Коэффициент с для меди и алюминия

  • При планировании электромонтажных работ в доме или квартире, может возникнуть вопрос о том, что же лучше: медная или алюминиевая проводка?
  • В данной статье мы разберемся какой материал следует применять при разводке электрического кабеля в жилых помещениях и рассмотрим все плюсы и минусы медных и алюминиевых проводников.
  • Коэффициент с для меди и алюминияКоэффициент с для меди и алюминия

Сравнение алюминиевых и медных проводов по техническим характеристикам

Для того, чтобы понять, чем отличается медь и алюминий, нужно рассмотреть и сравнить их технические характеристики.

Свойства проводников

Основными электрическими свойствами материала проводников являются их удельное электрическое сопротивление, теплопроводность и температурный коэффициент сопротивления. К механическим свойствам можно отнести вес, прочность, удлинение перед разрывом и срок службы в режиме нормальной работы.

Удельное электрическое сопротивление

  1. Удельное электрическое сопротивление – это способность материала оказывать сопротивление электрическому току при его протекании через проводник. Эта характеристика вычисляется по формуле:
  2. Ρ = r⋅S/l,
  3. где l – длина проводника, S – площадь поперечного сечения, r – сопротивление.

  4. Для сравнения:
Материал проводникаУдельное электрическое сопротивление, Ом·мм²/м
Медь 0,0175
Алюминий 0,0300

Как видно из этой таблицы, у меди удельное сопротивление ниже и, соответственно, она меньше нагревается и лучше проводит электрический ток.

Теплопроводность

Теплопроводность – это свойство проводника, которое показывает количество тепла, которое проходит в единицу времени через слой вещества. Для расчёта электрического кабеля данная характеристика является достаточно важной, так как от неё зависит безопасная эксплуатация электропроводки. Чем выше теплопроводность материала, тем он меньше нагревается и лучше отдает лишнее тепло.

Для сравнения:

Материал проводникаТеплопроводность, Вт/(м·К)
Медь 401
Алюминий 202—236

Температурный коэффициент сопротивления

При нагревании различных материалов их электропроводимость изменяется. Характеристикой, которая показывает это изменение называется температурным коэффициентом сопротивления (ТКС). Это значение выявляют с помощью специального измерителя ТКС и берут среднее значение этого коэффициента.

Обратите внимание! Температурный коэффициент сопротивления — это отношение относительного изменения сопротивления к изменению температуры. Обозначается α.

Для сравнения:

Материал проводникаТемпературный коэффициент сопротивления, 10-3/K
Медь 4,0
Алюминий 4,3

Чем меньше температурный коэффициент сопротивления, тем большей стабильностью обладает проводник.

Вес и электропроводимость проводника

Медь намного тяжелее алюминия. Её плотность составляет 8900 кг/м³, а плотность алюминия 2700 кг/м³. Это означает, что проводник из меди будет тяжелее аналогичного по размеру алюминиевого провода в 3,4 раза.

Важно понимать, что электропроводимость меди более чем на 50% выше, чем у алюминия и, соответственно, чтобы проводник из алюминия мог провести такой же ток он должен быть больше медного на 50%.

Поэтому эффективнее использовать медный проводник, чем кабель из алюминиевого материала.

Коэффициент с для меди и алюминия

Удлинение перед разрывом и прочность

Электрический кабель может работать в различных режимах и условиях эксплуатации, поэтому при выборе проводника очень важно учитывать его стойкость к механическим нагрузкам. Сопротивление на разрыв – характеристика, которая учитывает прочность материала и противодействие разрушающей нагрузке.

Для сравнения:

Материал проводникаПредел прочности на разрыв, кг/м²
Медь 27 – 44,9
Алюминий 8 – 25

Исходя из анализа таблицы хорошо видно, что медь обладает высокой стойкостью к механическому воздействию и существенно превосходит алюминий по такой характеристике.

Срок службы

Срок службы электрической проводки зависит от условий эксплуатации и окружающей среды. Принято считать, что срок службы алюминиевого кабеля в нормальных условиях работы составляет 20-30 лет. В то же время медная проводка служит значительно дольше и срок её службы может достигать до 50 лет.

Коэффициент с для меди и алюминия

Какой материал для электропроводки нужно выбирать для квартиры

В советские времена в жилых помещениях обычным явлением было применение электропроводки из алюминия. Это происходило по тому, что в жилых домах не было высоких нагрузок на электрическую сеть ввиду небольшой мощности и малого количества электрических приборов.

