Из каких основных частей состоит трансформатор

  • Что называется трансформатором?
  • Трансформатором называется электромагнитное устройство, предназначенное для преобразования входного напряжения, изменяющегося во времени, в ему подобное с положительным коэффициентом подобия.
  • С помощью трансформатора можно или увеличить напряжение вторичного тока или уменьшить.
  • Из каких частей состоит трансформатор?

Трансформатор (рис.

20) состоит из замкнутого сердечника (магнитопровода), набранного из листов электротехнической стали толщиной 0,35 — 0,5 мм, и обмоток, намотанных из медных изолированных проводов. Части сердечника, на которых находятся обмотки, называются стержнями, а части без обмоток — ярмами.

Обмотка, к которой подводится электроэнергия, называется первичной, а обмотка, от которой электроэнергия отводится потребителю,— вторичной. Первичная и вторичная обмотки трансформатора электрически изолированы друг от друга (кроме автотрансформатора).

Величины, относящиеся к первичной обмотке (число витков обмотки, мощность, напряжение, ток и т. д.), называются первичными, а величины, относящиеся ко вторичной обмотке, — вторичными.

  1. Величина напряжения на концах первичной обмотки трансформатора так относится к величине напряжения на концах вторичной обмотки, как число витков первичной обмотки относится к числу витков вторичной обмотки.
  2. Что происходит в обмотках трансформатора при его работе?
  3. При работе трансформатора в первичной обмотке происходит преобразование электрической энергии, потребляемой из сети, в энергию магнитного поля, а во вторичной обмотке в это время энергия магнитного поля преобразуется в электрическую энергию.

Однако в действительности такое равенство не наблюдается, так как из-за потерь энергии на нагрев обмоток и стержней трансформатора коэффициент полезного действия его никогда не бывает равным единице. Правда, при нормальном режиме работы потери незначительны и коэффициент полезного действия его очень высок — доходит до 0,98 — 0,99.

Из каких основных частей состоит трансформатор

Основные элементы трансформаторов

Из каких основных частей состоит трансформаторИз каких основных частей состоит трансформатор

Основные части трансформатора — это магнитопровод и обмотки. Магнитопровод трансформатора выполняют из листовой электротехнической стали. Перед сборкой листы с двух сторон изолируют (в основном лаком). Такая конструкция магнитопровода дает возможность в значительной степени ослабить в нем вихревые токи. Часть магнитопровода, на которой располагают обмотки, называют стержнем.

В двухфазных стержневых трансформаторах имеются два стержня (в трехфазных – три) и соединяющих их два ярма.

Из каких основных частей состоит трансформатор

Броневые трансформаторы имеют разветвленный магнитопровод с одним стержнем и ярмами, частично прикрывающими («бронирующими») обмотки.

Читать также:  Вентилятор для котлов отопления улитка

Стержневая конструкция имеет наибольшее распространение, особенно в трансформаторах большой и средней мощности. Достоинства этой конструкции — простота изоляции обмоток, лучшие условия охлаждения, простота ремонта.

Трехфазные трансформаторы обычно выполняют на магнитопроводе стержневого типа с тремя стержнями.

Из каких основных частей состоит трансформатор

В трансформаторах большой мощности применяют бронестержневую конструкцию магнитопровода, которая хотя и требует несколько повышенного расхода электротехнической стали, но позволяет уменьшить высоту магнитопровода (НВС

Трансформатор – это электрическая статическая машина, предназначаемая для изменения характеристик напряжения или тока. Название говорящее – трансформировать – значит преобразовывать. Впрочем, трансформации подвергаются только силовые характеристики тока, частота и форма при этом не изменяются.

Из каких основных частей состоит трансформатор

Состоит эта машина из нескольких основных частей:

  1. Корпус или магнитопровод – представляет собой сердечник из металлических пластинок, плотно сжатых между собой, изготавливаются из мягкой трансформаторной стали, а в отдельных случаях, из специального состава ферромагнетика.
  2. Первичной обмотки – катушка, размещенная на магнитопроводе, по ней пропускается ток, характеристики которого нужно изменить;
  3. Вторичная обмотка – также катушка, но с проводами других характеристик, в которой индуцируется ток с другими, заранее рассчитанными параметрами.

