Как обозначается площадь поперечного сечения в физике

Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.

Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.

Как обозначается площадь поперечного сечения в физике

Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.

Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.

Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.

Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.

Эту закономерность можно описать следующей формулой:

  • Сопротивление
  • R = ρ · l/S
  • R — сопротивление [Ом]
  • l — длина проводника [м]
  • S — площадь поперечного сечения [мм2]
  • ρ — удельное сопротивление [Ом · мм2/м]

Единица измерения сопротивления — ом. Названа в честь физика Георга Ома.

Будьте внимательны!

Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм2. В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм2. При умножении мм2 сокращаются и мы получаем величину в СИ.

Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм2.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.

Таблица удельных сопротивлений различных материалов

Материал Удельное сопротивлениеρ, Ом · мм2/м
Алюминий 0,028
Бронза 0,095–0,1
Висмут 1,2
Вольфрам 0,05
Железо 0,1
Золото 0,023
Иридий 0,0474
Константан (сплав NiCu + Mn) 0,5
Латунь 0,025–0,108
Магний 0,045
Манганин (сплав меди марганца и никеля — приборный) 0,43–0,51
Медь 0,0175
Молибден 0,059
Нейзильбер (сплав меди, цинка и никеля) 0,2
Натрий 0,047
Никелин (сплав меди и никеля) 0,42
Никель 0,087
Нихром (сплав никеля, хрома, железа и марганца) 1,05–1,4
Олово 0,12
Платина 0,107
Ртуть 0,94
Свинец 0,22
Серебро 0,015
Сталь 0,103–0,137
Титан 0,6
Хромаль 1,3–1,5
Цинк 0,054
Чугун 0,5–1,0

Резистор

Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

Вот так резистор изображается на схемах:

Как обозначается площадь поперечного сечения в физике

В школьном курсе физики используют европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

Вот так резистор выглядит в естественной среде обитания:

Как обозначается площадь поперечного сечения в физике

Полосочки на нем показывают его сопротивление.

На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:

Как обозначается площадь поперечного сечения в физике

Источник: сайт компании Ekits

О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.

Реостат

Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.

Как обозначается площадь поперечного сечения в физике

Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.

По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:

  1. Сопротивление
  2. R = ρ · l/S
  3. R — сопротивление [Ом]
  4. l — длина проводника [м]
  5. S — площадь поперечного сечения [мм2]
  6. ρ — удельное сопротивление [Ом · мм2/м]

Закон Ома для участка цепи

С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».

Как обозначается площадь поперечного сечения в физике

У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Математически его можно описать вот так:

  • Закон Ома для участка цепи
  • I = U/R
  • I — сила тока [A]
  • U — напряжение [В]
  • R — сопротивление [Ом]
  1. Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.
  2. Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье. ????
  3. Давайте решим несколько задач на закон Ома для участка цепи.
  4. Задача раз
  5. Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.
  6. Решение:
  7. Возьмем закон Ома для участка цепи:
  8. I = U/R
  9. Подставим значения:
  10. I = 220/880 = 0,25 А
  11. Ответ: сила тока, проходящего через лампочку, равна 0,25 А

Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.

  • Задача два
  • Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.
  • Решение:
  • Сначала найдем сопротивление проводника.
  • R = ρ · l/S
  • Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.
  • Это значит, что все величины уже даны в СИ и перевод не требуется:
  • R = 1,05 · 0,5/0,01 = 52,5 Ом
  • Теперь возьмем закон Ома для участка цепи:
  • I = U/R
  • Подставим значения:
  • I = 220/52,5 ≃ 4,2 А
  • Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А

А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.

  1. Задача три
  2. Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А
  3. Решение:
  4. Возьмем закон Ома для участка цепи и выразим из него сопротивление:
  5. I = U/R
  6. R = U/I
  7. Подставим значения и найдем сопротивление нити:
  8. R = 220/8,8 = 25 Ом
  9. Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:
  10. R = ρ · l/S
  11. ρ = RS/l
  12. Подставим значения и получим:
  13. ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м
  14. Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.
  15. Ответ: нить накаливания сделана из константана.

Закон Ома для полной цепи

Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.

В таком случае вводится закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Так, стоп. Слишком много незнакомых слов — разбираемся по порядку.

Что такое ЭДС и откуда она берется

ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.

ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.

Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.

Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.

В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:

  • Закон Ома для полной цепи
  • I — сила тока [A]
  • ε — ЭДС [В]
  • R — сопротивление нагрузки [Ом]
  • r — внутреннее сопротивление источника [Ом]

Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.

