Как посчитать класс точности прибора

Ни один прибор в мире не является точным. Величина, которую он измеряет, всегда будет отличаться от истины на ту величину, которую еще называют его погрешностью. Данная погрешность и будет определять класс точности амперметра. Задачей всех производителей измерительной техники, заключается в том, чтобы эта погрешность была, как можно ниже и стремилась к нулю.

Как посчитать класс точности прибора

Погрешность амперметра устанавливается в результате поверки и сравнении показаний замеров одних и тех же величин с эталонным или образцовым прибором, имеющий более высокий класс точности. При этом значение, полученное на образцовом приборе, считаются действительными.

Что такое амперметр и какие величины он измеряет

Амперметр — измерительный прибор, который служит для измерения силы тока [І] в электроцепях. Единицей [І] по системе СИ является ампер [А]. Электрические цепи могут проводить ток разной силы, поэтому градуируют приборную шкалу амперметра с различной градацией от микроампера равного 1 мкА = 1×0-6 ампер до килоампера равного: 1 кА = 1 000 ампер.

Как посчитать класс точности прибора

Важно! В электроцепь амперметр включают последовательно, а для повышения границы измерений, используют специальные устройства: трансформаторы, шунты м магнитные усилители.

Поскольку ток в цепи напрямую зависит от величины сопротивления [R] элементов электроцепи, то собственное сопротивление прибора [Rа] должно быть предельно низким, стремится к нулю. Это приведет к уменьшению влияния устройства в процессе замеров тока в цепи, тем самым будет повышена точность измерения.

Разновидности амперметров

Они могут быть электромеханическими или аналоговыми, цифровыми или электронными. Базовый набор, как правило, состоит из детектора, передающего устройства и индикатора, самописца или запоминающего устройства.

Как посчитать класс точности прибора

Аналоговые устройства — самые старые из используемых инструментов. Хотя они надежны для статических и стабильных измерений, они не подходят для динамических и переходных условий. Кроме того, они довольно громоздкие и имеют ограничения из-за использования стрелочной индикации.

Электронные инструменты реагируют быстрее и способны мгновенно обнаруживать динамические изменения тока в сети. Примером является цифровой мультиметр, который способен измерить значения тока в динамическом или переходном режиме за секунды.

Виды погрешностей амперметра

Чтобы понять размер погрешности в измерениях, нужно сравнить полученные результаты с эталонными.

Как посчитать класс точности прибора

В метрологии используют для всех электротехнических измерителей, как для амперметров, так и для вольтметров, несколько видов погрешностей: абсолютную, относительную и приведенную.

Абсолютная погрешность амперметра — это разность Δ между результатом измерения, полученного на шкале прибора (Xи) и действительным значением силы тока в цепи (Xд). Абсолютная погрешность амперметра описывается простой формулой и выражается в единицах тока А.

Δх = Xд−Xи, А

где:

  • Δх — дельта Х
  • Xд — действительное показание силы тока, принимаемой по образцовому прибору;
  • Xи — измеренное значение на шкале прибора.

Относительная погрешность (δ) — отношение абсолютной погрешности амперметра Δх к действительному показанию силы тока, принимаемому по образцовому прибору. Оно может быть указано как в процентах, тогда частное умножается на 100, либо выражаться в относительных единицах.

  • δ = (Δх : Xд)×100, %
  • Приведенная погрешность — это значение приведенное к диапазону измерения амперметра, приравненного к его шкале. Его получают в виде частного от абсолютной погрешности Δх и нормируемого значения (Xн), в значениях соответствующим абсолютной погрешности Δх умноженной на 100 %:
  • δпр = (Δх : Xн)×100, %

Класс точности

Это основная характеристика амперметра, которая согласно еще советскому действующему ГОСТ 1845-59, определяет границы возможных погрешностей.

Как посчитать класс точности прибора

Для всех электроизмерительных приборов, к которым он относится, класс точности (Кл) обозначается в числовом виде по значению, соответствующему предельной допустимой приведенной погрешности δпр, в %.

Все электрические амперметры подразделяются по точности на 8 классов, а затем по группам, которые является важным признаком их классификации:

  • Образцовые: 0.05–0.1–0.2;
  • лабораторные: 0.5–0.1;
  • технические: 1.5–2.0–4.0.

