 кг/м3. Плотность по отношению к воздуху 0,9. Критическая температура 35,9°С и критическое давление 61,6 кгс/см2.

При сгорании с кислородом он дает пламя с наиболее высокой температурой, которая достигает 3200°С, что объясняется его эндотермичностью (другие углеводороды экзотермичны, т. е. при распаде поглощают тепло). Химическая формула — C2H2, структурная формула Н-С=С-Н.

Содержание

При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает, образуя кристаллы плотностью 0,76 кг/м3.

Жидкий и твердый ацетилен легко взрывается от трения, механического или гидравлического удара и действия детонатора.

Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом из-за содержащихся в нем примесей в виде сернистого водорода, аммиака, фосфористого водорода и др.

Читайте также:  Обозначение компаратора на схеме

История получения ацетилена

В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:

… При попытке получить калий, сильно нагревая смесь прокаленного винного камня с древесным углем в большом железном сосуде, я получил черное вещество, которое легко разлагалось водой и образовывало газ, оказавшийся новым соединением углерода и водорода. Этот газ горит на воздухе ярким пламенем, более густым и светящимся даже сильнее, чем пламя маслородного газа (этилена). Если подача воздуха ограничена, горение сопровождается обильным отложением сажи. В контакте с хлором газ мгновенно взрывается, причем взрыв сопровождается большим красным пламенем и значительными отложениями сажи… Дистиллированная вода поглощает около одного объема нового газа, однако при нагревании раствора газ выделяется, по-видимому, не изменяясь… Для полного сгорания нового газа необходимо 2,5 объема кислорода. При этом образуются два объема углекислого газа и вода, которые являются единственными продуктами горения… Газ содержит столько же углерода, что и маслородный газ, но вдвое меньше водорода… Он удивительно подойдет для целей искусственного освещения, если только его удастся дешево получать.

Дэви получил карбид калия К2С2 и обработал его водой.

В статье о получении карбида кальция мы писали о том, что его «двууглеродистый водород» впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.

Получение ацетилена

Получение ацетилена производится двумя основными способами:

А вот какой способ сейчас более распространён можно узнать из статьи о получении ацетилена.  

Применение ацетилена

Применение ацетилена при газовой сварке обусловлено тем, что у него самая большая температуры горения. Но он также нашел свое применение в химической отрасли для получения пластмасс, синтетического каучука, уксусной кислоты и растворителей. Более подробный ответ по данному вопросу можно найти в статье о применении ацетилена.

Горение ацетилена

Горение ацетилена происходит по реакции: С2Н2 + 2,5O2=2СO2 + Н2O + Q1

Для полного сгорания 1 м3 ацетилена по вышеуказанной реакции теоретически требуется 2,5 м3 кислорода или = 11,905 м3 воздуха. При этом выделяется тепло Q1 ? 312 ккал/моль. Высшая теплотворная способность 1 м3 С2Н2 при 0°C и 760 мм рт. ст., определенная в газовом калориметре, составляет QВ = 14000 ккал/м3 (58660 кДж/м3), что соответствует расчетной:

312?1,1709?1000/26,036 = 14000 ккал/м3

  • Низшая теплотворная способность при тех же условиях может быть принята QH = 13500 ккал/м3 (55890 кДж/м3).
  • Практически для горения в горелках при восстановительном пламени в горелку подается не 2,5 м3 кислорода на 1 м3 ацетилена, а всего лишь от 1 до 1,2 м3, что примерно соответствует неполному сгоранию по реакции:
  • С2H2 + О2 = 2СО + H2 + Q2

где Q2 ? 60 ккал/моль или 2300 ккал/кгС2H2. Остальные 1,5-1,3 м3 кислорода поступают в пламя из окружающего воздуха, в результате чего в наружной оболочке пламени протекает реакция:

  1. 2СО + H2 + 1,5О2 = 2СO2 + H2O + Q3
  2. Реакция неполного горения ацетилена протекает на внешней оболочке светящегося внутреннего конуса пламени, причем под влиянием высокой температуры на внутренней поверхности конуса происходит распад С2Н2 на его составляющие по реакции:
  3. С2H2 = 2С + H2 + Q4

где Q4?54 ккал/моль или 2070 ккал/кг С2H2.