Принцип работы и область применения

Из каких основных частей состоит трансформатор

В электромагнитную схему трансформатора входят две обмотки и замкнутый сердечник, выполняемый из трансформаторных листовых материалов. Ток, проходящий по первичной катушке, возбуждает в сердечнике электромагнитную индукцию.

Пересекая провода вторичной катушки, она индуцирует в ней ток, соответствующий параметрам вторичной обмотки. Таких катушек может быть несколько с разными характеристиками (количество витков, сечение провода, материал), соответственно и результат индукции будет различным.

Трансформаторы используются в энергообеспечении народного хозяйства в различных областях:

  1. Для передачи и преобразования электроэнергии:
  2. Передача электроэнергии на далекие расстояния и ее разделение между пользователями. Передача электричества по сетям непосредственно после генерации связана с большими его потерями. Генераторы дают напряжение 6-24 кВ, а передача, во избежание потерь, осуществляется при напряжении от 110 до 750 кВ. Для получения таких характеристик применяются повышающие трансформаторы.
  3. Когда электроэнергия по ЛЭП доходит до потребителя, она поступает на понижающие трансформаторные станции, где производится понижение напряжения и мощности в соответствии с потребностями для группы потребителей, а затем распределяется на другие трансформаторные подстанции, например, районного значения. Дальнейшее распределение энергии зависит от потребности того или иного объекта или их группы.
  4. Для правильного включения вентилей в преобразователях, что позволяет согласовать величину напряжения на выходах и входах устройства. Их название – преобразовательные.
  5. Для выполнения различных операций технологических процессов, например – сварки, в электролизных производствах, в обеспечении работы электросталеплавильных агрегатов и других.
  6. Обеспечение работы схем и приборов радиоаппаратуры, электроники, средств связи, бытового электрооборудования и многого прочего.
  7. Для подключения электроизмерительных приборов и отдельных аппаратов (реле, коммандеры и др.) в цепи высокого напряжения для обеспечения измерений и электробезопасности объектов. Такие трансформаторы образуют отдельный класс – измерительные.

Читать также:  Описать общий и материальный износ одежды

Устройство

Магнитная схема

Конфигурация магнитной схемы разделяет эти устройства на три класса:

  • тороидальные;
  • броневые;
  • стержневые;

Стержень представляет собой ту часть магнитопровода, на которой размещены обмотки, остальная часть называется «ярмо». В виде стержневых изготавливаются трансформаторы большой и средней мощности.

Это связано также с более простой схемой охлаждения такой машины. Магнитопроводы обычно производятся из листовой электротехнической стали толщиной 0,25-0,5 мм. Листовые детали соединяются между собой электротехническим изолирующим лаком. Это делается для уменьшения влияния вихревых токов на работу магнитопровода.

Маломощные и микротрансформаторы обычно производят броневыми, поскольку они в изготовлении дешевле стержневых из-за меньшего числа катушек и технологичности изготовления.

Одним из преимуществ тороидальных трансформаторов является магнитная схема без зазоров. Этим обусловлено низкое магнитное сопротивление магнитопровода таких преобразователей.

Обмотки

В зависимости от конструкции, обмотки могут быть расположены последовательно. Эти называются дисковыми. Исполнение зависит от особенностей трансформатора и его назначения.

Мощные статические машины выделяют много тепла и нуждаются в интенсивном охлаждении.

Виды преобразователей

Силовой трансформатор

Из каких основных частей состоит трансформатор

Предназначается для изменения параметров потока электричества в сетях, используемых для потребления. Необходимость их использования связана с потребностью понижения мощности (до 760 кВ) подводящих сетей в потребительскую мощность городского хозяйства (220/380 В). Силовой преобразователь переменного тока предназначается для изменения силы тока прямым воздействием в сети.

Автотрансформатор

Из каких основных частей состоит трансформатор

Отличен от предыдущего тем, что обмотки в нем соединяются не только через индукционные потоки, но и непосредственно одна с другой. Вторичная обмотка имеет несколько выводов (но не менее трех), подключение к ним в различных комбинациях ведет к получению различного напряжения.

Преимуществом такой конструкции является повышенный КПД устройства, потому что изменению подвергается только часть энергии. Это эффективно при небольшом различии напряжений на входе и выходе.