Как посчитать класс точности прибора

Обратить внимание! Все приборы, у которых погрешность превышает 4%, являются внеклассными.

Образцовые применяют в электроизмерительных процессах для определения класса точности технических и лабораторных амперметров. Лабораторные применяются в научно-технических процессах при электротехнических исследованиях контроля ведения режимов, например на котельных, ГЭС, ТЭЦ и АЭС.

Важно! На панели амперметра класс точности указывается в кружках, квадратах и звездочках. Если он имеет неравномерную шкалу измерения, Кл обозначается ломаной линией.

Как определить класс точности

Согласно действующих государственных норм, производители амперметров обязаны гарантировать его относительную погрешность измерения, полученную по классу точности, указанной на измерительной панели и в паспорте на прибор.

Кроме того, все измерительные приборы должны проходить периодическую поверку в метрологических центрах, на соответствие заводскому классу точности.

Если такую аттестацию он не проходит, то не может использоваться в измерительных процессах.

Как посчитать класс точности прибора

Зная абсолютную погрешность и показание силы тока на шкале, можно просто получить реальную силу тока, действующую в цепи. При этом шкала для применения абсолютной погрешности считается равномерной.

Как посчитать класс точности прибора

Важно! При выборе шкалы стрелочного амперметра, нужно чтобы рабочее значение тока находилось, примерно, в 2/3 диапазона шкалы. Если стрелка будет находиться практически на 0 или на максимальном показатели шкалы, то относительная погрешность будет очень высокой, то есть доверять таким показаниям не рекомендуется.

Пример нахождения показания амперметра по приведенной погрешности

Для примера рассматривается аналоговый измеритель со шкалой до 25 А.

Как посчитать класс точности прибора

На шкале имеется обозначение класса точности 2.5, кружок или квадрат отсутствует, поэтому эта погрешность приведенная.

Y=Dх/Xп×100=+/- p

При Хп= 25А и значении p = 2.5 можно рассчитать абсолютную погрешность:

Δх =25/100×2.5=0.625 A

Если пользователь обнаружит на панели класс точности заключенный в квадрат, то погрешность нужно будет определять в процентном выражении от измеренного значения.

При показаниях по шкале Iи = 10 А, погрешность прибора не должна превышать

Δх =10×2.5/100=0.25

При показаниях по шкале Iи=2 А погрешность будет иной:

Δх =2×2.5/100=0.05

При показаниях по шкале Iи=25 А погрешность будет максимальной:

Δх =25×2.5/100=0.625

Вот почему важно, чтобы аналоговый прибор работал при измерениях в 2/3 рабочей шкалы.

Пример нахождения показания амперметра по относительной погрешности

Для того чтобы узнать погрешность для амперметра, имеющего класс точности 0.05/0.02, шкалу измерения 0…25 А. Δх определяют по измеряемому показанию на шкале 10А.

  1. Поскольку класс точности задан как c/d, то расчет будет выполняться по формуле:
  2. δ пр =+/-(с+d(xk/(x-1)))
  3. Где:
  • xk=25 А;
  • х=10 А;
  • с=0.05;
  • d=0.02.

δ пр =100 Δх / xN

Нормирующее значение xN=xk=25 A,

δ пр =+/-(0.05+0.02(25/(10-1)))=0.105

Δх = δ пр×xN/100=0.105×25/100=0.026 A

Выбор амперметра по метрологическим характеристикам

Наиболее частым источником ошибки при измерении тока считается то, что амперметр имеет ненулевое входное сопротивление.

Напряжение, возникающее на измерителе, приводит к снижению напряжения на тестируемом устройстве. Если уменьшение будет значительным, это приведет к значительно меньшему протеканию тока.

Другими словами, измеритель не показывает ток, который фактически протекает в сети.

Для того чтобы максимально нивелировать эту погрешность, применяют два основных типа архитектуры измерения: шунтирующие амперметры и с обратной связью.

Как посчитать класс точности прибора

Погрешность, вызванная шунтирующим измерителем, определяемая в виде частного напряжения амперметра, деленная на выходное сопротивление.