С развитием техники и появлением огромного разнообразия мощных электроприборов, которые используются в домашних условиях, существенно повысились требования к качеству и материалам для электрического кабеля.

В современных реалиях устройство проводки из алюминиевого материала практически не применяется, так как согласно ПУЭ электрическая проводка в жилых помещениях должна выполняться из меди!

Интересный факт! Не многие знают, но чуть ранее до алюминиевой проводки, в сталинские времена, в квартирах использовалась медная проводка.

Преимущества и недостатки алюминиевой электропроводки

Основными преимуществами электрической проводки из алюминия являются:

  1. Небольшая масса: плотность алюминия ниже и соответственно ниже его масса. При прокладке простых сетей с множеством кабелей, но небольшими нагрузками – это будет удобным преимуществом.
  2. Небольшая цена: алюминий дешевле меди в несколько раз, поэтому изделия из такого материала также отличаются низкой ценой.
  3. Стойкость к окислению: при отсутствии контакта с окружающей средой служит долго и не разрушается от окисления.

  Маркировка проводов и кабелей и расшифровка марки

К недостаткам данного материала можно отнести:

  1. Низкие показатели по электропроводимости — алюминий имеет высокое удельное сопротивление и нагревается при прохождении через него электрического тока. Поэтому ПУЭ запрещает использование такого кабеля в домашних сетях при поперечном сечении проводника менее 16 мм².
  2. Плохое соединение — из-за окислительных процессов и циклов нагрев/остывание, места соединения алюминиевого кабеля постепенно разрушаются, что может привести к неисправности электрической проводки или короткому замыканию.
  3. Хрупкость проводников — такие кабели легко ломаются при нагреве, что так же очень часто приводит к неисправностям.

Преимущества и недостатки медной электропроводки

Медь разрешена к использованию и широко применяется для устройства электрической проводки в жилых и промышленных зданиях. По электрическим характеристикам она превосходит многие материалы и уступает только серебру.

Преимуществами медных кабелей являются:

  1. Высокая электро- и теплопроводность — медь имеет относительно низкое сопротивление и эффективно проводит электрический ток, обладает высоким КПД, а также существенно не нагревается при правильном сечении кабеля.
  2. Устойчивость к коррозии — медные проводники могут работать при любых условиях эксплуатации и окружающей среды, служат долго и практически не подвергаются коррозии.
  3. Устойчивость к механическим нагрузкам — медная электрическая проводка является прочной, пластичной и гибкой.
  4. Гибкость и удобство монтажа — проводники из меди очень гибкие и их удобно монтировать под разными углами и подключать к розеткам и выключателям.

Главным недостатком меди является её высокая стоимость. Но нужно понимать, что при производстве такого ответственного вида работ, как монтаж проводки очень важна безопасность и долговечность. Поэтому, несмотря на свою стоимость, проводка из меди быстро окупается и при правильной эксплуатации служит очень долго без ремонтов и неисправностей.

Коэффициент с для меди и алюминия

Стоит ли менять старую алюминиевую проводку?

На этот вопрос можно с уверенностью и однозначно ответить: да, безусловно стоит! Применение старой алюминиевой проводки при нынешних современных нагрузках на электрическую сеть не только неэффективно, но и не безопасно.

Более того, согласно ПУЭ алюминиевые провода нельзя применять при монтаже проводки в доме.

Поэтому, если есть возможность поменять электропроводку, то её стоит обязательно сменить на медную с правильным расчетом, подбором сечения и количества электрических линий.

Электромонтажные работы – это тот случай, когда нельзя экономить на качестве материалов. От правильного подбора и расчета материалов зависит безопасность людей и правильная работа электрических приборов в доме.

Если же вы все-таки решили оставить старую электропроводку, то вам стоит переделать щиток, ограничить мощность и защитить каждую линию от превышения нагрузки выше 16 А (это позволит вам не беспокоится о том, что в какой-то момент проводка перегреется и загорится).

Пусть медная проводка значительно дороже алюминиевой, но в долгосрочной перспективе она окупается и не приносит проблем пользователю.

Коэффициент с для меди и алюминия — Мастерок

Одной из физических величин, используемых в электротехнике, является удельное электрическое сопротивление. Рассматривая удельное сопротивление алюминия, следует помнить, что данная величина характеризует способность какого-либо вещества, препятствовать прохождению через него электрического тока.

