Как найти период колебаний пружинного маятника

ЕГЭ 2018 по физике ›

Как найти период колебаний пружинного маятника

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Как найти период колебаний пружинного маятника

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Как найти период колебаний пружинного маятника

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

Как найти период колебаний пружинного маятника

где ​( x )​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​( A )​ – амплитуда колебаний; ​( omega t+varphi_0 )​ – фаза колебаний; ​( omega )​ – циклическая частота; ​( varphi_0 )​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Как найти период колебаний пружинного маятника

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

Как найти период колебаний пружинного маятника

где ​( v )​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

Как найти период колебаний пружинного маятника

где ​( a )​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

Как найти период колебаний пружинного маятника

где ​( F )​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

  • Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:
  • Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​( W_k )​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

  1. Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:
  2. При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
    В положении равновесия:
  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.

​( varphi_0 )​ – начальная фаза колебаний.

Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​( T )​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​(
u )​, единицы времени – с-1 или Гц (Герц).

  • 1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:
  • Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​( omega )​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

  1. Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.
  2. Период колебаний математического маятника:
  3. Частота колебаний математического маятника:
  4. Циклическая частота колебаний математического маятника:
  5. Максимальное значение скорости колебаний математического маятника:
  6. Максимальное значение ускорения колебаний математического маятника:
  7. Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:
  8. Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:
  9. Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:
  10. Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​( h )​, определяется по формуле:
  11. где ​( l )​ – длина нити, ​( alpha )​ – угол отклонения от вертикали.
  12. Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.
  13. Период колебаний пружинного маятника:
  14. Частота колебаний пружинного маятника:
  15. Циклическая частота колебаний пружинного маятника:
  16. Максимальное значение скорости колебаний пружинного маятника:
  17. Максимальное значение ускорения колебаний пружинного маятника:
  18. Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:
  19. Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

  • Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.
  • Условие резонанса:
  • ​( v_0 )​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением.

Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Читайте также:  Как найти массу груза на пружине формула

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​( lambda )​, единицы измерения – м.

  1. Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.
  2. Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​(
    u )​ < 16 Гц);
  • звуковой диапазон (16 Гц < ( u ) < 20 000 Гц);
  • ультразвук ((
    u ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:
  • в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;
  • в воздухе при температуре 0°С – 331 м/с,
    в воздухе при температуре +15°С – 340 м/с.
  • Характеристики звуковой волны
  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Основные формулы по теме «Механические колебания и волны»

    Период колебаний: опыты, формулы, задачи :

    Что такое период колебаний? Что это за величина, какой физический смысл она имеет и как ее рассчитать? В этой статье мы разберемся с этими вопросами, рассмотрим различные формулы, по которым можно рассчитать период колебаний, а также выясним, какая связь имеется между такими физическими величинами, как период и частота колебаний тела/системы.

    Определение и физический смысл

    Как найти период колебаний пружинного маятника

    Периодом колебаний называется такой промежуток времени, при котором тело или система совершают одно колебание (обязательно полное). Параллельно можно отметить параметр, при выполнении которого колебание может считаться полным. В роли такого условия выступает возвращение тела в его первоначальное состояние (к первоначальной координате). Очень хорошо проводится аналогия с периодом функции. Ошибочно, кстати, думать, что она имеет место исключительно в обыкновенной и высшей математике. Как известно, эти две науки неразрывно связаны. И с периодом функций можно столкнуться не только при решении тригонометрических уравнений, но и в различных разделах физики, а именно речь идет о механике, оптике и прочих. При переносе периода колебаний из математики в физику под ним нужно понимать просто физическую величину (а не функцию), которая имеет прямую зависимость от проходящего времени.

    Колебания подразделяются на гармонические и ангармонические, а также на периодические и непериодические. Логично было бы предположить, что в случае гармонических колебаний они совершаются согласно некоторой гармонической функции. Это может быть как синус, так и косинус.