Читать также:  Твердость полиуретана по шору

Несовершенство этих устройств состоит в том, что между обмотками нет изоляции. Применение оправдано при надежном заземлении в сетях до 115 кВ и небольшим коэффициентом трансформации – в пределах 3-4 раз. Габаритные размеры магнитопровода и обмоток у таких машин меньше, следовательно, они экономичнее в производстве.

Читайте также:  Специфика ортопедической вальгусной шины

Трансформатор напряжения

Этот вид преобразователя питается от соответствующего источника. Применяется обычно для изменения высокого напряжения на пониженное в цепях автоматики или релейной защиты. Использование связано с необходимостью ограждения низковольтных участков схем от повышенного напряжения.

Трансформаторы тока

Здесь первичная катушка получает питание от источника тока. Применяется для понижения тока в устройствах релейной защиты и измерителях. Вместе с тем, производится гальваническая развязка. Как правило, ток на вторичной катушке составляет величину 1А или 5А.

Первичную катушку включают в одну цепь с нагружением, подлежащем контролю, а к вторичной катушке подключаются приборы контроля, либо релейные устройства. Идеальный режим работы вторичной обмотки близок к короткому замыканию. Если происходит замыкание вторичной катушки, возникающее напряжение настолько велико, что повреждает подключенные к ней элементы.

Разделительные трансформаторы

Обмотки таких машин не связаны между собой. Такие преобразователи применяются для улучшения условий безопасности функционирования сетей при замыкании, срабатывает гальваническая развязка.

Импульсные преобразователи

Предназначаются для реформирования сигналов в виде коротких (до 10 миллисекунд) импульсов с максимальным сохранением их формы.

В основном применяется для передачи импульсов, характерных прямоугольной формой.

Как правило, главное требование к этому преобразователю – передача кратковременного импульса в максимально сохраненной форме, при этом, изменение его амплитуды и полярности несущественно.

Согласующие трансформаторы

Используются при согласовании нагрузок различных участков с максимальным сохранением формы сигнала. Вместе с тем, использование такого преобразователя дает гальваническую развязку разных участков электронных схем.

Пик-трансформатор

Машина, обеспечивающая изменение синусоидальных напряжений в импульсные. При этом, происходит изменение полярности в каждом полупериоде.

Сдвоенный дроссель

Конструктивно выполняется в виде преобразователя с одинаковыми обмотками. Учитывая индуктивное влияние катушек друг на друга, он заметно эффективнее обычного дросселя. Распространены как входные фильтры БП блоков питания в звуковых схемах.

Трансформатор в электрических цепях

Стандартный трансформатор является статическим электромагнитным устройством с двумя и более обмотками, индуктивно связанными между собой посредством магнитопровода.

Его основная функция заключается в преобразовании одного значения напряжения в другое, с сохранением одной и той же частоты. Трансформатор в электрических цепях применяется в самых различных областях.

Он используется для передачи электроэнергии, а также в электронных и радиотехнических схемах.

Что такое трансформатор

По своей сути, трансформатор является преобразователем электрического тока. Для изменения напряжения используется электромагнитная индукция.

Основные принципы работы данных устройств заключаются в следующем:

  • Электрический ток изменяется во времени и создает магнитное поле, подверженное аналогичным изменениям.
  • Измененный магнитный поток, проходящий через обмотку трансформатора, вызывает появление в ней электромагнитной индукции. Некоторые устройства с высокими или сверхвысокими частотами могут не иметь магнитопровода. В идеальном варианте не должно быть потерь электроэнергии, расходуемой на потоки рассеивания и нагрев обмоток.

Из каких основных частей состоит трансформатор

Трансформаторы могут работать в различных режимах:

  • Холостой ход. В данном случае вторичная цепь устройства разомкнута и ток по ней не проходит. Компенсация напряжения источника питания происходит за счет компенсации электродвижущей силы индукции в первичной обмотке.
  • Режим нагрузки. Вторичная цепь находится в замкнутом состоянии. В ней появляется ток, под действием которого в магнитопроводе возникает магнитный поток. Он действует в противоположном направлении относительно магнитного потока, возникающего в первичной обмотке. Равновесие ЭДС индукции с источником питания оказывается нарушенным. В результате, ток в первичной обмотке будет увеличиваться, пока значение магнитного потока не выйдет на прежний уровень. Это основной рабочий режим для любого трансформатора.
  • В режиме короткого замыкания вторичная цепь замыкается накоротко. Данное состояние позволяет определить, насколько теряется полезная мощность трансформатора при нагреве проводов. Подача небольшого переменного напряжения осуществляется на первичную обмотку. Его величина должна быть одинаковой с номинальным током устройства.