Понятия, связанные с удельным сопротивлением

Величина, противоположная удельному сопротивлению, носит наименование удельной проводимости или электропроводности. Обычное электрическое сопротивление свойственно лишь проводнику, а удельное электрическое сопротивление характерно только для того или иного вещества.

Читайте также:  Как сделать винтовой домкрат своими руками

Как правило, эта величина рассчитывается для проводника, имеющего однородную структуру. Для определения электрического сопротивления однородных проводников используется формула:

Коэффициент с для меди и алюминия

Физический смысл этой величины заключается в определенном сопротивлении однородного проводника с определенной единичной длиной и площадью поперечного сечения. Единицей измерения служит единица системы СИ Ом•м или внесистемная единица Ом•мм2/м.

Последняя единица означает, что проводник из однородного вещества, длиной 1 м, имеющий площадь поперечного сечения 1 мм2, будет иметь сопротивление в 1 Ом.

Таким образом, удельное сопротивление любого вещества можно вычислить, используя участок электрической цепи, длиной 1 м, поперечное сечение которого будет составлять 1 мм2.

Каждый металл имеет собственные индивидуальные характеристики. Если сравнивать удельное сопротивление алюминия, например с медью, можно отметить, что у меди это значение составляет 0,0175 Ом•мм2/м, а у алюминия – 0,0271Ом•мм2/м. Таким образом, удельное сопротивление алюминия значительно выше, чем у меди. Отсюда следует вывод, что электропроводность меди значительно выше, нежели из алюминия.

Коэффициент с для меди и алюминия

На значение удельного сопротивления металлов влияют определенные факторы. Например, при деформациях, нарушается структура кристаллической решетки. Из-за полученных дефектов возрастает сопротивление прохождению электронов внутри проводника. Поэтому, происходит рост удельного сопротивления металла.

Читать также:  Как найти прослушивающее устройство в помещении

Также свое влияние оказывает и температура. При нагревании узлы кристаллической решетки начинают колебаться сильнее, тем самым увеличивая удельное сопротивление. В настоящее время, из-за высокого удельного сопротивления, алюминиевые провода повсеместно заменяются медными, обладающими более высокой проводимостью.

Температурный коэффициент сопротивления — это отношение относительного изменения сопротивления к изменению температуры.

или через удельное сопротивление

Ниже приведена таблица значений α для ряда металлов в диапазоне температур от 0 до 100 ° C.

Коэффициент с для меди и алюминия

Это пригодится исключительно электриках. Так как часто приходится рассчитывать потери в кабелях и проводниках. Поэтому предлагаю ознакомиться со следующим материалом, если кому не интересно просьба не писать глупости.

Формула по которой ведется расчет потри, а так же готовая рассчитанная таблица (чуть ниже):

О том как применить данную таблицу на практике читаем под таблицей .

  • M=P*L момент (см. таблицу)
  • P = мощность в кВт
  • L = длина в метрах
  • s = сечения проводника (кабеля)
  • C = для Cu – 72, для Al -44

Моменты для алюминиевых и медных проводов

↑ тут выбрать Алюминий или Медь (Al или Cu соответственно)

Теперь рассмотрим пример, где применим полученные данные на практике. У нас имеется несколько несколько нагрузок. Черные квадратики все они имеют разную мощность указанную красным цветом.

Коэффициент с для меди и алюминия

Что бы рассчитать это падение нам необходимо посчитать нагрузки на каждой точке, у меня это сделано розовым цветом.

ΔY рассчитано из таблицы/ Для примера участок между распред. шкафом и первой 5кВт нагрузкой составит:

Читать также:  Для чего применяются накладные уголки на тисках

  • 50 кВт*20м=1000 ищем в таблице в графе 16мм² наше значение, если оно около можно взять число пропорционально, в моем случае это 1,4%.
  • Дале складываем потери на всех участках и получаем потерю в линии, в моем случае это 2,57%.
  • Напомню что по ПУЭ (правила устройства электроустановок) допускается в пределах не более 5%.

Теоретический материал взят из: Справочная книга «Проектирование электрического освещения» Выпуск 1976г. «Энергия» Ленинград. Стр. 343 (раздел 12-4.

Расчет осветительной сети по потерям напряжения).