    При этом в деле могут оказаться и коэффициенты сжатия-растяжения и увеличения-уменьшения. Также колебания бывают затухающими. То есть, когда на систему действует определенная сила, которая постепенно “тормозит” сами колебания.

    При этом период становится меньше, в то время как частота колебаний неизменно увеличивается. Очень хорошо демонстрирует такую вот физическую аксиому простейший опыт с использованием маятника. Он может быть пружинного вида, а также математического. Это неважно.

    Кстати, период колебаний в таких системах будет определяться разными формулами. Но об этом чуточку позже. Сейчас же приведем примеры.

    Опыт с маятниками

    Взять первым можно любой маятник, разницы никакой не будет. Законы физики на то и законы физики, что они соблюдаются в любом случае. Но почему-то больше по душе математический маятник.

    Если кто-то не знает, что он собой представляет: это шарик на нерастяжимой нити, который крепится к горизонтальной планке, прикрепленной к ножкам (или элементам, которые играют их роль – держать систему в равновесном состоянии).

    Шарик лучше всего брать из металла, чтобы опыт был нагляднее.

    Как найти период колебаний пружинного маятника

    Итак, если вывести такую систему из равновесия, приложить к шару какую-то силу (проще говоря, толкнуть его), то шарик начнет раскачиваться на нити, следуя определенной траектории. Со временем можно заметить, что траектория, по которой проходит шар, сокращается. В то же время шарик начинает все быстрее сновать туда-сюда.

    Это говорит о том, что частота колебаний увеличивается. А вот время, за которое шарик возвращается в начальное положение, уменьшается. А ведь время одного полного колебания, как мы выяснили ранее, и называется периодом. Если одна величина уменьшается, а другая увеличивается, то говорят об обратной пропорциональности.

    Вот мы и добрались до первого момента, на основании которого строятся формулы для определения периода колебаний. Если же мы возьмем для проведения пружинный маятник, то там закон будет наблюдаться немного в другом виде. Для того чтобы он был наиболее наглядно представлен, приведем систему в движение в вертикальной плоскости.

    Чтобы было понятнее, сначала стоило сказать, что собой представляет пружинный маятник. Из названия понятно, что в его конструкции должна присутствовать пружина. И это действительно так. Опять же таки, у нас есть горизонтальная плоскость на опорах, к которой подвешивается пружина определенной длины и жесткости.

    К ней, в свою очередь, подвешивается грузик. Это может быть цилиндр, куб или другая фигурка. Это может быть даже какой-то сторонний предмет. В любом случае, при выведении системы из положения равновесия, она начнет совершать затухающие колебания.

    Наиболее четко просматривается увеличение частоты именно в вертикальной плоскости, без всякого отклонения. На этом с опытами можно закончить.

    Как найти период колебаний пружинного маятника

    Итак, в их ходе мы выяснили, что период и частота колебаний это две физические величины, которые имеют обратную зависимость.

    Обозначение величин и размерности

    Обычно период колебаний обозначается латинской буквой T. Гораздо реже он может обозначаться по-другому. Частота же обозначается буквой µ (“Мю”).

    Как мы говорили в самом начале, период это не что иное, как время, за которое в системе происходит полное колебание. Тогда размерностью периода будет секунда.

    А так как период и частота обратно пропорциональны, то размерностью частоты будет единица, деленная на секунду. В записи задач все будет выглядеть таким образом: T (с), µ (1/с).

    Формула для математического маятника. Задача №1

    Как и в случае с опытами, я решил первым делом разобраться с маятником математическим. Подробно вдаваться в вывод формулы мы не будем, поскольку такая задача поставлена изначально не была. Да и вывод сам по себе громоздкий. Но вот с самими формулами ознакомимся, выясним, что за величины в них входят. Итак, формула периода колебаний для математического маятника имеет следующий вид:

    Как найти период колебаний пружинного маятника

    Где l – длина нити, п = 3,14, а g – ускорение свободного падения (9,8 м/с^2). Никаких затруднений формула вызывать не должна. Поэтому без дополнительных вопросов перейдем сразу к решению задачи на определение периода колебания математического маятника. Металлический шар массой 10 грамм подвешен на нерастяжимой нити длиной 20 сантиметров.