  1. Решим задачу на полную цепь.
  2. Задачка
  3. Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом
  4. Решение:
  5. Возьмем закон Ома для полной цепи:
  6. Подставим значения:
  7. A
  8. Ответ: сила тока в цепи равна 1 А.
Читайте также:  Как найти пробитый конденсатор на плате

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.

Как обозначается площадь поперечного сечения в физике

Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

  • Закон Ома для участка цепи
  • I = U/R
  • I — сила тока [A]
  • U — напряжение [В]
  • R — сопротивление [Ом]

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

То есть:

I = U/0 = ∞

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.

Поперечное сечение провода: понятие, площадь, формула и таблица соответствия диаметру

Для правильного выбора и организации электролинии необходимо учитывать параметры и нагрузку проводников.

Они представляют собой металлическую нить из меди, алюминия, стали, цинка, титана, никеля и обеспечивают передачу тока от его источника до потребителя.

У проводников есть поперечное сечение – это фигура, образованная от их рассечения плоскостью поперечного направления. Если его подобрать неправильно, линия выйдет из строя или загорится при скачках напряжения.

Площадь поперечного сечения как электротехническая величина

Как обозначается площадь поперечного сечения в физикеОт поперечного сечения зависит токопроводимость провода

В качестве примера сечения можно рассмотреть распил изделия под углом 90 градусов относительно поперечной оси. Контур фигуры, получившейся в результате, определяется конфигурацией объекта. Кабель имеет вид небольшой трубы, поэтому при распиле выйдет фигура в виде двух окружностей определенной толщины. При поперечном рассечении круглого металлического прута получится форма круга.

В электротехнике площадь ПС будет значить прямоугольное сечение проводника в отношении к его продольной части. Сечение жил всегда будет круглым. Измерение параметра осуществляется в мм2.

Начинающие электрики могут перепутать диаметр и сечение элементов. Чтобы определить, какая площадь сечения у жилы, понадобиться учесть его круглую форму и воспользоваться формулой:

S = πхR2, где:

  • S – площадь круга;
  • π — постоянная величина 3,14;
  • R – радиус круга.

Если известен показатель площади, легко найти удельное сопротивление материала изготовления и длину провода. Далее вычисляется сопротивление тока.

Для удобства расчетов начальная формула преобразуется:

  1. Радиус – это ½ диаметра.
  2. Для вычисления площади π умножается на D (диаметр), разделенный на 4, или 0,8 умножается на 2 диаметра.

При вычислениях используют показатель диаметра, поскольку его неправильный подбор может вызвать перегрев и воспламенение кабеля.

Цели расчета

Как обозначается площадь поперечного сечения в физикеПоперечное сечение проводов для освещения

Рассчитывать параметры площади сечения проводника необходимо с несколькими целями:

  • получение необходимого количества электричества для запитки бытовых приборов;
  • исключение переплат за неиспользуемый энергоноситель;
  • безопасность проводки и предотвращение возгораний;
  • возможность подключения высокомощной техники к сети;
  • предотвращение оплавления изоляционного слоя и коротких замыканий;
  • правильная организация осветительной системы.

Оптимальное сечение провода для освещения – 1,5 мм2 для линии, 4-6 мм2 на вводе.

Соотношение диаметра кабеля с площадью его сечения

Определение посредством формулы площади поперечного сечения проводников занимает длительное время. В некоторых случаях уместно использовать данные из таблицы. Поскольку для организации современной проводки применяется медный кабель, в таблицу вносятся параметры:

  • диаметр;
  • сечение в соответствии с показателем диаметра;
  • предельная мощность нагрузки проводников в сетях с напряжением 220 и 380 В.
Диаметр жилы, мм Параметры сечения, мм2 Сила тока, А Мощность медного проводника, кВт
Сеть 220 В Сеть 380 В
1,12 1 14 3 5,3
1,38 1,5 15 3,3 5,7
1,59 2 19 4,1 7,2
1,78 2,5 21 4,6 7,9
2,26 4 27 5,9 10
2,76 6 34 7,7 12
3,57 10 50 11 19

Посмотрев данные в соответствующих колонках, можно узнать нужные параметры для электролинии жилого здания или производственного объекта.

Расчет сечения многожильного проводника

Как обозначается площадь поперечного сечения в физикеМногожильный провод представляет собой несколько отдельных жил. Расчет его сечения осуществляется следующим образом:

  1. Находится показатель площади сечения у одной жилы.
  2. Пересчитываются кабельные жилы.
  3. Количество умножается на поперечное сечение одной жилы.

При подключении многожильного проводника его концы обжимаются специальной гильзой с использованием обжимных клещей.