Сечение кабеля по мощности – таблица соотношений и как ею пользоваться

Ремонт и проектирование электросетей, а также электрооборудования неразрывно связаны с необходимостью правильного подбора проводки. Для оптимального выбора силового кабеля понадобиться узнать несколько параметров начиная нагрузкой и заканчивая способом прокладки. Разберём как рассчитать сечение кабеля по мощности, таблица для проведения вычислений будет приведена в статье.

Надо знать, какую часть кабеля считать Источник cablingpoint.com

Необходимость расчётов

Современные электрические сети должны отвечать следующим требованиям:

  • безопасность эксплуатации;
  • надёжность функционирования;
  • экономичность потребления.

Расчёт сечения кабеля по мощности либо другому параметру, в первую очередь, необходим для соблюдения этих требований. 

При недостаточной площади поперечного сечения проводки, нагрузка на неё резко возрастает и в результате приводит к перегреву. В свою очередь это чревато аварийными ситуациями, наносящими вред не только электрооборудованию, но и пользующимся им людям.

Завышенное от номинального поперечного сечения кабеля позволяет безопасно использовать приборы и устройства. Однако такой подход оборачивается неоправданным расходом средств на более дорогие коммуникации. Грамотный расчёт сечения кабеля позволяет соблюсти баланс между безопасностью и ценой энергетических линий.

Приведём небольшой пример. Задача – определить сечение провода для пяти киловатт. Для решения необходимо воспользоваться таблицами ПУЭ. Это регламентирующий справочный документ, полное название– «Правила устройства электроустановок» в нём указаны 4 основных критерия, определяющих сечение проводки:

  • вид напряжения – одна или три фазы;
  • материал, из которого изготовлен проводник;
  • способ укладки проводника;
  • ток в амперах или мощность в киловаттах.

Кабель, проложенный открытым способом Источник krepezhinfo.ru

В этом справочнике имеется необходимая нам таблица сечения кабеля. Однако значение пять киловатт в ней отсутствует. В таких случаях берётся следующая большая величина, в нашем случае, пять с половиной киловатт.

Современная проводка в квартирах изготавливается из меди и прокладывается по воздуху. Исходя из этих параметров для решения поставленной задачи подойдёт проводник сечением два с половиной миллиметра. При этом сеть должна создавать не более двадцати пяти ампер токовой нагрузки.

Выбор сечения проводника по мощности

Выбирая сечение кабеля по мощности необходимо вычислить её суммарную величину. Для этого составляется перечень всех электроприборов на объекте. Как на устройствах, так и в технической документации к ним обозначается потребляемая мощность. Она может быть указывается в ваттах и киловаттах. Сложив показатели всех приборов получаем окончательную сумму.

Если выбирается проводка для отдельной линии, к которой будет подключён один прибор, то информация берётся только о его энергопотреблении. Например, средний утюг потребляет один киловатт. Само сечение можно подобрать используя ПУЭ. Ниже приведены две таблицы для медных и алюминиевых проводников соответственно.

Сечение провода и мощность Источник m-strana.ru

Таблица сечения кабеля по мощности и току для алюминиевых проводников Источник m-strana.ru

Помимо данных приведённых в таблицах необходимо учитывать тип сети – одна фаза или три. От этого напрямую зависит напряжение одна фаза – это 220 вольт, а три 380 вольт. Мы привели таблицы для медных и алюминиевых проводников. Медь более предпочтительный материал поскольку она:

  • обладает высокой электропроводностью;
  • прочная;
  • стойкая к окислению;
  • упругая.

Превосходя по многим показателям алюминиевые проводники, медные имеют всего одни недостаток – высокую стоимость. В домах советской постройки, как правило, проложены провода из алюминия. Поэтому при ремонте желательно использовать такие же.

Исключением может служить капитальный ремонт с полной заменой коммуникаций до распределительного щита. В таком случае лучше использовать медные проводники. Прямой контакт между двумя видами проводки недопустим. Это приводит к окислению, нагреву и коротким замыканиям. Для соединения используют специальные проводники из третьего метала.

О выборе провода по мощности в видео:

Коэффициент с для меди и алюминия Каталог проектов домов с баней.

Выбор сечения проводника по току

Для оптимального подбора проводника одной мощности мало и надо уметь рассчитывать сечение кабеля по току. Его сила зависит от нескольких факторов:

  • длины;
  • температуры;
  • удельного сопротивления;
  • ширины.