    Рассчитайте период колебания системы, приняв ее за математический маятник. Решение очень простое. Как и во всех задачах по физике, необходимо максимально упростить ее за счет отброса ненужных слов. Они включаются в контекст для того чтобы запутать решающего, но на самом деле никакого веса абсолютно не имеют.

    Читайте также:  Обрезка сосны: схема, время, правила

    В большинстве случаев, разумеется. Здесь можно исключить момент с “нерастяжимой нитью”. Это словосочетание не должно вводить в ступор. А так как маятник у нас математический, масса груза нас интересовать не должна. То есть слова о 10 граммах тоже просто призваны запутать ученика.

    Но мы ведь знаем, что в формуле масса отсутствует, поэтому со спокойной совестью можем приступать к решению. Итак, берем формулу и просто подставляем в нее величины, поскольку определить необходимо период системы. Поскольку дополнительных условий не было задано, округлять значения будем до 3-его знака после запятой, как и принято.

    Перемножив и поделив величины, получим, что период колебаний равен 0,886 секунд. Задача решена.

    Формула для пружинного маятника. Задача №2

    Формулы маятников имеют общую часть, а именно 2п. Эта величина присутствует сразу в двух формулах, но разнятся они подкоренным выражением.

    Если в задаче, касающейся периода пружинного маятника, указана масса груза, то избежать вычислений с ее применение невозможно, как это было в случае с математическим маятником. Но пугаться не стоит.

    Вот так выглядит формула периода для пружинного маятника:

    Как найти период колебаний пружинного маятника

    В ней m – масса подвешенного к пружине груза, k – коэффициент жесткости пружины. В задаче значение коэффициента может быть приведено. Но если в формуле математического маятника особо не разгуляешься – все-таки 2 величины из 4 являются константами – то тут добавляется 3 параметр, который может изменяться.

    И на выходе мы имеем 3 переменных: период (частота) колебаний, коэффициент жесткости пружины, масса подвешенного груза. Задача может быть сориентирована на нахождение любого из этих параметров. Вновь искать период было бы слишком легко, поэтому мы немного изменим условие.

    Найдите коэффициент жесткости пружины, если время полного колебания составляет 4 секунды, а масса груза пружинного маятника равна 200 граммам.

    Для решения любой физической задачи хорошо бы сначала сделать рисунок и написать формулы. Они здесь – половина дела. Записав формулу, необходимо выразить коэффициент жесткости. Он у нас находится под корнем, поэтому обе части уравнения возведем в квадрат. Чтобы избавиться от дроби, умножим части на k.

    Теперь оставим в левой части уравнения только коэффициент, то есть разделим части на T^2. В принципе, задачку можно было бы еще немного усложнить, задав не период в числах, а частоту.

    В любом случае, при подсчетах и округлениях (мы условились округлять до 3-его знака после запятой), получится, что k = 0, 157 Н/м.

    Период свободных колебаний. Формула периода свободных колебаний

    Как найти период колебаний пружинного маятника

    Под формулой периода свободных колебаний понимают те формулы, которые мы разобрали в двух ранее приведенных задачах. Составляют также уравнение свободных колебаний, но там речь идет уже о смещениях и координатах, а этот вопрос относится уже к другой статье.

    Советы для решения задач, связанных с периодом

    1) Прежде чем браться за задачу, запишите формулу, которая с ней связана.

    2) Простейшие задачи не требуют рисунков, но в исключительных случаях их нужно будет сделать.

    3) Старайтесь избавляться от корней и знаменателей, если это возможно. Записанное в строчку уравнение, не имеющее знаменателя, решать гораздо удобнее и проще.