Амперметры с обратной связью ближе к «идеальным». Он вырабатывает напряжение на пути обратной связи операционного усилителя с высоким коэффициентом усиления.

Это напряжение также пропорционально измеряемому току, но не появляется на входе прибора.

В результате чувствительные измерители с обратной связью, такие как электрометры и пикоамперметры, имеют нагрузку по напряжению, обычно ограниченную до 200 мкВ.

Для промышленных измерений наиболее часто применяются амперметры аналогового панельного типа. При их выборе следует учитывать такие моменты:

  1. Выбор типа. При измерении І постоянного, следует выбрать измеритель постоянного тока, то есть с магнитоэлектрическим измерительным механизмом. При измерении переменного тока нужно обратить внимание на форму волны и частоту. Если это синусоида, то измеряют только эффективное значение, с последующим преобразованием в максимальное или среднее значение.
  2. Класс точности. Чем более высокий класс точности измерителя, тем выше его цена, тем сложнее у него ремонт и метрологическая аттестация. Поэтому для выполнения большинства инженерных измерений достаточно класса точности 1.5, не стоит применять образцовые или лабораторные приборы.
  3. Выбор шкалы. Чтобы в полной мере использовать возможности амперметра по классу точности, измеряемый показатель должен быть в интервале 1/2 ~ 2/3 максимальной шкалы.

Важно! Внутреннее сопротивление — определяющая величина при выборе измерителя. Ее следует принимать в соответствии с величиной измеряемого импеданса, иначе это приведет к большим ошибкам измерения. Поскольку внутреннее сопротивление отражает энергопотребление самого измерителя, при измерении тока прибор с внутренним сопротивлением следует выбирать, как можно меньшим.

Видео по теме

Что нужно знать о классе точности измерительного прибора? — knigaelektrika.ru

Измерительные приборы: вольтметры, амперметры, токовые клещи, осциллографы и другие — это устройства, предназначенные для определения искомых величин в заданном диапазоне, каждый из них имеет свою точность, причем устройства, измеряющие одну и ту же величину, в зависимости от модели, могут отличаться по точности и классу.

В каких-то ситуациях достаточно просто определить значение, например, вольтаж батарейки, а в других необходимо выполнить многократное повторение измерений высокоточными приборами для получения максимально достоверного результата, так в чем отличие таких измерительных устройств, что означает класс точности, сколько их бывает, как его определить и многое другое читайте далее в нашей статье.

Читайте также:  Как соединить алюминиевые трубки между собой

Что такое класс точности

Определение: «Класс точности измерения — это общая характеристика точности средства измерения, определяемая пределами допустимых основных и дополнительных погрешностей, а также другими факторами, влияющими на нее».

Сам по себе класс не является постоянной величиной измерения, потому что само измерение зачастую зависит от множества переменных: места измерения, температуры, влажности и других факторов, класс позволяет определить лишь только в каком диапазоне относительных погрешностей работает данный прибор.

Чтобы заранее оценить погрешность, которую измерит устройство, также могут использоваться нормативные справочные значения.

  Выбираем заточной станок: характеристики и рейтинги

  • Устаревание, несовершенство изготовления измерителей, внешние воздействия — это основной показатель отклонения погрешностей.
  • Относительная погрешность — это отношение абсолютной погрешности к модулю действительного приближенного показателя полученного значения, измеряется в %.
  • Абсолютная погрешность рассчитывается следующим образом:
  • ∆=±a или ∆=(a+bx)
  • x – число делений, нормирующее значение величины
  • a, b – положительные числа, не зависящие от х
  • Абсолютная и приведенная погрешность рассчитывается по следующим формулам, см. таблицу ниже

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей.

Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели.

Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Читать также: Как переводится сип кабель

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

  Сталь 95Х18 для ножей. Плюсы и минусы, характеристики

Какие классы точности бывают, как обозначаются

Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже

Манометры на основе мембран, мембранных коробок, сильфонов

Манометры выпускаются следующих классов точности: 0,6; 1; 1,5; 2,5; 4 (цифры расположены в порядке уменьшения значения класса точности приборов).

Класс точности – это максимально допустимая относительная погрешность прибора, приведенная к диапазону его шкалы, выраженная в процентах. Чем ниже значение класса точности тем меньше погрешность манометра.