Если проводник нагревается, то сила тока в нем падает. В справочниках все данные указываются исходя из средней комнатной температуры восемнадцать градусов. Чтобы выбрать сечение проводки согласно току, опять обратимся к таблицам из ПУЭ. Ниже приведены таблицы для проводников из разных металлов.

Таблица сечений медного проводника с изоляцией из ПВХ или резины Источник m-strana.ru

Таблица сечений алюминиевого проводника с изоляцией из ПВХ или резины Источник m-strana.ru

Для того чтобы рассчитать сечение приблизительно, сила тока делится на десять. В случае отсутствия необходимого значения в таблице, берётся ближайшая большая величина. Однако это правило действует только для медных проводников максимальный ток для которых не превышает сорок ампер.

В диапазоне от сорока до восьмидесяти ампер, сила тока делится уже на восемь. Что касается алюминиевых проводников, то деление производится на шесть. Это связано с тем, что для выдерживания одинаковых нагрузок провод из алюминия должен быть толще чем медный.

Читайте также:  Техническое обслуживание сверлильного станка

Коэффициент с для меди и алюминия Каталог компаний, что специализируются на электроснабжении частных домов.

Выбор сечения проводника по мощности и длине

От длины проводника зависит напряжение, которое поступает в конечную точку. Может сложиться ситуация, когда в точке потребления напряжение окажется недостаточным для работы электроприборов.

В бытовых электро-коммуникациях этими потерями пренебрегают и берут кабель на десять-пятнадцать сантиметров длиннее необходимого. Этот излишек расходуется на выполнение коммутации. При подсоединении к распределительному щиту, запас увеличивают, учитывая необходимость подключения защитных автоматов.

Кабель, проложенный закрытым способом Источник kadetbrand.ru

Прокладывая линии большой протяжённости следует брать во внимание неизбежное падение напряжения. У любого есть собственное сопротивление, на которое влияют три основных фактора:

  1. Длина, измеряемая в метрах. При увеличении этого показателя увеличиваются потери.
  2. Поперечное сечение, измеряемое в квадратных миллиметрах. Если этот параметр увеличивается, то снижается падение напряжения.
  3. Сопротивление материала проводника, значение которого берётся из справочных данных. Они показывают эталонное сопротивление провода сечением один миллиметр и длиной один метр.

Произведение сопротивления и силы тока численно отражает падение напряжения. Эта величина не должна превышать пяти процентов. Если она превышает данный показатель, то необходимо брать проводник с большим сечением.

Еще о том, как рассчитать сечение кабеля в видео:

Расчёт сечения по формулам

Алгоритм выбора следующий:

  • Рассчитывается площадь проводника по длине и максимальной мощности по формуле:

Источник infopedia.su

  • Где:
  • P – мощность;
  • U – напряжение;
  • cosф – коэффициент.

Для бытовых электросетей значение коэффициента равно единице. Для промышленных коммуникаций он рассчитывается как отношение активной мощности к полной.

  • В таблице ПУЭ находится сечение по току.
  • Рассчитывается сопротивление проводки:

Источник textarchive.ru

  1. Где:
  2. ρ – сопротивление;
  3. l – длина;
  4. S – поперечная площадь сечения.
  5. При этом, не стоит забывать, что ток движется в обоих направлениях и по факту сопротивление равно:

Источник textarchive.ru

  • Падение напряжения соответствует соотношению:

Источник moypatent.ru

  • В процентном отношении падение напряжения выглядит следующим образом:

Источник tex.stackovernet.com

Если результат превышает пять процентов, то в справочнике ищется ближайшее поперечное сечение с большим значением.

Подобные расчёты редко выполняются родовыми потребителями электроэнергии. Для этого есть профильные специалисты и масса справочного материала. Более того, в интернете размещено множество онлайн-калькуляторов, при помощи которых все вычисления можно произвести за пару кликов.

Наглядно расчет сечения кабеля по формулам в видео:

Сечение и способ укладки

Ещё один фактор который влияет на выбор сечения проводника – способ прокладки линий. Их существует два:

При первом способе проводка укладывается в специальный короб или гофрированную трубу и находится на поверхности стены. Второй вариант предполагает замуровывание кабеля внутрь отделки или основного тела стен.

Здесь основное значение играет теплопроводность окружающей среды. В грунте тепло от кабеля отводится лучше, чем на воздухе. Поэтому при закрытом способе берутся провода с меньшим сечением чем при открытом. В таблице ниже указано как влияет способ укладки на сечение проводника.