Особенности самостоятельного расчета

Как обозначается площадь поперечного сечения в физикеСамостоятельное вычисление продольного сечения выполняется на жиле без изоляционного покрытия. Кусочек изоляции можно отодвинуть или снять на отрезке, приобретенном специально для тестирования. Вначале понадобится определить диаметр и по нему найти сечение. Для работ используется несколько методик.

При помощи штангенциркуля

Способ оправдан, если будут измеряться параметры усеченного, или бракованного кабеля. К примеру, ВВГ может обозначаться как 3х2,5, но фактически быть 3х21. Вычисления производятся так:

  1. С проводника снимается изоляционное покрытие.
  2. Диаметр замеряется штангенциркулем. Понадобится расположить провод между ножками инструмента и посмотреть на обозначения шкалы. Целая величина находится сверху, десятичная – снизу.
  3. На основании формулы поиска площади круга S = π (D/2)2 или ее упрощенного варианта S = 0,8 D² определяется поперечное сечение.
  4. Диаметр равен 1,78 мм. Подставляя величину в выражение и округлив результат до сотых, получается 2,79 мм2.

Для бытовых целей понадобятся проводники с сечением 0,75; 1,5; 2,5 и 4 мм2.

С использованием линейки и карандаша

Как обозначается площадь поперечного сечения в физикеВычисление ПС с помощью линейки и карандаша

При отсутствии специального измерителя можно воспользоваться карандашом и линейкой. Операции выполняются с тестовым образом:

  1. Зачищается от изоляционного слоя участок, равный 5-10 см.
  2. Получившаяся проволока наматывается на карандаш. Полные витки укладываются плотно, пространства между ними быть не должно, «хвостики» направляются вверх или вниз.
  3. В конечном итоге должно получиться определенное число витков, их требуется посчитать.
  4. Намотка прикладывается к линейке так, чтобы нулевое деление совпадало с первой намоткой.
  5. Замеряется длина отрезка и делится на количество витков. Получившаяся величина – диаметр.
  6. Например, получилось 11 витков, которые занимают 7,5 мм. При делении 7,5 на 11 выходит 0,68 мм – диаметр кабеля. Сечение можно найти по формуле.

Точность вычислений определяется плотностью и длиной намотки.

Таблица соответствия диаметра проводов и площади их сечения

Если нет возможности пройти тестирование диаметра или сделать вычисление при покупке, допускается использовать таблицу. Данные можно сфотографировать, распечатать или переписать, а затем применять, чтобы найти нормативный или популярный размер жилы.

Диаметр кабеля, мм Сечение проводника, мм2
0,8 0,5
0,98 0,75
1,13 1
1,38 1,5
1,6 2
1,78 2,5
2,26 4
2,76 6
3,57 10

При покупке электрокабеля понадобится посмотреть параметры на этикетке. К примеру, используется ВВНГ 2х4. Количество жил – величина после «х». То есть, изделие состоит из двух элементов с поперечным сечением 4 мм2. На основании таблицы можно проверить точность информации.

https://www.youtube.com/watch?v=hpmWW3Synbg\u0026t=12s

Чаще всего диаметр кабеля меньше, чем заявлен на упаковке. У пользователя два варианта – применять другой или выбрать с большей площадью сечения кабель по диаметру. Выбрав второй, понадобится проверить изоляцию. Если она не сплошная, тонкая, разная по толщине, остановитесь на продукции другого изготовителя.

Определение сечения проводника на вводе

Уточнить номинальные показатели можно в компании Энергосбыта или документации к товару. К примеру, номинал автомата на вводе составляет 25 А, мощность потребления – 5 кВт, сеть однофазная, на 220 В.

Подбор сечения осуществляется так, чтобы допустимый ток жил за длительный период был больше номинала автомата. Например, в доме на ввод  пущен медный трехжильный проводник ВВГнг, уложенный открытым способом. Оптимальное сечение – 4 мм2, поэтому понадобится материал ВВГнг 3х4.

После этого высчитывается показатель условного тока отключения для автомата с номиналом 25 А: 1,45х25=36,25 А. У кабеля с площадью сечения 4 мм2 параметры длительно допустимого тока 35 А, условного – 36,25 А. В данном случае лучше взять вводный проводник из меди сечением 6 мм2 и допустимым предельным током 42 А.