Согласно ГОСТ 2405-88 класс точности приборов должен выбираться из ряда: 0,4; 0,6; 1,0; 1,5; 2,5; 4,0. В случае с дифференцированным значением основной погрешности устанавливают следующие условные обозначения классов точности: 0,6-0,4-0,6; 1-0,6-1; 1,5-1-1,5; 2,5-1,5-2,5; 4-2,5-4.

Обозначение класса точности

Предел допускаемой основной погрешности, % диапазона показаний, в диапазоне шкалы

Среди приборов, применяемых для измерения давления, наиболее широкое распространение получили пружинные приборы – манометры, вакуумметры, мановакуумметры.

Основным элементом таких приборов является трубчатая пружина, которая деформируется под действием подведенного давления, причем деформация пропорциональна величине давления.

Упругие свойства пружин не остаются постоянными с течением времени, поэтому такие приборы в обязательном порядке следует подвергать периодически поверке.

Большинство приборов, используемых для измерения давления и разрежения, подлежат обязательной государственной поверке.

Если в результате поверки прибор признан годным, он снабжается клеймом установленного образца или соответствующими свидетельствами, в которых указываются константы приборов или поправки к их показаниям.

Однако, несмотря на государственный контроль за состоянием приборов, на предприятиях должен осуществляться ведомственный контроль, причем сроки поверки зависят от условий эксплуатации приборов.

  • В эксплуатационных и лабораторных условиях поверка приборов для измерения давления сводится к следующему:
  • 1. Поверка нулевой точки;
  • 2. Поверка прибора в рабочей точке;

3. Полная поверка прибора.

Первые два способа не являются собственно поверкой; они относятся к контролю за состоянием прибора только по одному признаку.

Поверка нулевой точки заключается в наблюдении за положением стрелки прибора, отключенного от установки. Если в отключенном приборе при сообщении его с атмосферой стрелка устанавливается на нулевом штрихе, считается, что прибор не имеет повреждений.

Чтобы произвести поверку прибора в рабочей точке, к работающей установке подключают контрольный прибор, точность показаний которого известна. Оба прибора сообщаются с одним и тем же давлением, определяется разность их показаний.

Полная поверка прибора проводится в лабораторных условиях со снятием прибора с рабочей установки. Такая поверка дает полную информацию о состоянии прибора, и сомнений в исправности прибора, прошедшего такую поверку, быть не может.

Поверка технического манометра производится с целью определения его пригодности для дальнейшей эксплуатации.

Описание установки и приборов

Поверка рабочего манометра производится на установке, изображенной на рис. 5.1. Избыточное давление создается специальным прессом, с помощью которого можно произвольно создавать давление в весьма широких пределах.

Пресс представляет собой цилиндр 7, внутри которого перемещается поршень 9, приводимый в движение маховиком 11. Полость давления сообщается с резьбовыми отверстиями, предназначенными для установки поверяемого 4 и образцового 1 манометров.

Отверстия для установки манометром могут быть перекрыты вентилями 5 и 6, что необходимо для установки и смены манометров.

Для заполнения пресса обычно используют трансформаторное или вазелиновое масло, которое поступает в цилиндр пресса и в мано­метры из емкости 3 при открытом вентиле 2.

Заполнение внутренних полостей маслом производится при открытом вентиле 2 и крайнем правом положении поршня.

Затем вентиль 2 закрывается, а поршень вращением маховичка перемещается влево, масло в цилиндре сжимается, за счет чего и создается избыточное давление.

Р

  Как сделать гидропривод своими руками?

ис. 5.1. Установка для поверки пружинных манометров по образцовому пружинному манометру

Для целей поверки и градуировки различных пружинных манометров, вакуумметров и мановакуумметров широко применяют образцовые пружин­ные приборы. Иногда образцовые приборы используют и для выполнения непосредственных измерений давления и разрежения. Образцовые при­боры изготавливаются только в виде манометров и вакуумметров, об­разцовых мановакуумметров не выпускают.

Образцовые манометры изготавливаются с трубчатой пружиной, секторным передаточным механизмом и конструктивно они мало отличаются от обыкновенных технических рабочих манометров.