Из чего состоит трансформатор

Основой каждого трансформатора является замкнутый сердечник, выполняющий функцию магнитопровода. Для его изготовления применяется электротехническая сталь в виде листов, толщиной 0,35 – 0,5 мм. На магнитопровод наматываются изолированные медные провода. Из каких основных частей состоит трансформатор Участки сердечника с обмотками носят название стержней, а те, которые без обмоток, называются ярмами. Обмотка, на которую поступает электроэнергия, именуется первичной. Другая обмотка, из которой выходит преобразованный ток, называется вторичной. Они обе разделены между собой путем электрической изоляции, кроме автоматических трансформаторов.

Повышающий и понижающий трансформатор

Величины каждой обмотки определенным образом соотносятся между собой. Например, отношение напряжения между концами первичной и вторичной обмотки такое же, как и соотношение количества витков в этих обмотках.

Из каких основных частей состоит трансформатор

В процессе работы трансформатора электрическая энергия, поступающая из сети в первичную обмотку, преобразуется в магнитное поле. Далее, попадая во вторичную обмотку, энергия магнитного поля вновь превращается в электроэнергию с такой же частотой, но с другим значением.

На практике таких показателей достичь невозможно, поскольку КПД устройства всегда меньше единицы, поскольку имеют место потери энергии при нагреве обмоток и стержней. Если трансформатору обеспечен нормальный режим работы, то в этом случае КПД может составить даже 0,98 – 0,99.

Виды трансформаторов

Современные трансформаторные устройства имеют множество разновидностей и применяются в самых различных областях.

Силовые трансформаторы

Передача электроэнергии на расстояние осуществляется с помощью силовых трансформаторов. Эти низкочастотные приборы выполняют ее прием и преобразование. Название силовых они получили из-за работы с напряжением, которое может достигать более 1000 киловольт.

Из каких основных частей состоит трансформатор

В городах такие трансформаторы понижают напряжение до 0,4 кВ, превращая в 380 или 220 вольт, необходимых для нормального потребления.

Эти устройства оборудуются двумя, тремя и более обмоток, что позволяет одновременно преобразовывать напряжение сразу с нескольких генераторов.

Нормальный температурный баланс поддерживается с помощью трансформаторного масла, а в особо мощных приборах дополнительно установлена система активного охлаждения.

Сетевые трансформаторы

До недавнего времени практически во всех электрических приборах устанавливались сетевые однофазные трансформаторы. С помощью этих устройств, обычное напряжение сети в 220 вольт снижалось до необходимого уровня в 5, 12, 24 и 48 В.

Из каких основных частей состоит трансформатор

В сетевых трансформаторах практиковалась установка сразу нескольких вторичных обмоток. Такая конструкция обеспечивала питание разных частей схемы сразу от нескольких источников питания. Например, трансформатор накаливания обязательно присутствовал в схемах с радиолампами.

В современных приборах этого типа используются Ш-образные, тороидальные или стержневые сердечники. Их основой являются пластины, выполненные из электротехнической, стали. При тороидальной форме магнитопровода трансформаторы получаются более компактными, обмотка проходит по всей поверхности, не оставляя пустых участков ярма.

Автотрансформаторы

Автотрансформаторы также относятся к низкочастотным устройствам, в которых первичная и вторичная обмотка дополняет друг друга. Между ними существует не только магнитная, но и электрическая связь.

Единственная обмотка оборудована сразу несколькими выводами, что позволяет получать разные значения напряжения. Данные устройства отличаются более низкой стоимостью, поскольку провода для обмоток нужно меньше, как и стали для сердечника.

В итоге общая масса прибора также снижается.

Режим короткого замыкания трансформатора

Лабораторные трансформаторы

Для выполнения специфических задач используются лабораторные трансформаторы. С его помощью выполняется плавная регулировка напряжения. Конструкция выполнена в виде тороидального трансформатора.