Вычисление сечения провода для линии розеток

Как обозначается площадь поперечного сечения в физикеСечение кабелей для домашних электроустановок

Каждый электроприбор имеет показатели собственной мощности. Они замеряются в Ваттах и указываются в паспорте либо на наклейке на корпусе. Примером поиска сечения будет линия запитки для стиральной машины мощностью 2,4 кВт. При расчетах учитывается:

  • материал провода и способ укладки – трехжильный ВВГнг-кабель из меди, спрятанный в стене;
  • особенности сечения – оптимальная величина составляет 1,5 мм2, т.е. понадобится кабель 3х1,5;
  • использование розетки. Если подключается только машинка-автомат, характеристик будет достаточно;
  • система защиты – автомат, номинальный ток которого 10 А.
Читайте также:  Насадка гриндер на болгарку своими руками

Для двойных розеток применяется кабель из меди с сечением 2,5 мм2 и автомат номиналом 16 А.

Подбор сечения для трехфазной линии 380 В с несколькими приборами

Подключение нескольких видов бытовой техники к трехфазной линии предусматривает протекание потребляемого тока по трем жилам. В каждом из них будет меньшая величина, чем в двухжильном. На основании данного явления в трехфазной сети допускается применять кабель с меньшим сечением.

К примеру, в доме устанавливается генератор с мощностью 20 кВт и суммарной мощностью по трем фазам 52 А. На основании значений таблицы выйдет, что оптимальное сечение кабеля – 8,4 мм2.

На основании формулы высчитывается фактическое сечение: 8,4/1,75=4,8 мм2.

Чтобы подсоединить генератор мощностью 20 кВт на трехфазную сеть 380 В необходим медный проводник, сечение каждой жилы которого 4,8 мм2.

Сечение проводов в домах старой застройки и предельная нагрузка

В многоэтажках советского периода используется алюминиевая проводка. С учетом правильного соединения узлов в распредкоробе, качества изоляции и надежности контактов соединения она прослужит от 10 до 30 лет.

При необходимости подключения техники с большой энергоемкостью в домах с проводкой из алюминия на основе мощности потребления подбирается сечение и диаметр жил. Все данные указаны в таблице.

Ток, А Максимальная мощность, ВА Диаметр кабеля, мм Сечение кабеля, мм2
14 3000 1,6 2
16 3500 1,8 2,5
18 4000 2 3
21 4600 2,3 4
24 5300 2,5 5
26 5700 2,7 6
31 6800 3,2 8
38 8400 3,6 10

Какой кабель выбрать для квартирной проводки

Как обозначается площадь поперечного сечения в физикеНесмотря на дешевизну алюминиевых проводников, от их применения лучше отказаться. Причина – низкая надежность контактов, через которые будут проходить токи. Второй повод – несоответствие сечения провода мощности современной бытовой техники. Кабель из меди отличается надежностью, длительным сроком эксплуатации.

В квартирах и домах допускается использовать провод с маркировкой:

  • ПУНП – плоский проводник с медными жилами в ПВХ-оболочке. Рассчитан на напряжение номиналом 250 В при частоте 50 Гц.
  • ВВГ/ВВГнг – плоские кабели из меди с двойным ПВХ-покрытием. Применяются внутри и снаружи сооружений, не подвержены возгоранию. Бывают с 2-мя, 3-мя и 4-мя жилами.
  • NYM – провод из меди для внутренней одиночной линии. Имеет изоляционную ПВХ-оболочку и наружное покрытие, жилы с заземлением и без него.

При выборе количества жил понадобится учесть способность токопроводимости на единицу сечения. В данном случае квартирную сеть лучше сделать из одножильного провода, толщина которого больше. Многожильные элементы можно изгибать многократно, подсоединять на них электроприборы. Качественным будет только кабель с тонкими жилами.

Правильное сечение проводников, учет мощности оборудования и типа сети – важные факторы при организации электролинии. Диаметр кабеля можно несколькими способами вычислить самостоятельно. Основываясь на этих показаниях, легко определить сечение жил по формулам или с помощью таблицы.

Удельное сопротивление. Реостаты — урок. Физика, 8 класс

Для рассмотрения характеристик электрических параметров рассмотрим назначение приборов:

  1. сила тока в цепи определяется амперметров, который подключается последовательно с соблюдением полярности;
  2. напряжение на участке цепи измеряется вольтметром, который подключается параллельно к тому участку или прибору, на котором нужно узнать разность потенциалов или напряжения;
  3. на деревянной изолирующей подставке — устройство, имеющее провода с различными значениями сопротивления;
  4. значение тока можно регулировать реостатом.

Рис. (1). Цепь с возможностью выбора проводника

https://www.youtube.com/watch?v=hpmWW3Synbg\u0026t=46s

Определим физические параметры (величины), влияющие на значение сопротивления проводника.

Эксперимент (1). Физическая величина — длина (прямая пропорциональность).

Эксперимент (2). Физическая величина — площадь поперечного сечения (обратная пропорциональность).