    Пружинный маятник: период и амплитуда колебани1, формула, жесткость

    Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:

    1. Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
    2. Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.

    Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:

    1. Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
    2. Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.
    • Как найти период колебаний пружинного маятникаКак найти период колебаний пружинного маятника
    • Распространены оба варианта исполнения
    • При этом важно уделить внимание тому, чтобы сила прикладывалась параллельно оси. В противном случае есть вероятность смещения витков, что становится причиной возникновения серьезных проблем, к примеру, деформации

    Свободные колебания пружинного маятника

    Рассматривая то, чем вызваны свободные колебания пружинного маятника следует уделить внимание действию внутренних сил. Они начинают формироваться практически сразу после того, как телу было передано движение

    Особенности гармонических колебаний заключаются в нижеприведенных моментах:

    1. Могут также возникать и другие типы сил воздействующего характера, который удовлетворяют все нормы закона, называются квазиупругими.
    2. Основными причинами действия закона могут быть внутренние силы, которые формируются непосредственно на момент изменения положения тела в пространстве. При этом груз обладает определенной массой, усилие создается за счет фиксации одного конца за неподвижный объект с достаточной прочностью, второго за сам груз. При условии отсутствия трения тело может совершать колебательные движения. В этом случае закрепленный груз называется линейным.

    Как найти период колебаний пружинного маятника

    Не стоит забывать о том, что существует просто огромное количество различных видов систем, в которых осуществляется движение колебательного характера. В них также возникает упругая деформация, которая становится причиной применения для выполнения какой-либо работы.

    Как найти жесткость пружинного маятника

    • Свободные колебания могут совершаться под действием внутренних сил только после выведения из положения равновесия всей системы.
    • Чтобы колебания совершались согласно гармоническому закону, нужно, чтобы сила, возвращающая тело в положение равновесия, была пропорциональна смещению тела из равновесного положения и направлена в сторону, противоположную смещению.
    • F ( t ) = m a ( t ) = — m ω 2 x ( t ) .
    • Соотношение говорит о том, что ω является частотой гармонического колебания. Данное свойство характерно для упругой силы в пределах применимости закона Гука:
    • Силы любой природы, которые удовлетворяют условию, называют квазиупругими.

    То есть груз с массой m , прикрепляющийся к пружине жесткости k с неподвижным концом, изображенным на рисунке 2 . 2 . 1 , составляют систему, способную совершать гармонические свободные колебания при отсутствии силы трения.

    Груз, располагаемый на пружине, называют линейным гармоническим осциллятором.

    Как найти период колебаний пружинного маятника

    Рисунок 2 . 2 . 1 . Колебания груза на пружине. Трения нет.

    Круговая частота

    1. Нахождение круговой частоты ω 0 производится с помощью применения формулы второго закона Ньютона:
    2. m a = — k x = m ω 0 2 x .
    3. Частоту ω 0 называют собственной частотой колебательной системы.

    4. Определение периода гармонических колебаний груза на пружине Т находится из формулы:
    5. T = 2 π ω 0 = 2 π m k .

    Горизонтальное расположение системы пружина-груз, сила тяжести компенсируется силой реакции опоры.

    При подвешивании груза на пружину направление силы тяжести идет по линии движения груза. Положение равновесия растянутой пружины равняется:

    x 0 = m g k , тогда как колебания выполняются около нового равновесного состояния. Формулы собственной частоты ω 0 и периода колебаний Т в вышеуказанных выражениях являются справедливыми.

    • При имеющейся математической связи между ускорением тела а и координатой х поведение колебательной системы характеризуется строгим описанием: ускорение является второй производной координаты тела х по времени t :
    • Описание второго закона Ньютона с грузом на пружине запишется как:
    • m a — m x = — k x , или x ¨ + ω 0 2 x = 0 , где свободная частота ω 0 2 = k m .