В единственной обмотке имеется неизолированная дорожка, позволяющая подключаться к любому витку. Для контакта с дорожкой используется скользящая угольная щетка, для управления которой предусмотрена специальная поворотная ручка.

Данные устройства чаще всего применяются в лабораторных условиях, чтобы выполнить наладку оборудования.

Трансформаторы тока

Многие измерительные работы проводятся с применением трансформаторов тока. Специфика работы этих устройств заключается в подключении первичной обмотки к источнику тока, а вторичной – к измерительным или защитным приборам с незначительным внутренним сопротивлением.

Читайте также:  Неисправности сварочного аппарата ресанта

Из каких основных частей состоит трансформатор

В состав первичной обмотки входит всего один виток в виде единственного провода. Для проведения измерений выполняется его последовательное включение в цепь переменного тока.

В результате, возникает пропорция между токами первичной и вторичной обмотки, используемой только под нагрузкой. В противном случае, слишком высокое напряжения во вторичной обмотке может привести к пробою изоляции.

Кроме того, ее размыкание приведет к выгоранию магнитопровода под действием наведенного некомпенсированного тока.

Конструкция прибора состоит из сердечника, материалом для которого служит кремнистая шихтованная холоднокатаная электротехническая сталь.

На него наматываются изолированные обмотки в количестве одной или нескольких, выполняющие функции вторичных.

В качестве первичной обмотки чаще всего используется обычная шина или провод с измеряемым током, пропущенный через отверстие в магнитопроводе. Основным параметром трансформатора тока является коэффициент трансформации.

Импульсные трансформаторы

Многие устройства, например, сварочные аппараты, сетевые блоки питания, инверторы и другие аналогичные устройства не могут обойтись без импульсных трансформаторов. Основным конструктивным элементом стандартного прибора служит ферритовый сердечник, представленный большим количеством разнообразных форм. Их главным преимуществом является способность работы на частоте 500 кГц и выше.

Из каких основных частей состоит трансформатор

Поскольку данное устройство относится к высокочастотным трансформаторам, его габаритные размеры существенно снижаются с увеличением частоты. Обмотки требуют меньшего количества проводов, а высокочастотный ток в первичной цепи вырабатывается за счет применения полевых или биполярных транзисторов.

Маркировка трансформаторов

Очень многие пользователи не всегда обращают внимания на маркировку трансформаторов, а некоторые просто не умеют правильно ее расшифровывать. Основные конструкции маркируются как ТМ, ТМЗ, ТСЗ, ТСЗС, ТРДНС, ТМН, ТДН, ТДНС и так далее.

Коэффициент трансформации трансформатораИз каких основных частей состоит трансформатор

Буквенные обозначения соответствуют следующим характеристикам:

  • Т – трехфазное устройство.
  • Р – разделение обмотки низкого напряжения на две части.
  • С – сухой трансформатор.
  • М – наличие масляного охлаждения с естественной циркуляцией.
  • Ц – принудительная циркуляция воды и масла. Вода циркулирует по трубам, а масло течет между ними в виде ненаправленного потока.
  • МЦ – циркуляция воздуха – естественная, а масло циркулирует принудительно, ненаправленным потоком.
  • Д – движение масла принудительное, а воздуха – естественное.
  • ДЦ – принудительное движение воздуха и масла.
  • Н – регулировка напряжения осуществляется под нагрузкой.
  • С – если проставлена в конце маркировки, значит трансформатор используется для собственных нужд электростанции.
  • З – трансформатор без расширителя, герметичный, с азотной подушкой.

Трансформаторы с тремя обмотками маркируются как ТМТН, ТДТН, ТДЦТН, где на три обмотки указывает вторая буква Т. Наличие буквы А указывает на автотрансформатор, О – однофазное устройство, Г – грозоупорная конструкция.

Кроме того, в маркировке указывается класс напряжения, применяемый в работе, режим и условия функционирования, а также точная конструкция устройства.

Номинальная мощность и класс напряжения проставляется после буквенной маркировки через дефис.

Обозначение имеет вид дроби, где числитель является номинальной мощностью в киловольт-амперах, а знаменатель соответствует классу напряжения в киловольтах.

Применение трансформатора

Недостаточно только выработать электрическую энергию. Не меньшую сложность представляет ее передача на значительные расстояния и дальнейшее распределение среди потребителей. И здесь не обойтись без специальных аппаратов – трансформаторов, выполняющих повышение или понижение напряжения.