Эксперимент (3). Материал проводника, физическая величина — удельное сопротивление проводника (прямая пропорциональность).

Примечание: «эксперимент» следует понимать как включение в электрическую цепь проводников с конкретными одинаковыми и различающимися физическими параметрами и сравнение значений сопротивлений данных проводников.

Впервые зависимость сопротивления проводника от вещества, из которого он изготовлен, и от длины проводника обнаружил немецкий физик Георг Ом. Он установил:

Сопротивление проводника напрямую зависит от его длины и материала,  но обратным образом зависит от площади поперечного сечения проводника.

Обрати внимание!

Из этого можно сделать вывод: чем длиннее проводник, тем больше его электрическое сопротивление.Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е.

чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.

Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т.е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.

Удельное сопротивление проводника зависит от строения вещества. Электроны при движении внутри металлов взаимодействуют с атомами (ионами), находящимися в узлах кристаллической решётки. Чем выше температура вещества, тем сильнее колеблются атомы и тем больше удельное сопротивление проводников.

Удельное электрическое сопротивление — физическая величина (
ho), характеризующая свойство материала оказывать сопротивление прохождению электрического тока:ρ=R⋅Sl, где удельное сопротивление проводника обозначается греческой буквой (
ho) (ро), (l) — длина проводника, (S) — площадь его поперечного сечения.

Определим единицу удельного сопротивления. Воспользуемся формулой ρ=R⋅Sl.

Как известно, единицей электрического сопротивления является (1) Ом, единицей площади поперечного сечения проводника — (1) м², а единицей длины проводника — (1) м. Подставляя в формулу, получаем:

1 Ом ⋅1м21 м=1 Ом ⋅1 м, т.е. единицей удельного сопротивления будет Ом⋅м.

На практике (например, в магазине при продаже проводов) площадь поперечного сечения проводника измеряют в квадратных миллиметрах, В этом случае единицей удельного сопротивления будет:

1 Ом ⋅1мм21 м, т.е. Ом⋅мм2м.

В таблице приведены значения удельного сопротивления некоторых веществ при (20) °С.

Как обозначается площадь поперечного сечения в физике

Удельное сопротивление увеличивается пропорционально температуре.

При нагревании колебания ионов металлов в узлах металлической решётки увеличиваются, поэтому свободного пространства для передвижения электронов становится меньше. Электроны чаще отбрасываются назад, поэтому значение тока уменьшается, а значение сопротивления увеличивается.

Обрати внимание!

Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. А это значит, что медь и серебро лучше остальных проводят электрический ток.

При проводке электрических цепей, например, в квартирах не используют серебро, т.к. это дорого. Зато используют медь и алюминий, так как эти вещества обладают малым удельным сопротивлением.Порой необходимы приборы, сопротивление которых должно быть большим.

В этом случаем необходимо использовать вещество или сплав с большим удельным сопротивлением. Например, нихром.

Полиэтилен, дерево, стекло и многие другие материалы отличаются очень большим удельным сопротивлением. Поэтому они не проводят электрический ток.

Такие материалы называют диэлектриками или изоляторами.

https://www.youtube.com/watch?v=hpmWW3Synbg\u0026t=66s

Очень часто нам приходится изменять силу тока в цепи. Иногда мы ее увеличиваем, иногда уменьшаем. Водитель трамвая или троллейбуса изменяет силу тока в электродвигателе, тем самым увеличивая или уменьшая скорость транспорта. 

Реостат — это резистор, значение сопротивления которого можно менять.

Реостаты используют в цепи для изменения значений силы тока и напряжения.

Реостат на рисунке состоит из провода с большим удельным сопротивлением (никелин, нихром), по которому передвигается подвижный контакт (C) по длине провода, плавно изменяя сопротивление реостата.

Сопротивление такого реостата пропорционально длине провода между подвижным контактом (C) и неподвижным (A). Чем длиннее провод, тем больше сопротивление участка цепи и меньше сила тока.

С помощью вольтметра и амперметра можно проследить эту зависимость.

Как обозначается площадь поперечного сечения в физике

Рис. (2). Реостат с подвижным контактом

На школьных лабораторных занятиях используют переменное сопротивление — ползунковый реостат.

Как обозначается площадь поперечного сечения в физике

Рис. (3). Ползунковый реостат

Он состоит из изолирующего керамического цилиндра, на который намотан провод с большим удельным сопротивлением. Витки проволоки должны быть изолированы друг от друга, поэтому либо проволоку обрабатывают графитом, либо оставляют на проволоке слой окалины.