    Если физические системы зависят от формулы x ¨ + ω 0 2 x = 0 , тогда они в состоянии совершать свободные колебательные гармонические движения с различной амплитудой. Это возможно, так как применяется x = x m cos ( ω t + φ 0 ) .

    Читайте также:  Самодельный ножничный подъемник своими руками

    Свободные колебания

    Уравнение вида x ¨ + ω 0 2 x = 0 получило название уравнения свободных колебаний. Их физические свойства могут определять только собственную частоту колебаний ω 0 или период Т .

    Амплитуда x m и начальная фаза φ 0 находят при помощи способа, который вывел их из состояния равновесия начального момента времени.

    При наличии смещенного груза из положения равновесия на расстояние ∆ l и моменте времени, равном t = 0 , производится его опускание без начальной скорости. Тогда x m = ∆ l , φ 0 = 0 . Если груз находился в положении равновесия, то при толчке передается начальная скорость ± υ 0 , отсюда x m = m k υ 0 , φ 0 = ± π 2 .

    Амплитуда x m с начальной фазой φ 0 определяются наличием начальных условий.

    Как найти период колебаний пружинного маятника

    Рисунок 2 . 2 . 2 . Модель свободных колебаний груза на пружине.

    Механические колебательные системы отличаются наличием сил упругих деформаций в каждой из них. Рисунок 2 . 2 . 2 показывает угловой аналог гармонического осциллятора, совершающий крутильные колебания. Диск располагается горизонтально и висит на упругой нити, закрепленной в его центре масс. Если его повернуть на угол θ , тогда возникает момент силы упругой деформации кручения M у п р :

    Данное выражение не соответствует закону Гука для деформации кручения. Величина x аналогична k жесткости пружины. Запись второго закона Ньютона для вращательного движения диска принимает вид

    1. I ε = M у п р = — x θ или I θ ¨ = — x θ , где моментом инерции обозначается I = I C , а ε – угловое ускорение.
    2. Аналогично с формулой пружинного маятника:
    3. ω 0 = x I , T = 2 π I x .

    Применение крутильного маятника замечено в механических часах. Он получил название балансира, в котором создание момента упругих сил производится при помощи спиралевидной пружины.

    Как найти период колебаний пружинного маятника

    Рисунок 2 . 2 . 3 . Крутильный маятник.

    Источник: zaochnik.com

    Частота колебаний пружинного маятника

    Свойства пружинного маятника

    Идеальный пружинный маятник представляет собой пружину, массой которой можно пренебречь, с закрепленным на ней телом с точечной массой. При этом один или оба конца пружины закреплены, а силой трения можно пренебречь.

    Читать еще:  Цифровая приставка для телевизора как подключить

    Такую конструкцию можно рассматривать лишь как математическую модель. Примерами реальных пружинных маятников (навитых из упругой проволоки цилиндрических спиралей) могут служить всевозможные устройства, гасящие колебания: амортизаторы, подвески, рессоры и т.п. Пружинные маятники, хотя и несколько иной конструкции (в виде плоских спиралей) используются в механических часах.

    Свойства пружин зависят от вещества, из которого они изготовлены (как правило, это особая пружинная сталь), диаметра проволоки, формы ее сечения, диаметра цилиндра пружины, его длины. Эти показатели в совокупности обуславливают ключевую характеристику пружины — ее жесткость.

    Пружина запасает энергию при продольном растяжении или сжатии за счет упругих деформаций в кристаллической решетке своего вещества.

    Попробуй обратиться за помощью к преподавателям

    При слишком сильном растяжении или сжатии материал пружины теряет упругие свойства. Такая деформация называется пластической или остаточной.