Отличие заключается в том, что в образцовых манометрах за счёт более качественной от­делки, тщательной подготовки передаточного механизма высокого качест­ва трубчатых пружин, достигается большая точность измерений.

Кроме того, в образцовых приборах применяются особые шкалы и иного вида стрелки.

Какие существуют классы точности

Согласно ГОСТ 2405-88 класс точности манометра должен выбираться из ряда чисел:

Как связаны диаметр и класс точности манометра?

Диаметр и класс точности манометра параметры взаимосвязанные, чем выше точность прибора для измерения давления, тем больше диаметр его шкалы.

Какая погрешность у манометра с классом точности 1,5

Погрешность измерения манометра, зависит не только от его класса точности, но и от диапазона измерений.

Рассмотрим пример, диапазон измерения манометра составляет 10 МПа, класс точности прибора 1,5. Это означает, что максимальная погрешность манометра не должна превышать 10*1,5/100=0,15 МПа.

Манометр класса точности 2,5

Обозначение 2,5 означает, что максимально допустимая погрешность измерений манометра составляет 2,5% от его диапазона измерений.

Классификация вакуумметров в зависимости от типа устройства

    К этой категории относятся:

  • жидкостный;
  • механический: мембранный, деформационный и т.д.;
  • тепловой: термопарный, теплоэлектрический;
  • компрессионный: вакуумметр Мак-Леода;
  • ионизационный;
  • магнитный;
  • вязкостный;
  • электроразрядный;
  • радиометрический.

Вакуумметры, представленные выше, вы можете использовать для измерения полного давления.

Однако, нередко встречаются ситуации, когда требуется измерить другие разновидности газа. Например, в случае с парциальным давлением необходимо работать со специальными измерителями и масс-спектрометрами. В связи с этим мы получаем еще одну классификацию вакуумных манометров.

Как узнать класс точности манометра

Класс точности указывается на шкале прибора, перед числовым значением могут располагаться буквы KL или CL.

Вычисление класса точности прибора

Предположим, что на шкале указан класс точности 1,0, а диапазон измерения прибора 250 Bar. При сравнении результатов измерения давления с показаниями образцового манометра выяснилось, что погрешность составляет 2 Bar. Соответствует ли манометр указанному классу точности?

  Полировальные пасты Osborn в виде твердых брусков

  1. Для того, чтобы ответить на этот вопрос произведем вычисление класса точности, для этого соотнесем погрешность измерений с диапазоном измерения прибора и выразим результат в процентах.

  2. Полученный результат не превышает 1, это означает, что манометр соответствует указанному классу точности 1,0.
  3. Заказать манометр и узнать более подробно о его классе точности Вы можете у специалистов компании Гидро-Максимум.

Манометры – измерительные приборы для определения давления газа, пара, жидкости в закрытых пространствах. Общее название распространяется на несколько типов устройств – барометры, вакуумметры, манометры избыточного или абсолютного давления.

Кроме того, даже в одной линейке приборы отличаются по разным параметрам, в том числе, по классу точности измерений.

Отраженная в процентном соотношении наиболее допустимая относительная погрешность в диапазоне измерений называется классом точности манометра. Информация о шести применяемых классах прописана в ГОСТ 2405-88: 0,4, 0,6, 1, 1,5, 2,5, 4.

Читайте также:  Lm358 в блоке питания

Показатель напрямую зависит от диаметра шкалы прибора: чем он больше, тем меньше погрешность. То есть, манометр диаметром 250 мм показывает более точные данные, чем 40-миллиметровый.

Меньшую погрешность устройства обозначают меньшие числовые обозначения класса точности.

Выбор прибора по классу точности зависит от проектного решения относительно применяемых средств измерения, которое, в свою очередь, определяется технологическим процессом и стоимостью устройства. С возрастанием точности датчика растёт и его цена, становятся выше требования к обслуживанию, затраты на поверку и ремонт.

Класс точности манометра должен быть не ниже 2,5, если рабочее давление достигает 2,5 Мпа, 1,5 при давлении, превышающем 2,5 Мпа. Кроме того, следует учитывать размеры корпуса, исполнение прибора и способ крепления соответствующие месту установки.