Сверху над проволочной обмоткой закреплен металлический стержень, по которому  перемещается ползунок.

 Контакты ползунка плотно прижаты в виткам и при движении изолирующий слой графиты или окалины стирается, и тогда электрический ток может проходить от витков проволоки к ползунку, через него подводиться к стержню, имеющему на конце зажим (1).

Для соединения реостата в цепь используют зажим (1) и зажим (2). Ток, поступая через зажим (2), идёт по никелиновой проволоке и через ползунок подаётся на зажим (1). Перемещая ползунок от (2) к (1), можно увеличивать длину провода, в котором течёт ток, а значит, и сопротивление реостата.

В электрических схемах реостат изображается следующим образом:

Как и любой электрический прибор, реостат имеет допустимое значение силы тока, свыше которого прибор может перегореть. Маркировка реостата содержит диапазон его сопротивления и максимальное допустимое значение силы тока.

Обрати внимание!

Сопротивление реостата нужно учитывать в параметрах электрической цепи. При минимальных значениях сопротивления ток в цепи может вывести из строя амперметр.

Существуют реостаты, в которых переключатель подключается на проводники заданной длины и сопротивления: каждая спираль реостата имеет определённое сопротивление. Поэтому плавно изменять силу тока с помощью такого прибора не получится.

Как обозначается площадь поперечного сечения в физике

Рис. (4). Реостат с переключением

  • Сопротивление проводника: R=ρ⋅lS
  • Из этой формулы можно выразить и другие величины:
  • l=R⋅Sρ, S=ρ⋅lR, ρ=R⋅Sl.

Источники:

Рис. 1. Цепь с возможностью выбора проводника. © ЯКласс.Рис. 4. «File:Rheostat hg.jpg» by Hannes Grobe (talk) is licensed under CC BY 3.0

Как обозначается площадь поперечного сечения в физике — Мастерок

(эффективное сечение), величина, характеризующая вероятность перехода системы двух сталкивающихся ч-ц в результате их рассеяния (упругого или неупругого) в определённое конечное состояние. С. s равно отношению числа dN таких переходов в ед. времени к плотности nv потока рассеиваемых ч-ц, падающих на мишень, т. е. к числу ч-ц, проходящих в ед.

Читайте также:  Валковый пресс для плоской высечки своими руками

времени через единичную площадку, перпендикулярную к их скорости v (n — плотность числа падающих ч-ц): a=dN/nv. Т. о., С. имеет размерность площади. Разл. типам переходов, наблюдаемых при рассеянии ч-ц, соответствуют разные С. Упругое рассеяние ч-ц характеризуют дифференциальным сечением ds/dW, равным отношению числа ч-ц, упруго рассеянных в ед.

времени в ед. телесного угла, к потоку падающих ч-ц (dW— элемент телесного угла), и полным сечением s, равным интегралу дифф. сечения, взятому по полному телесному углу W=4p стер. На рис. схематически изображён процесс упругого рассеяния точечных «классич.» ч-ц на шарике радиуса R0 с «абсолютно жёсткой» поверхностью; полное С. рассеяния равно геом.

сечению шарика: s=pR20.

При наличии неупругих процессов полное С. складывается из С. упругих и неупругих процессов. Для более детальной хар-ки рассеяния вводят С. для отд. типов (каналов) неупругих реакций. Для множественных процессов важное значение имеют т. н. инклюзивные сечения, описывающие вероятность появления в данном столкновении к.-л. определённой ч-цы или группы ч-ц.

Как обозначается площадь поперечного сечения в физике

  • А, 5 — площадь поперечного сечения, м 2 .
  • А, IV— работа, Дж, кВт ч, кДж, МДж, (1 кВт ч = 3,6 МДж).
  • Е модуль упругости, МПа Е энергия, Дж, кВт• ч.
  • EJУ жесткость при изгибе бруса, Н • м 2 .
  • ЕБ — жесткость при растяжении — сжатии, Н.
  • Ек, Т кинетическая энергия, Дж, кВт ч.
  • Еп, П — потенциальная энергия, Дж, кВт ч.

Читать также:  Тип шва сш это

  1. Е,Е —сосредоточенная сила, Н, кН, МН.
  2. Екр — критическая сила, Н, кН, МН.
  3. /— прогиб балки, мм.
  4. /, р — коэффициент трения.
  5. /, и — частота периодических событий (импульсов, колебаний), Гц,

С? — модуль сдвига, МПа.