    Формула для расчета частоты колебаний

    • Если пружину с закрепленной на ней грузом, подвергнуть продольной упругой деформации, а затем отпустить, она начнет совершать возвратно-поступательные гармонические колебания, в ходе которых перемещение закрепленного на ней груза описывается формулой:
    • $x = A cdot cos(omega_0 cdot t + phi)$
    • Здесь $A$ — амплитуда колебаний, $phi$ — начальная фаза, $omega_0$ — собственная циклическая частота колебаний пружинного маятника, рассчитываемая как
    • $k$ — жесткость пружины,
    • $m$ — масса закрепленного на ней тела.
    1. Циклическая частота отличается тем, что характеризует не количество полных циклов за единицу времени, а количество «пройденных» колеблющейся по гармоническому закону точкой радиан.
    2. Задай вопрос специалистам и получи ответ уже через 15 минут!
    3. Период колебаний пружинного маятника вычисляется как
    4. $T = 2 cdot pi cdot sqrt$.
    5. Ответ: 10 герц и $approx$ 62,831854 радиан в секунду.
    6. Так и не нашли ответ на свой вопрос?
    7. Просто напиши с чем тебе нужна помощь
    8. Источник: spravochnick.ru

    Все Формулы

    Все Формулы по Физике здесь

    Период пружинного маятника

    Период пружинного маятника зависит от жёсткости пружины: с увеличением коэффициента жёсткости пружины период колебания маятника уменьшается

    Пружинный маятник — это груз, колеблющийся на пружине. Он совершает возвратно-поступательное движение. Пружинный маятник подчиняется законам движения, по которым можно определить период его колебаний, зная массу груза и жесткость пружины. Период колебаний пружинного маятника не зависит от места его расположения и амплитуды колебаний.

    Давайте выведем формулу периода пружинного маятника.

    На груз m горизонтального пружинного маятника действуют сила тяжести (mg), сила реакции опоры (N) и сила упругости пружины (Fynp). Запишем второй закон Ньютона для данного случая :

    Все проецируем на ось ОХ:

    Запишем это уравнение в форме аналогичной уравнению движения гармонического осциллятора:

    Сравнивая полученное выражение с уравнением гармонических колебаний у нас получается:

    Из уравнения видно, что циклическая частота пружинного маятника будет иметь вид:

    Тогда период колебаний пружинного маятника будет равен:

    Источник: xn—-ctbjzeloexg6f.xn--p1ai

    Формулы пружинного маятника

    Определение и формулы пружинного маятника

    Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

    Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

    Читать еще:  Как паять контакты на плате

    Уравнения колебаний пружинного маятника

    Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

    • где $^2_0=frac$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:
    • где $_0=sqrt>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; $_0t+varphi )$ — фаза колебаний; $varphi $ и $_1$ — начальные фазы колебаний.
      Решение. Сделаем рисунок.

      1. По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:
      2. где $E_$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_$ — кинетическая энергия шарика, в момент прохождения положения равновесия.
      3. Потенциальная энергия равна:

      В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

      • Из (1.4) выразим искомую величину:
      • Вычислим начальное (максимальное) смещение груза от положения равновесия:
      • Ответ. $x_0=1,5$ мм

      Задание. Пружинный маятник совершает колебания по закону: $x=A $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_$. В какой момент времени это произойдет?

      Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

      Читать еще:  Как пользоваться холодной сваркой mastix

      Потенциальную энергию колебаний груза найдем как:

      В момент времени, который следует найти $F=F_0$; $E_p=E_$, значит:

      Источник: www.webmath.ru

      1. цЕУФЛПУФШ РТХЦЙООПЗП НБСФОЙЛБ 8000 о/Н. юЕНХ ТБЧЕО РЕТЙПД Й ЮБУФПФБ ЕЗП ЛПМЕВБОЙК?

      2. дЧБ ПДЙОБЛПЧЩИ РТХЦЙООЩИ НБСФОЙЛБ ЛПМЕВМАФУС У БНРМЙФХДБНЙ — 3 Й 6 УН. лБЛ ТБЪМЙЮБАФУС РЕТЙПДЩ ЙИ ЛПМЕВБОЙК?