Каждый трансформатор в электрических цепях может применяться на открытом воздухе или внутри помещений. Эти устройства дали возможность передачи электроэнергии с минимальными потерями в проводах, за счет уменьшенной площади сечения.

Высокое напряжение, поступающее со станции, не может напрямую поставляться потребителям. Поэтому на входе производится установка понижающих трансформаторов. Они доводят ток до нужного значения, при котором нормально функционирует оборудование и бытовая техника.

Что такое трансформатор: устройство, принцип работы, схема и назначение

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов  и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

Из каких основных частей состоит трансформатор
 

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

Из каких основных частей состоит трансформатор
 

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Из каких основных частей состоит трансформатор

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Из каких основных частей состоит трансформатор

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок.

Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается.

Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

Читайте также:  Величина подачи на токарном станке

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

Из каких основных частей состоит трансформатор
 

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике  с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Устройство и принцип работы трансформатора

ТОКИ ФУКО ВИДЫ И КОНСТРУКЦИИ

Трансформатор это электротехническое устройство, предназначенное для преобразования напряжения электрической энергии переменного тока. Основной принцип работы трансформатора состоит в использовании явления электромагнитной индукции.

К основным частям, из которых состоит трансформатор, относятся магнитный сердечник (магнитопровод) и намотанные на нём обмотки.

Принцип действия трансформатора напряжения заключается в следующем. Одна из обмоток подключается к источнику электрического напряжения. Эту обмотку называют первичной, она служит источником энергии, трансформируемой устройством.

Из каких основных частей состоит трансформатор

Ток переменного направления, протекающий по первичной обмотке, создаёт знакопеременный магнитный поток в трансформаторном магнитопроводе.

Под воздействием магнитного потока сердечника во вторичных обмотках (их может быть несколько) наводится электродвижущая сила (ЭДС) индукции. Наведённая ЭДС индукции вызывает во вторичных обмотках появление некоторого напряжения, а при подключении к ним нагрузки — вторичного тока.

Форма магнитного трансформаторного сердечника может быть различной, главное условие — магнитный поток должен образовывать замкнутые контуры (один или несколько).

Наибольшее распространение получили следующие формы трансформаторных магнитопроводов:

  • Ш – образные;
  • П – образные;
  • тороидальные (по аналогии с предыдущими типами сердечников их можно назвать О – образными).

В процессе трансформации электрической энергии, часть её теряется вследствие наличия потерь. Трансформаторные потери подразделяются на две категории — потери в меди и в стали. Данные определения требуют разъяснения.

Потери в меди.

Под этим термином подразумеваются омические потери при протекании токов в обмотках трансформаторов. Теряемая в обмотках энергия уходит на их нагрев.

Интересный факт. Нередко встречаются трансформаторы, обмотки которых выполнены из алюминиевых проводников. Теряемую в таких обмотках мощность логично было бы назвать «потери в алюминии», однако такой термин не употребляется. Словосочетание «потери в меди» вероятно можно отнести к профессиональному жаргону.

Потери в стали.

Данный вид теряемой мощности состоит из двух компонентов:

  • потери, возникающие вследствие образования в сердечнике вихревых токов;
  • мощность, затрачиваемая на перемагничивание.

Вихревые токи (токи Фуко) возникают в любом электропроводящем материале под воздействием переменного магнитного поля. Трансформаторный сердечник, являющийся проводником, не является исключением.

Для уменьшения влияния вихревых токов, магнитопроводы трансформаторов обычно изготавливают не цельными изделиями, а набираются из тонких пластин специальной электротехнической стали. Каждая пластина перед сборкой покрывается электроизоляционным лаком.

Такая технология позволяет избежать возникновения глобальных вихревых токов по всей толщине сердечника, что значительно снижает потери энергии и соответственно, нагрев магнитопровода.

Пример использования токов фуко

Для того чтобы оценить масштабы энергии, которая может выделяться при протекании вихревых токов, полезно вспомнить принцип работы индукционных плавильных печей. В ёмкость печи, выполненную из огнеупорной керамики, помещают лом стали, чугуна или железную руду.

Плавильная ёмкость окружена мощной спиральной обмоткой, по которой пропускается ток высокой частоты. Содержимое ёмкости в данном случае играет роль магнитного сердечника.

