Конусность на чертеже как посчитать

НОРМАЛЬНЫЕ УГЛЫ ( ГОСТ 8908-81 ) Конусность на чертеже как посчитать

   Таблица не распространяется на угловые размеры конусов. При выборе углов 1-й ряд следует предпочитать 2-му, а 2-й — 3-му.

НОРМАЛЬНЫЕ КОНУСНОСТИ и УГЛЫ КОНУСОВ ( ГОСТ 8593-81 )

  •    Стандарт распространяется на конусности и углы конусов гладких конических элементов деталей.

Конусность на чертеже как посчитать

   Примечание. Значения конусности или угла конуса, указанные в графе «Обозначение конуса», приняты за исходные при расчете других значений, приведенных в таблице. При выборе конусностей или углов конусов ряд 1 следует предпочитать ряду 2.

КОНУСЫ ИНСТРУМЕНТОВ УКОРОЧЕННЫЕ ( ГОСТ 9953-82 )

  1.    Стандарт распространяется на укороченные инструментальные конусы Морзе.

Конусность на чертеже как посчитать

   *z — наибольшее допускаемое отклонение положения основной плоскости, в которой находится диаметр D от теоретическогот положения.    ** размеры для справок.

Обозначение конуса Конус Морзе D D1 d d1 l1 l2 a, не более b c
B7 7,067 7,2 6,5 6,8 11,0 14,0 3,0 3,0 0,5
B10B12 1 10,09412,065 10,312,2 9,411,1 9,811,5 14,518,5 18,022,0 3,53,5 3,53,5 1,01,0
B16B18 2 15,73317,780 16,818,0 14,516,2 15,016,8 24,032,0 29,037,0 5,05,0 4,04,0 1,51,5
B22B24 3 21,79323,825 22,024,1 19,821,3 20,522,0 40,550,5 45,555,5 5,05,0 4,54,5 2,02,0
B32 4 31,267 31,6 28,6 51,0 57,5 6,5 2,0
B45 5 44,399 44,7 41,0 64,5 71,0 6,5 2,0
    Размеры D1 и d являются теоретическими, вытекающими соответственно из диаметра D и номинальных размеров а и l1

КОНУСНОСТЬ НАРУЖНЫХ И ВНУТРЕННИХ КОНУСОВ И КОНУСОВ С РЕЗЬБОВЫМ ОТВЕРСТИЕМ

Обозначение величины конуса Конусность Угол конуса 2α
B7B10, B12B16, B18B22, B24B32B45 1 : 19,212 = 0,052051 : 20,047 = 0,498801 : 20,020 = 0,049951 : 19,922 = 0,050201 : 19,954 = 0,051941 : 19,002 = 0,05263 2°58′54″2°51′26″2°51′41″2°52′32″2°58′31″3°00′53″
    угол конуса подсчитан по величине конусности с округлением до 1″.

РЕКОМЕНДУЕМЫЕ РАЗМЕРЫ ЦЕНТРОВОГО ОТВЕРСТИЯ УКОРОЧЕННОГО КОНУСА Конусность на чертеже как посчитать КОНУСЫ ИНСТРУМЕНТАЛЬНЫЕ МОРЗЕ И МЕТРИЧЕСКИЕ НАРУЖНЫЕ( ГОСТ 25557-2006 ) Конусность на чертеже как посчитать

Тип конуса Метрический Морзе Метрический
Обозн. 4 6 1 2 3 4 5 6 80 100 120 160 200
D 4,0 6,0 9,045 9,065 17,78 23,825 31,267 44,399 63,348 80 100 120 160 200
D1 4,1 6,2 9,2 12,2 18,0 24,1 31,6 44,7 63,8 80,4 100,5 120,6 160,8 201,0
d* 2,9 4,4 6,4 9,4 14,6 19,8 25,9 37,6 53,9 70,2 88,4 106,6 143 179,4
d1 М6 М10 М12 М16 М20 М24 М30 М36 М36 М48 М48
d4max 2,5 4,0 6,0 9,0 14,0 19,0 25,0 35,7 51,0 67,0 85,0 102,0 138,0 174,0
lmin 16,0 24,0 24,0 32,0 40,0 47,0 59,0 70,0 70,0 92,0 92,0
l1 23,0 32,0 50,0 53,5 64,0 81,0 102,5 129,5 182,0 196,0 232,0 268,0 340,0 412,0
l2 25,0 35,0 53,0 57,0 69,0 86,0 109,0 136,0 190,0 204,0 242,0 280,0 356,0 432,0
l11 4,0 5,0 5,5 8,2 10,0 11,5
    * — размер для справок.     — угол конусов Морзе №0-№5 соответствует углу укороченных конусов Морзе; №6 — 1:19,180 = 0,05214     — угол метрических конусов — 1:20 = 0,05.

    Профиль резьбового отверстия соответствует отверстию центровому форма Р по ГОСТ ГОСТ 14034-74.

    В ГОСТ 25557-2006 все размеры центрового отверстия приводятся в общей таблице. Стандарт также определяет размеры пазов канавок и отвестий, необходимых для конструирования конусов, в случае подачи смазочно-охлаждающей жидкости (СОЖ) через инструмент.

  •     В зависимости от конструкции инструментальный хвостовик может иметь соответствующее обозначение:
  • BI — внутренний конус с пазом; BE — наружный конус с лапкой; AI — внутренний конус с отверстием по оси; АЕ — наружный конус с резьбовым отверстием по оси; BIK — внутренний конус с пазом и отверстием для подачи СОЖ; ВЕК — наружный конус с лапкой и отверстием для подачи СОЖ; AIK — внутренний конус с отверстием по оси и отверстием для подачи СОЖ; АЕК — наружный конус с резьбовым отверстием по оси и отверстием для подачи СОЖ.