Виды манометров

Сегодня существует большое количество разновидностей манометров. Они имеют различную конструкцию и подходят для разных целей. Для измерения давления рабочей среды в трубопроводах и различном оборудовании чаще всего применяют следующие виды приборов:

  • пружинные— величина давления уравновешивается за счет силы, возникающей при деформации пружины. Приборы отличаются простотой конструкции, благодаря этому при необходимости не составляет сложности разобрать манометр для проведения ремонта;
  • мембранные— основным функциональным элементом является мембрана, которая деформируется под действием напора рабочей среды, за счет чего возникает уравновешивающая сила упругости;
  • поршневые— для уравновешивания давления используется поршень с грузом определенной величины;
  • электроконтактные— эти приборы используются в системах автоматического контроля и сигнализации.

Предохранительные устройства

Каждый ОКН для обеспечения безопасных условий эксплуатации снабжается ПУ от повышения давления выше допустимого.

https://www.youtube.com/watch?v=PmAOjwABf-M\u0026t=165s

В качестве ПУ применяются: пружинные ПК; рычажно-грузовые ПК; импульсные ПУ; мембранные ПУ; другие ПУ, применение которых согласовано с РТН.

Пружинные клапаны:конструкция должна исключать возможность затяжки пружины сверх установленной величины; пружина должны быть защищена от недопустимого нагрева (охлаждения) и непосредственного воздействия рабочей среды. Предусматривается устройство для проверки исправности действия клапана в рабочем состоянии путём кратковременного принудительного подрыва. При расположении клапана выше 2,5 м предусматривается дистанционный привод.

Рычажно-грузовые клапаны:установка на передвижных объектах не допускается. Вес указывается на грузе. Груз неподвижно закрепляется на рычаге.

Диаметр прохода рычажно-грузового и пружинного клапанов не менее 20 мм.

Мембранные ПУ:необходимость установки и конструкцию определяет проектная организация. Устанавливаются:вместо рычажно-грузовых и пружинных клапанов, когда эти клапаны в рабочих условиях конкретной среды не могут быть применены вследствие их инертности или других причин;

перед ПК в случаях, когда ПК не могут надёжно работать вследствие вредного воздействия рабочей среды (коррозия, эрозия, прикипания, примерзания. Т. п.)или возможных утечек через закрытый клапан опасных и вредных веществ;

  • параллельно с ПКПК для увеличения пропускной способности систем сброса давления;
  • на выходной стороне ПКПК для предотвращения вредного воздействия рабочих сред со стороны сбросной системы и для исключения влияния колебаний противодавления этой системы на точность срабатывания ПКПК.
  • На каждом паровом и водогрейном котле должно быть установлено не менее двух ПУ.

Суммарная пропускная способность ПУ, устанавливаемых на паровом котле, должна быть не менее номинальной паропроизводительности котла. Пропускная способность ПУ указывается в его паспорте.

  1. ПУ должны защищать от превышения давления:
  2. Сосуды: с давлением до 3 кгс/см2не более чем на 0,5 кгс/см2расчётного; от 3 до 60 кгс/см2 15% расчётного; свыше 60 кгс/см2 10% расчётного.
  3. При работающих ПК допускается превышение давления в сосуде более чем на 25% рабочего при условии, что это превышение предусмотрено проектом и отражено в паспорте.
  4. Котлы – не более чем на 10% расчётного (разрешенного).
  5. Трубопроводы – не более чем на 10% расчётного, при расчётном давлении до 5 кгс/см2– не более чем на 0,5 кгс/см2.
  6. Для котлов и трубопроводов превышение давления при полном открытии ПК выше чем на 10% расчётного может быть допущено, если это предусмотрено расчётом на прочность.
  7. Сосуды и трубопроводы, расчётное давление которых ниже давления питающего их источника, должны иметь редуцирующее устройство с манометром и предохранительным клапаном, которые устанавливаются со стороны меньшего давления после редуцирующего устройства.
  8. Если эксплуатации объекта разрешена на пониженном давлении, то регулировка ПУ производится по этому давлению, пропускная способность ПУ должна быть проверена расчетом.
  9. Методика и периодичность регулирования ПУ и давление начала их открытия должны быть указаны предприятием-изготовителем в инструкции по монтажу и эксплуатации объекта.