Способ укладки и сечение проводника Источник m-strana.ru

Сводная таблица

Существуют таблицы, которые позволяют определить необходимо сечение используя сразу несколько параметров – ток, мощность, материал проводника и так далее. Они более удобны в использовании и одна из них размещена ниже. В ней указано сечение провода по току и мощности, а также учитывается способ укладки.

Сечение провода по току и мощности – таблица для медных и алюминиевых проводников Источник tvz2.ru

Заключение

Возможно, статья вышла несколько скучноватой и насыщенной техническими терминами. Однако изложенной в ней информацией пренебрегать не стоит. Поскольку от того, насколько правильно была выбрана проводка, зависит надёжность и безопасность функционирования домашней электросети.

Удельная проводимость алюминия м ом мм2 — ТехПорт

Для электрических сетей применяют неизолированные алюминиевые, сталеалюминиевые, медные и стальные провода, а для внутренних проводок — изолированные алюминиевые и медные провода.

Медь — хороший проводниковый материал (удельная проводимость γ = 53 м/Ом • мм2), устойчивый против коррозии, но дорогой и дефицитный. Поэтому для линий неизолированные медные провода применяют весьма редко.

Алюминий как проводниковый материал хуже меди ( γ = 32. 34 м/Ом • мм2). На открытом воздухе хорошо противостоит коррозии. Алюминиевые провода всегда выполняют многопроволочными, так как однопроволочные не обеспечивают достаточной механической прочности.

В настоящее время заводами кабельной промышленности освоен массовый выпуск неизолированного провода марки АН35, изготавливаемого из алюминиевого сплава АВ-Е. Он рекомендуется к применению вместо провода А35 при проектировании линий 6. 10 кВ в I. IV районах по ветру и I и II районах по гололеду.

Сталь (железо) обладает удельной проводимостью, в 7,5 раза меньшей, чем медь, и в 4,5 раза меньшей, чем алюминий: у = 7 м/Ом•мм2. Сталь находит применение в сетях с малой плотностью нагрузки. Для защиты от быстрого разрушения стальные провода изготавливают оцинкованными (гальваническое покрытие тонким слоем цинка).

В сталеалюминиевых проводах сердечник набран из оцин- кованных стальных проволок, увеличивающих общую механическую прочность, вокруг которых навиты алюминиевые провода. В биметаллических проводах стальная проволока покрыта слоем алюминия или меди (прокатыванием).

Провода обозначают следующими буквами: М — медные, А — алюминиевые, ПС — стальные многопроволочные, ПСО — стальные, однопроволочные, АС — сталеалюминиевые, АКП — провод марки А, в котором межпроволочное пространство, за исключением наружной поверхности, заполнено нейтральной смазкой повышенной термостойкости; АСКС — провод марки АС, в котором межпроволочное пространство стального сердечника заполнено термостойкой смазкой. Эти провода предназначены для установки в районах с агрессивной атмосферой (побережье морей и соленых озер, солончаковых песков и т. п.).

Цифры после букв М, А, ПС, АС — это сечение провода (мм2). В однопроволочных стальных проводах цифра указывает диаметр провода (мм).

Изолированные провода изготавливают из мягкой меди и алюминия. В качестве изоляции используют покрытие из хлопчатобумажной пряжи, пропитанной вулканизированной резиной, поливинилхлоридного пластика и других пластических материалов.

Шнур представляет собой провод, состоящий из двух или более изолированных гибких жил, заключенных в общую оболочку (оплетку или шланг).

Кабель — это одна или несколько скрученных изолированных жил, заключенных в защитную герметическую металлическую (алюминиевую или свинцовую), резиновую или поливинилхлоридную оболочку.

Кабели подразделяют на силовые и контрольные. Силовые кабели, Используемые в силовых установках различных напряжений, изготавливают с изоляцией из пропитанной бумаги (в обозначении марки ка- беля не указывается) или с резиновой изоляцией (буква Р) с медными Шли алюминиевыми (А) жилами.

Силовые кабели различают по числу К сечению жил, конструкции, типам защитных покровов и номинальному напряжению. Кабели в свинцовой оболочке в обозначении имеют букву С, в алюминиевой — А, в поливинилхлоридной — В, в негорючей маслостойкой найритовой — Н.

Оболочка может быть голая (Г) или бронированная (Б) стальными лентами или проволоками.