  • С2р —жесткость при кручении стержня круглого поперечного сечения, Н м 2 .
  • g — ускорение свободного падения, м/с 2 .
  • Н — твердость, НВ, НКСЭ, НУ
  • Jx, Jy, — осевые моменты инерции сечения относительно осей X, у,
  • JF — полярный момент инерции сечения, м 4 .
  • Jxv — центробежный момент инерции сечения, м 4 .
  • К, Кх — эффективные коэффициенты концентрации напряжений — соответственно нормальных и касательных.
  • Кр— коэффициент влияния шероховатости поверхности на предел выносливости.
  • Ку— коэффициент влияния упрочнения поверхности на предел выносливости.
  • К(, — коэффициент влияния абсолютных размеров поперечного сечения на предел выносливости.
  • КС и, КСУ, КСТ — ударная вязкость, Дж/м 2 .

М, М —сосредоточенный момент, момент силы. Н м, кН • м.

Мх, Му, — изгибающие моменты в поперечном сечении относительно осей х, у, Н • м, кН • м.

Л/и — изгибающий момент в поперечном сечении, Н • м, кН • м.

Л/экв — эквивалентный момент, Н м, кН ? м. т — масса, кг.

N — циклическая долговечность, циклы.

/Ус — абсцисса точки перелома кривой усталости, циклы.

/У?— эквивалентная циклическая долговечность, циклы.

https://www.youtube.com/watch?v=hpmWW3Synbg\u0026t=124s

ЛД — заданная циклическая долговечность, циклы.

Р — мощность, Вт, кВт. р — давление, Па, кПа, МПа.

  1. Х, С>у — поперечные силы, направленные вдоль осей х, у.
  2. ^ — интенсивность распределения нагрузки, Н/м, кН/м, МН/м.
  3. Яа — среднее арифметическое отклонение неровностей, мкм.
  • ? — площадь, м 2 .
  • 5а, 5Х — коэффициенты запаса прочности по нормальным и касательным напряжениям соответственно.
  • 5 — перемещение, мм, м.

Т, Т — вращающий момент, момент пары сил, Н м, кН м. и — потенциальная энергия деформации, Н м, кН м. и — осевое перемещение, мм.

Читать также:  Как отпаять деталь с платы паяльником

  • V — прогиб, окружное перемещение, мм.
  • У— работа внешних сил, Н м, Дж, кДж, МДж.
  • УХ, ]Уу, Ур — осевые и полярный моменты сопротивления сечения, м 3 .

у — угол сдвига (относительная угловая деформация), рад. °.

5 — перемещение сечения бруса при растяжении (сжатии).

е — относительное удлинение (относительная линейная деформация).

  • Г) — коэффициент полезного действия (КПД).
  • 0 — угол поворота поперечного сечения балки при изгибе, рад. °.

X — кривизна продольной оси бруса при изгибе, м .

р — радиус кривизны, мм; угол трения, рад. °.

а — нормальное напряжение (общее обозначение) Па, МПа.

т — касательное напряжение (общее обозначение) Па, МПа.

а,, а2? — главные нормальные напряжения, Па, МПа.

аэкв — эквивалентное напряжение, Па, МПа.

асм — нормальное напряжение при смятии, Па, МПа.

Сечение – изображение фигуры, получающееся при мысленном рассечении предмета одной или несколькими плоскостями. На сечении показывается только то, что получается непосредственно в секущей плоскости.

Сечения обычно применяют для выявления поперечной формы предмета. Фигуру сечения на чертеже выделяют штриховкой. Штриховые линии наносят в соответствии с общими правилами.

Порядок формирования сечения:1. Вводится секущая плоскость в том месте детали, где необходимо более полно выявить ее форму. 2.

Мысленно отбрасывается часть детали, расположенная между наблюдателем и секущей плоскостью. 3. Фигура сечения мысленно поворачивается до положения, параллельного основной плоскости проекций P. 4.

Изображение сечения формируют в соответствии с общими правилами проецирования.

Как обозначается площадь поперечного сечения в физике

Сечения, не входящие в состав разреза, разделяют на:

Вынесенные сечения являются предпочтительными и их допускается располагать в разрыве между частями одного и того же вида. Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями.

Как обозначается площадь поперечного сечения в физике

Сечение процесса

Когда быстрая частица налетает на частицу-мишень, то для того, чтобы произошло столкновение, она должна пролететь в достаточной близости от мишени, то есть она должна попасть в некоторое поперечное сечение. Эту поперечную площадь и называют в физике эффективным сечением процесса (сечением столкновения, сечением реакции и т. п.).

В классической механике (например, при рассеянии точечных частиц на мишени определенного размера) эффективное сечение равняется просто геометрической площади поперечного сечения мишени.