ПУ поставляется заказчику с паспортом, включающим характеристику его пропускной способности. К паспорту прилагается инструкция по эксплуатации.

  • ПУ устанавливается на патрубках или трубопроводах, непосредственно присоединённых к объекту.
  • Отбор рабочей среды из патрубков на которых установлены ПУ не допускается.
  • Установка запорной арматуры между объектов и ПУ, а также за ним не допускается.

ПУ должны иметь отводящие трубопроводы, оборудованные дренажами для слива конденсата. Установка запорных устройств на дренажах не допускается.

  1. Проверка:
  2. Исправность действия проверяется кратковременным принудительным подрывом.
  3. Персоналом:
  4. – для котлов и трубопроводов – как для манометров;
  5. – для сосудов – порядок и сроки в зависимости от технологического процесса указываются в инструкции по эксплуатации ПУ, утверждённой владельцем в установленном порядке.
  6. Результаты проверки, сведения об их настройке записываются в сменный журнал лицами, выполняющими указанные операции.

ГОСТ 12.2.085–82 «Клапаны предохранительные. Требования безопасности».

Устройство манометра для измерения давления воды

Манометр для измерения давления воды в водопроводе обладает очень простой конструкцией. Прибор состоит из корпуса и шкалы, на которой указывается измеряемая величина. Внутри корпуса может быть расположена трубчатая пружина или двухпластинчатая мембрана. Также внутри устройства находится держатель, трибко-секторный механизм и упругий чувствительный элемент.

Принцип действия прибора основывается на уравновешивании показателей давления посредством силы деформации мембраны или пружины. В результате этого процесса упругий чувствительный элемент смещается, что приводит в действие показывающую стрелку устройства.

Что такое класс точности средств измерения (СИ)?

Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.

Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:

  • приборы;
  • преобразователи;
  • установки;
  • системы;
  • принадлежности;
  • меры.

На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности.

Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001.

Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:

  • делители напряжения;
  • трансформаторы тока и напряжения;
  • шунты.

Обозначение класса точности

Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.

Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.

Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.

Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.

Грузопоршневой манометр, класс точности 0,05

Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.

Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.

Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.

Общие сведения об измерениях. Погрешности измерений и средств измерений

Общие сведения об измерениях

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств. Под измерением понимается процесс экспериментального сравнения данной физической величины с однородной физической величиной, значение которой принято за единицу.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Читайте также:  Бук: описание дерева, виды, посадка и уход, распространение

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы классифицируются по различным признакам.

Например, измерительные приборы можно построить на основе аналоговой схемотехники или цифровой. Соответственно их делят на аналоговые и цифровые. Ряд приборов, выпускаемых промышленностью, допускают только отсчитывание показаний. Эти приборы называются показывающими.

Измерительные приборы, в которых предусмотрена регистрация показаний, носят название регистрирующих.

Погрешности измерений

Погрешность является одной из основных характеристик средств измерений.

Под погрешностью электроизмерительных приборов, измерительных преобразователей и измерительных систем понимается отклонение их выходного сигнала от истинного значения входного сигнала.

Абсолютная погрешность Δa прибора есть разность между показанием прибора ах и истинным значением а измеряемой величины, т.е.

  • Абсолютная погрешность, взятая с обратным знаком, называется поправкой.
  • Относительная погрешность δ представляет собой отношение абсолютной погрешности к истинному значению измеряемой величины. Относительная погрешность, обычно выражаемая в процентах, равна
  • Приведенная погрешность γП есть выраженное в процентах отношение абсолютной погрешности Δa к нормирующему значению апр
  • Нормирующее значение – условно принятое значение, могущее быть равным конечному значению диапазона измерений (предельному значению шкалы прибора).

Погрешности средств измерений

Класс точности прибора указывают просто числом предпочтительного рода, например, 0,05.

Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность).

Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Класс точности прибора (например, амперметра) дается выражением

При установлении классов точности приборов нормируется приведенная погрешность, а не относительная. Причина этого заключается в том, что относительная погрешность по мере уменьшения значений измеряемой величины увеличивается.