  Расчет антенны по частоте для цифрового телевидения

Одножильные силовые кабели изготавливают с сечением жилы от 2,5 до 800, двухжильные — от 2,5 до 150, трехжильные — от 2,5 до 250, четырехжильные — от 4 до 185 мм2.

Контрольные кабели (в обозначении первая или вторая буква К) предназначаются для работы в электрических сетях до 500 В переменного или 1000 В постоянного тока.

Их различают по числу (до нескольких десятков) и сечению (не более 10 мм2) токопроводящих жил, конструкции и типам защитных покровов (как и силовые кабели). В таблице 15.

3 приведены общие технические характеристики проводов и некоторых кабелей и даны рекомендации по их применению.

Сравнительно небольшое удельное сопротивление меди – важный, но не единственный положительный фактор.

Широкое применение этого материала объясняется разумной стоимостью, устойчивостью к неблагоприятным внешним воздействиям.

Из него несложно создавать качественные изделия необходимой формы, которые без дополнительной защиты сохраняют функциональность при длительной эксплуатации в сложных условиях.

Читайте также:  Как уменьшить обороты электродвигателя шкивами

Медь – основной материал для проводников

Квалифицированный выбор подходящего материала сопровождается комплексной оценкой нескольких факторов. Медный проводник не повреждается коррозией, потому что на поверхности образуется защитный слой из окислов.

Структурная целостность сохраняется при малом радиусе поворота, после многократных изгибов. Отмеченные параметры пригодятся для оснащения помещений с повышенной влажностью и прокладки линий сложной конфигурации.

Тем не менее, главным преимуществом является малое сопротивление проводов из меди. Кроме улучшения токопроводимости с одновременным снижением потерь при передаче энергии, следует отметить уменьшение веса и размеров кабельной продукции, по сравнению с альтернативными вариантами.

Колебательные процессы в молекулярной решетке препятствуют свободному перемещению электронов. Этим объясняется увеличение сопротивления по мере роста температуры.

Линейная зависимость наблюдается от небольшой положительной температуры, вплоть до точки начала плавления. Соответствующий фазовый переход сопровождается резким увеличением электрического сопротивления.

Разумеется, подобный режим после разрушения не является рабочим.

Теоретические показатели «а» подтверждаются результатами эксперимента «б». Если структуру чистого металла исказить примесями (загрязнениями, компонентами сплавов), произойдет беспорядочное распределение носителей электрического заряда. Это, в свою очередь, увеличит потери в цепи (сопротивление).

Чтобы убедиться в преимуществах меди, надо сделать соответствующий сравнительный анализ. Ниже приведены значения сопротивлений металлов в сводной таблице.

Основные электрические параметры проводников, созданных из разных материалов

Материал
Удельное сопротивление в Омах на метр, замеренное при комнатной температуре (+20°C)
Удельная электропроводность при аналогичных условиях, в сименсах на метр
Медь 1,68х10^-3 5,96х10^7
Серебро 1,59х10^-3 6,3х10^7
Золото 2,44х10^-3 4,1х10^7
Алюминий 2,82х10^-3 3,5х10^7
Вольфрам 5,6х10^-3 1,79х10^7
Железо 1х10^-7 1х10^7
Платина 1,06х10^-7 9,43х10^6
Литий 9,28х10^-8 1,08х10^7

Важно! Малого сопротивления проводника из железа недостаточно для широкого применения соответствующих изделий на практике. Активное окисление провоцирует быстрое разрушение.

Таблица удельных сопротивлений проводников

В некоторых ситуациях с расходами не считаются. Военную и космическую технику создают с применением проводников из драгоценных металлов. Такие решения помогают уменьшить сечение и вес, повысить стойкость к радиационным и другим особым воздействиям.

  Как проверить инфракрасный светодиод мультиметром

Для изготовления серийных изделий бытового и промышленного назначения применяют более доступные по цене материалы.

Данные для расчета электрических параметров проводников с учетом изменения температуры

Материал
Удельное сопротивление (в Ом на мм кв./ м), замеренное при комнатной температуре (+0°C)
Поправочный температурный коэффициент (ПК)
Медь 0,0176 0,004
Алюминий 0,0278 0,0045
Сталь 0,13 0,0063
Никелин 0,43-0,45 0,0072
Латунь 0,04 0,002
Нихром 0,98 0,0003
Вольфрам 0,0612 0,00047

Применение нержавеющей стальной проволоки помогает увеличить прочность при одновременной оптимизации себестоимости. Для улучшения антикоррозийных свойств применяют специальные добавки. Они повышают сопротивление проводника из стали почти в 10 раз, по сравнению с медным аналогом.