В квантовой механике ситуация меняется, во-первых, из-за волновой природы частиц, а во-вторых, из-за того, что частицы обычно «полупрозрачны» друг для друга (это зависит от типа взаимодействия между частицами).

Поэтому эффективное сечение процесса отличается от геометрического сечения.

На иллюстрации схематично показано то, как протон «выглядит» с точки зрения налетающей частицы: второго протона, фотона или нейтрино. Налетающий протон чувствует цельное кварковое и глюонное облако протона-мишени, поэтому сечение протон-протонного столкновения того же порядка, что и геометрическое сечение протона.

Фотон чувствует только кварковое распределение, и к тому же сила электромагнитного взаимодействия меньше, чем сильного. В результате протон для фотона кажется полупрозрачным, и эффективное сечение получается заметно меньше. Наконец, нейтрино чувствует не сами по себе кварки, а как бы маленькое облачко виртуальных W- и Z-бозонов вокруг них.

Из-за этого протон выглядит для нейтрино почти прозрачным, и эффективное сечение рассеяния нейтрино на протоне очень мало.

Как обозначается площадь поперечного сечения в физике

Впрочем, в ядерной физике встречаются примеры, когда эффективное сечение процесса заметно больше, чем геометрическое сечение ядра. Например, сечение захвата медленного нейтрона ядром бора-10 превышает геометрическое сечение ядра в десятки тысяч раз. Большое сечение захвата этим изотопом бора используется в бор-нейтронозахватной терапии раковых опухолей.

Более детальную информацию о внутреннем устройстве частиц можно получить с помощью дифференциального сечения процесса. Дифференциальное сечение — это, условно говоря, площадка, в которую надо попасть, чтобы рожденные частицы вылетели под определенным углом к оси столкновения или с определенным поперечным импульсом.

Единицы измерения

Сечение (обозначается буквой σ), как и всякая площадь, измеряется в квадратных метрах. Для выражения сечений столкновений элементарных частиц используют более удобную единицу — барн (b). 1 b = 10–24 см2 = 10–28 м2. В этих единицах 1 фм2 (1 кв.

фемтометр, то есть (1 × 10–15 м)2) равен 10 миллибарн (10 mb). Чем меньше сечение процесса, тем реже он происходит. Наиболее редкие процессы, зарегистрированные на коллайдерах, имеют сечение в доли пикобарна (1 pb = 10–12 b).

Сечение рассеяния солнечных нейтрино составляет порядка 10–21–10–18 b в зависимости от энергии нейтрино.

Дополнительная литература:

Как правильно рассчитать удельное сопротивление проводника в физике

Сопротивление проводника зависит от его длины, площади поперечного сечения и характеристик материала, из которого он изготовлен. Зависимость сопротивления от длины проводника прямо пропорциональная, а от площади его сечения — обратно пропорциональная.

Удельное сопротивление

Определение 

Удельное сопротивление обозначается греческой буквой ρ (ро) и является табличной величиной.

Единицей измерения удельного сопротивления является Ом·м или Ом·мм2м.

1 Ом·м равен такому удельному сопротивлению вещества, при котором проводник длиной 1 м и площадью сечения 1м2 имеет сопротивление 1 Ом.

Соответственно, указанная в таблице величина удельного сопротивления материала — это сопротивление проводника из данного материала длиной 1 м и с площадью поперечного сечения 1м2.

Удельное сопротивление вещества зависит также от температуры проводника. В следующих таблицах даны значения удельного сопротивления некоторых материалов при t=20 °С.

Удельное сопротивление металлов

Металл ρ, Ом·мм2м
серебро 0,016
медь 0,0175
золото 0,023
алюминий 0,026-0,029
вольфрам 0,054
цинк 0,059
железо 0,099
олово 0,12
свинец 0,22

Удельное сопротивление сплавов

Сплав металлов ρ, Ом·мм2м
сталь 0,103-0,137
латунь 0,025-0,108
бронза 0,095-0,1

Расчет сопротивления проводника

Формула 1

Расчет удельного сопротивления

Зная сопротивление проводника и его размеры, можно вычислить удельное сопротивление материала, из которого изготовлен проводник:

Формула 2

Расчет длины и площади сечения проводника

Из этой же формулы выводим формулы для нахождения длины и площади сечения проводника.

Формула 3Формула 4

Закон Ома

Сопротивление можно узнать, если известны напряжение и сила тока в проводнике.

В соответствии с законом Ома для участка цепи сила тока имеет прямую зависимость от напряжения и обратную от сопротивления. Следовательно, сопротивление равно отношению напряжения к силе тока.

Формула 5

Примеры решения задач

Задача 1Задача 2

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]