Таким образом, общая полезная теплопроизводительность пламени применительно к сварочным процессам представляет собой сумму тепла, выделяемого при распаде С2Н2, и тепла, выделяемого при неполном сгорании, что составляет Q4 + Q2 = 2070 + 2300 = 4370 ккал/кг или 4370?1,1709 ? 5120 ккал/м3.

При содержании С2Н2 в смеси около 45% (т. е. при отношении кислорода к ацетилену, примерно равном 1,25) достигается максимальная температура горения ацетилена, которая составляет 3200°С.

Следовательно, температура пламени изменяется в зависимости от состава смеси.

При содержании 27% С2Н2 достигается максимальная скорость воспламенения ацетилено-кислородной смеси, которая равна 13,5 м/сек.

Следовательно, в зависимости от состава смеси также изменяется и скорость воспламенения.

Данные зависимостей скорости воспламенения и температуры пламени и от содержания в ней ацетилена представлены ниже в таблице.

Содержание С2Н2 в смеси в объемных процентах

Максимальная температура горения ацетилена, °С

Скорость воспламенения смеси, м/сек

12 15 20 25 27 30 32 35 40 45 50 55
2920 2940 2960 2970 2990 3010 3060 3140 3200 3070 2840
8,0 10,0 11,8 13,3 13,5 13,1 12,5 11,3 9,3 7,8 6,7

Необходимо понимать, что полное сгорание ацетилено-воздушной смеси достигается при наличии в ней не более 1?100/(1+11,905)=7,75% ацетилена (так называемая стехиометрическая смесь). При этом продуктами реакции являются только углекислый газ (СО2) и вода (H2О). При содержании ацетилена более 17,37% в виде сажи выделяется свободный углерод.

С увеличение процентного содержание ацетила выделение сажи также возрастает (коптящее пламя), а при 81% С2Н2 — процесс горения прекращается или не возникает.

Хранение и транспортировка ацетилена

Ацетилен выпускают по ГОСТ 5457 растворенным и газообразным. Хранят и транспортируют его в растворенном состоянии в специальных стальных баллонах по ГОСТ 949, заполненных пористой, пропитанной ацетоном массой. Ацетилен, растворенный в ацетоне не склонен к взрывчатому распаду.

Баллоны окрашены в серый цвет и надписью красными буквами «АЦЕТИЛЕН» на верхней цилиндрической части.

Максимальное давление ацетилена при заполнении баллона составляет 2,5 МПа (25 кгс/см2), при отстое и охлаждении баллона до 20°С оно снижается до 1,9 МПа (19 кгс/см2). При этом давлении в 40-литровый баллон вмещается 5-5,8 кг С2Н2 по массе (4,6-5,3 м3 газа при 20°С и 760 мм рт. ст.).

Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры следующим образом:

Температура, °С

Давление, МПа

-5 5 10 15 20 30 40
1,3 1,4 14 1,7 1,8 12 2,4 3,0

Другие требования техники безопасности можно узнать из статьи о классе опасности и мерах безопасности при работе с ацетиленом

Физические свойства ацетилена

Физические свойства ацетилена представлены в таблицах ниже.

Коэффициенты перевода объема и массы С2Н2 при Т=15°С и Р=0,1 МПа

Масса, кг Объем газа, м3
1,109 1
1 0,909

Коэффициенты перевода объема и массы С2Н2 при Т=0°С и Р=0,1 МПа

Масса, кг Объем газа, м3
1,176 1
1 0,850

Ацетилен в баллоне

Наименование Объем баллона, л Масса газа в баллоне, кг Объем газа (м3) при Т=15°С, Р=0,1 МПа
С2Н2 40 5 4,545

Благодаря информации в таблице можно дать ответы на часто задаваемые вопросы:

  • Сколько ацетилена в одном баллоне?Ответ: в 40 л баллоне 5 кг или 4,545 м3 ацетилена
  • Сколько весит баллон ацетилена?Ответ: 58,5 кг — масса пустого баллона из углеродистой стали согласно ГОСТ 949; 18-20 кг — масса пористого материала, пропитанного ацетоном; 5,0 — кг масса С2Н2 в баллоне;Итого: 58,5 + 20,0 + 5,0= 83,5 кг вес баллона с ацетиленом.
  • Сколько м3 ацетилена в баллонеОтвет: 4,545 м3
Ссылка на основную публикацию
Adblock
detector