Под воздействием возникающих вихревых токов происходит интенсивный разогрев и расплавление загруженного железосодержащего материала. Электроплавильное производство относится к одному из самых энергоёмких.

Потери на перемагничивание обусловлены следующими факторами:

1. Макроструктура магнитных материалов имеет зернистый характер. Образование структурных зёрен происходит на стадии застывания расплавленного металлического сплава вследствие возникновения множества очагов кристаллизации.

2. В результате образуются зёрна структуры, которые представляют собой монокристаллические образования — домены. Каждый домен магнитного материала имеет некоторое результирующее направление вектора магнитной индукции.

При отсутствии внешнего магнитного поля векторы индукции доменов направлены хаотически. Но если поместить такой материал в магнитное поле, векторы доменов становятся однонаправленными.

Применительно к процессу трансформации происходит следующее. Ток первичной обмотки создаёт в сердечнике магнитное поле, направление индукции которого меняется с частотой 50 герц (при подключении к обычной электросети).

С такой же частотой происходит переориентация векторов магнитной индукции доменов магнитопровода. Энергия, затрачиваемая на циклическое перемагничивание, выделяется в виде тепла, нагреваемого сердечник.

Энергию, затраченную на перемагничивание сердечника, называют также потерями на гистерезис. Величина этих потерь зависит от свойств материала трансформаторного сердечника, а если более конкретно, от вида их кривой намагничивания — петли гистерезиса.

Наименьшими потерями характеризуются магнитомягкие материалы — электротехническая сталь и пермаллой, которые и используются при изготовлении трансформаторных магнитопроводов.

Виды трансформаторов и их назначение

В зависимости от специфических функций, выполняемых трансформаторами, они подразделяются на несколько основных типов:

  • силовые, предназначенные для трансформации мощности;
  • измерительные, к которым относятся трансформаторы тока и напряжения;
  • разделительные, служащие для разделения электрических цепей.

Силовые трансформаторы используются на электрических станциях, в распределительных сетях и в точках потребления электроэнергии. Основная их функция — трансформирование передаваемой электрической энергии с одной ступени напряжения в другую.

  • Смысл смены ступеней напряжения заключается в том, что выработка, транспортировка и потребление электрической энергии происходит на разных уровнях напряжения.

Мощные турбогенераторы электрических станций вырабатывают электроэнергию напряжением 20 кВ. Передача энергии на большие расстояния осуществляется по воздушным линиям (ЛЭП), имеющим напряжение сотни киловольт — 110, 220, 500 кВ.

Более высокое напряжение (750 и 1150 кВ) применяется реже ввиду дороговизны оборудования и ряда технических сложностей. Повышение напряжения транспортировки электроэнергии позволяет снизить её потери.

Потребляется же большая часть электричества с напряжением 0,4 кВ. Максимальное напряжение конечных электрических устройств составляет не более нескольких киловольт. К таким устройствам относятся высоковольтные приводные двигатели мощных производственных механизмов, тяговые двигатели электровозов, питающихся от контактных электрических сетей.

Таким образом, электрическая энергия на своём пути от её производства до поступления к конечному потребителю несколько раз изменяет уровень напряжения. Эту работу выполняют силовые трансформаторы, установленные на электрических станциях и подстанциях распределительных сетей.

Измерительные трансформаторы используются в цепях измерения, защиты и контроля. Устройства этого типа осуществляют преобразование первичных значений тока и напряжения в пропорциональные им вторичные величины, необходимые для работы измерительных приборов, устройств защиты и автоматики.

Преобразование токовых величин осуществляется трансформаторами тока, для контроля уровня напряжения служат трансформаторы напряжения. Измерительные трансформаторы относятся к средствам измерений и подлежат периодической метрологической поверке, так же как все измерительные приборы.

Разделительные трансформаторы используются в тех случаях, когда необходимо обеспечить гальваническую развязку между отдельными участками электросетей.

Необходимость такого разделения может диктоваться требованиями электробезопасности. Например, таким способом осуществляется питание некоторых видов медицинского оборудования. В данном случае используется одно из основных свойств, присущих трансформатору — отсутствие гальванической связи между его обмотками.

  *  *  *

© 2014-2022 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]