В любом случае особое значение имеют конкретные условия в процессе использования, а также назначение изделий. Никель, например, проявляет ферромагнитные свойства при чрезвычайно низких температурах ниже порогового значения «точки Кюри» (-358 0°C). Кремний, который применяют для изготовления микросхем и транзисторов, обладает особыми параметрами полупроводника.

Сравнение проводимости меди и алюминия

Первый вывод можно сделать после изучения табличных данных. Сопротивление алюминия примерно на 80% выше, по сравнению с медью. В такой же пропорции хуже проводимость. Но для корректного анализа необходимо изучить дополнительно следующие факты:

  • алюминий легче, но для получения аналогичных электрических параметров понадобится увеличить поперечное сечение (толщину проводника);
  • медные изделия (многожильные кабели) не повреждаются неоднократным сгибанием;
  • удельное сопротивление алюминия изменяется больше при повышении/ снижении температуры;
  • пленка из окислов на его поверхности образуется быстрее, поэтому для надежности (долговечности) современную проводку делают из меди.

Применение электропроводности материалов

Наличие отмеченных свойств используют не только в инженерных энергетических сетях. Хорошая электропроводность позволяет передавать на большие расстояния информационные сигналы без искажений.

Сохранение высокой амплитуды уменьшает требования к усилительным трактам, снижает общую себестоимость систем.

Минимизация потерь пригодится в электролизных установках, при создании контактных групп и обмоток двигателей.

Важно! Во всех перечисленных примерах, кроме общего повышения эффективности, можно рассчитывать на предотвращение перегрева.

Расчет сопротивления

Для коррекции температурных изменений в последнем столбце второй таблицы приведены отдельные множители по каждой позиции. Расчет выполняют по формуле RT=Rn*(1+ПК*Т), где приведенные символы означают:

  • RТ – электрическое сопротивление в Омах при определенной температуре;
  • Rn – сопротивление проводника при нулевой температуре;
  • ПК – поправочный коэффициент;
  • Т – эксплуатационная температура в градусах Цельсия.

Понятие электрического сопротивления

Этим термином называют свойство создавать препятствия прохождению в цепи электрического тока. Связь между физическими величинами описывается классической формулой R=U/I (обозначения сопротивления, напряжения и силы тока, соответственно). Движение электронов совершается под воздействием электромагнитного поля, разницы потенциалов.

Повышает сопротивление металлов любое искажение кристаллической структуры молекулярной решетки. Данная причина объясняет сильную зависимость параметра от чистоты материала и температуры. Так, стандарты для трубной продукции допускают применение различных сплавов.

Электротехническую медь (марка М006) создают с контролируемым количеством посторонних примесей не более 0,1%.

  Инструменты для установки ремонтного шипа на шины

Квалифицированное применение этого материала предваряется оценкой всех значимых факторов. Кроме себестоимости, уточняют:

  • особенности механической и других видов обработки;
  • стабильность электрических параметров в определенных условиях эксплуатации;
  • стойкость к внешним воздействиям, долговечность.

В некоторых ситуациях значительные начальные инвестиции оправданы продленным сроком службы, надежностью.

Видео

Коэффициент с для меди и алюминия

Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.

Недавно я изучал один очень интересный ГОСТ:

Советую почитать данный документ, т.к. там много чего полезного.

  • В этом документе приводится формула для расчета потери напряжения и указано:
  • Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.
  • Стоит заметить, что все табличные значения приводят при температуре 20 градусов.

А какие нормальные условия? Я думал 30 градусов Цельсия.

  1. Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.
  2. R1=R0 [1+α (Т1-Т0)]
  3. R0 – сопротивление при 20 градусах Цельсия;
  4. R1 — сопротивление при Т1 градусах Цельсия;
  5. Т0 — 20 градусов Цельсия;
  6. α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);
  7. Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.

Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.

Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.

В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм 2 /м, а для алюминия – 0,028 Ом · мм 2 /м.

Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог.

По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе.

А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.

А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.

Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице МОИ ПРОГРАММЫ.

Как вы считаете, при какой температуре нужно считать потери напряжения: при 30 или 70-90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]