      3. рТХЦЙООЩК НБСФОЙЛ УПЧЕТЫЙМ 15 ЛПМЕВБОЙК ЪБ ПДОХ НЙОХФХ. лБЛПЧЩ РЕТЙПД Й ЮБУФПФБ ЛПМЕВБОЙК?

      4. лППТДЙОБФЩ РТХЦЙООПЗП НБСФОЙЛБ ЙЪНЕОСАФУС РП ЪБЛПОХ

      юЕНХ ТБЧОЩ БНРМЙФХДБ, РЕТЙПД Й ЮБУФПФБ ЛПМЕВБОЙК. ч ЖПТНХМЕ ЧУЕ ЧЕМЙЮЙОЩ ЧЩТБЦЕОЩ Ч УЙУФЕНЕ уй.

      лТБФЛБС ФЕПТЙС:

      рТХЦЙООЩК НБСФОЙЛ – ЬФП ЗТХЪ, ЛПМЕВМАЭЙКУС ОБ РТХЦЙОЕ. пО УПЧЕТЭБЕФ ЧПЪЧТБФОП-РПУФХРБФЕМШОПЕ ДЧЙЦЕОЙЕ. рТХЦЙООЩК НБСФОЙЛ РПДЮЙОСЕФУС ЪБЛПОБН ДЧЙЦЕОЙС, РП ЛПФПТЩН НПЦОП ПРТЕДЕМЙФШ РЕТЙПД ЕЗП ЛПМЕВБОЙК, ЪОБС НБУУХ ЗТХЪБ Й ЦЕУФЛПУФШ РТХЦЙОЩ. рЕТЙПД ЛПМЕВБОЙК РТХЦЙООПЗП НБСФОЙЛБ ОЕ ЪБЧЙУЙФ ПФ НЕУФБ ЕЗП ТБУРПМПЦЕОЙС Й БНРМЙФХДЩ ЛПМЕВБОЙК.

      жПТНХМЩ ДМС ТЕЫЕОЙС :

      бМЗПТЙФН ТЕЫЕОЙС ФЙРПЧПК ЪБДБЮЙ:

      1. лТБФЛП ЪБРЙУЩЧБЕН ХУМПЧЙЕ, ЙЪПВТБЦБЕН ЕЗП ЗТБЖЙЮЕУЛЙ. оБ ТЙУХОЛЕ ПВПЪОБЮБЕН ОЕПВИПДЙНЩЕ ДБООЩЕ: УЙМЩ, ДЕКУФЧХАЭЙЕ ОБ НБСФОЙЛ, ОБРТБЧМЕОЙЕ ЕЗП ДЧЙЦЕОЙС Й ДТХЗЙЕ. 2.

      ъБРЙУЩЧБЕН ПУОПЧОХА ЖПТНХМХ ДМС ПРТЕДЕМЕОЙС РЕТЙПДБ ЛПМЕВБОЙК РТХЦЙООПЗП НБСФОЙЛБ Й ДТХЗЙЕ ОЕПВИПДЙНЩЕ ЖПТНХМЩ ЛПМЕВБФЕМШОПЗП ДЧЙЦЕОЙС. пРТЕДЕМСЕН, ЛБЛЙЕ ЧЕМЙЮЙОЩ ОБДП ОБКФЙ ЙЪ ДТХЗЙИ НЕИБОЙЮЕУЛЙИ УППФОПЫЕОЙК, ЪБРЙУЩЧБЕН ЙИ. 3. тЕЫБЕН РПМХЮЕООЩЕ ХТБЧОЕОЙС Ч ПВЭЕН ЧЙДЕ.

      4. рПДУФБЧМСЕН ДБООЩЕ, ЧЩЮЙУМСЕН. рЕТЕД РПДУФБОПЧЛПК РЕТЕЧПДЙН ЧУЕ ДБООЩЕ Ч ЕДЙОХА УЙУФЕНХ.

      5. ъБРЙУЩЧБЕН ПФЧЕФ.

    Ссылка на основную публикацию
    Для любых предложений по сайту: [email protected]