  1. По ГОСТ 8.401-80 в качестве значений класса точности прибора используется отвлеченное положительное число из ряда:
  2. В интервале от 1 до 100 можно использовать в качестве значений класса точности числа:
  3. (α = 0) 1; 1,5; 2; 2,5; 4; 5; 6;
  4. (α = 1) 10; 15; 20; 25; 40; 50; 60.

Т.е. четырнадцать чисел 1; 1,5; 2; 2,5; 4; 5; 6; 10; 15; 20; 25; 40; 50; 60.

Необходимо отметить, классы точности от 6,0 и выше считаются очень низкими.

Примеры решения задач

  • Задача №1
  • Определить для вольтметра с пределом измерения 30 В класса точности 0,5 относительную погрешность для точек 5, 10, 15, 20, 25 и 30 В и наибольшую абсолютную погрешность прибора.
  • Решение
  1. Класс точности указывают просто числом предпочтительного рода, например, 0,5.

    Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность).

    Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

  1. Приведенная погрешность (выраженное в процентах отношение абсолютной погрешности к нормирующему значению)
  2. постоянна и равна классу точности прибора.

  3. Относительная погрешность однократного измерения (выраженное в процентах отношение абсолютной погрешности к истинному значению измеряемой величины)
  4. уменьшается к значению класса точности прибора с ростом измеренного значения к предельному значению шкалы прибора.

  5. Абсолютная погрешность однократного измерения
  6. постоянна на всех отметках рабочей части шкалы прибора.
  7. По условию задачи: Uизм = Ui = 5, 10, 15, 20, 25 и 30 В – измеренное значение электрической величины; Uпр = 30 В – предел шкалы вольтметра.
  8. Наибольшая абсолютная погрешность вольтметра
  9. Источник

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

  • абсолютной;
  • относительной;
  • приведенной.

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей.

Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели.

Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

https://www.youtube.com/watch?v=kLQ6uLyx4_w\u0026t=58s

Скачать ГОСТ 8.401-80

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Как определить класс точности электроизмерительного прибора, формулы расчета

Чтобы определить класс точности, необходимо взглянуть на его корпус или инструкцию пользователя, в ней вы можете увидеть цифру, обведенную в круг, например, ① это означает, что ваш прибор измеряет величину с относительной погрешностью ±1%.

Но что делать если известна относительная погрешность и необходимо рассчитать класс точности, например, амперметра, вольтметра и т.д. Рассмотрим на примере амперметра: известна ∆x=базовая (абсолютная) погрешность 0,025 (см. в инструкции), количество делений х=12

  • Находим относительную погрешность:
  • Y= 100×0,025/12=0,208 или 2,08%
  • (вывод: класс точности – 2,5).
  • Следует отметить, что погрешность неравномерна на всем диапазоне шкалы, измеряя малую величину вы можете получить наибольшую неточность и с увеличением искомой величины она уменьшается, для примера рассмотрим следующий вариант:
  • Вольтметр с классом p=±2, верхний предел показаний прибора Xn=80В, число делений x=12

  Станок для правки литых дисков своими руками

Предел абсолютной допустимой погрешности:

Относительная погрешность одного деления:

Если вам необходимо выполнить более подробный расчет,смотрите ГОСТ 8.401-80 п.3.2.6.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Поверка приборов, для чего она нужна

Все измерительные приборы измеряют с некой погрешностью, класс точности говорит лишь о том, в каком диапазоне она находится. Бывают случаи, когда диапазон погрешности незаметно увеличивается, и мы начинаем замечать, что измеритель «по-простому» начинает врать. В таких случаях помогает поверка.

  1. Это процесс измерения эталонной величины в идеальных условиях прибором, обычно проводится метрологической службой или в метрологическом отделе предприятия производителя.
  2. Существует первичная и периодическая, первичную проверку проводят после выпуска изделия и выдают сертификат, периодическую проводят не реже чем раз в год, для ответственных приборов чаще.
  3. Поэтому если вы сомневаетесь в правильности работы устройства, вам следует провести его поверку в ближайшей метрологической службе, потому что измеритель может врать как в меньшую, так и в большую сторону.
  4. Как легко проверить потребление электроэнергии в квартире, можете узнать в нашей статье.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов.

Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

  • Пример расчета погрешности
  • Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.
  • Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.
Ссылка на основную публикацию
Adblock
detector