КОНУСЫ ИНСТРУМЕНТАЛЬНЫЕ МОРЗЕ И МЕТРИЧЕСКИЕ ВНУТРЕННИЕ( ГОСТ 25557-2006 ) Конусность на чертеже как посчитать КОНУСЫ ВНУТРЕННИЕ И НАРУЖНЫЕ КОНУСНОСТЬЮ 7 : 24 ( ГОСТ 15945-82 ) Конусность на чертеже как посчитать

  1.    Допуски конусов внутренних и наружных конусностью 7:24 по ГОСТ 19860-93.

КОНУСЫ ИНСТРУМЕНТОВ Предельные отклонения угла конуса и допуски формы конусов

( ГОСТ 2848-75 )

  •    Степень точности инструментальных конусов обозначается допуском угла конуса заданной степени точности по ГОСТ 8908-81 и определяется предельными отклонениями угла конуса и допусками формы поверхности конуса, числовые значения которых указаны ниже.

Конусность на чертеже как посчитать

   Примечания:    1. Отклонения угла конуса от номинального размера располагав в «плюс» — для наружных конусов, в «минус» — для внутренних.

   2. ГОСТ 2848-75 для наружных конусов предусматривает также степени точности АТ4 и АТ5. Допуски по ГОСТ 2848-75 распространяются на конусы инструментов по ГОСТ 25557-2006 и ГОСТ 9953-82.

  1.    Пример обозначения конуса Морзе 3, степени точности АТ8:

Морзе 3 АТ8 ГОСТ 25557-2006

  •    То же метрического конуса 160, степени точности АТ7:

Метр. 160 АТ7 ГОСТ 25557-2006

  1.    То же укороченного конуса В18, степени точности АТ6:

Морзе В18 АТ6 ГОСТ 9953-82

Похожие документы:

ГОСТ 2848-75 — Конусы инструментов. Допуски. Методы и средства контроля ГОСТ 7343-72 — Конусы инструментов с конусностью 1:10 и 1:7. Размеры ГОСТ 10079-71 — Развертки конические с коническим хвостовиком под конусы Морзе. Конструкция и размеры ГОСТ 22774-77 — Конусы и трубки шлифовальные. Типы и размеры

ГОСТ 25548-82 — Основные нормы взаимозаменяемости. Конусы и конические соединения. Термины и определения

Уклон и Конусность — Определение, обозначение на чертеже, формула расчёта уклона и конусности

Иногда, в задачах по начертательной геометрии или работах по инженерной графике, или при выполнении других чертежей, требуется построить уклон и конус. В этой статье Вы узнаете о том, что такое уклон и конусность, как их построить, как правильно обозначить на чертеже.

Конусность на чертеже как посчитать

Что такое уклон? Как определить уклон? Как построить уклон? Обозначение уклона на чертежах по ГОСТ

Уклон. Уклон это отклонение прямой линии от вертикального или горизонтального положения.
Определение уклона. Уклон определяется как отношение противолежащего катета угла прямоугольного треугольника к прилежащему катету, то есть он выражается тангенсом угла а. Уклон можно посчитать по формуле i=AC/AB=tga.

Конусность на чертеже как посчитать

Построение уклона. На примере (рисунок ) наглядно продемонстрировано построение уклона. Для построения уклона 1:1, например, нужно на сторонах прямого угла отложить произвольные, но равные отрезки.

Такой уклон, будет соответствовать углу в 45 градусов. Для того чтобы построить уклон 1:2, нужно по горизонтали отложить отрезок равный по значению двум отрезкам отложенным по вертикали.

Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а.

Конусность на чертеже как посчитать

Обозначение уклона на чертежах. Обозначение уклонов на чертеже выполняется в соответствии с ГОСТ 2.307—68. На чертеже указывают величину уклона с помощью линии-выноски. На полке линии-выноски наносят знак и величину уклона.

Знак уклона должен соответствовать уклону определяемой линии, то есть одна из прямых знака уклона должна быть горизонтальна, а другая должна быть наклонена в ту же сторону, что и определяемая линия уклона. Угол уклона линии знака примерно 30°.

Что такое конусность? Формула для расчёта конусности. Обозначение конусности на чертежах

Конусность. Конусностью называется отношение диаметра основания конуса к высоте. Конусность рассчитывается по формуле К=D/h, где D – диаметр основания конуса, h – высота. Если конус усеченный, то конусность рассчитывается как отношение разности диаметров усеченного конуса к его высоте. В случае усечённого конуса, формула конусности будет иметь вид: К = (D-d)/h.

Конусность на чертеже как посчитать

Обозначение конусности на чертежах.

Форму и величину конуса определяют нанесением трех из перечисленных размеров: 1) диаметр большого основания D; 2) диаметр малого основания d; 3) диаметр в заданном поперечном сечении Ds , имеющем заданное осевое положение Ls; 4) длина конуса L; 5) угол конуса а; 6) конусность с . Также на чертеже допускается указывать и дополнительные размеры, как справочные.

Размеры стандартизованных конусов не нужно указывать на чертеже. Достаточно на чертеже привести условное обозначение конусности по соответствующему стандарту.

Конусность на чертеже как посчитать

Конусность, как и уклон, может быть указана в градусах, дробью (простой, в виде отношения двух чисел или десятичной), в процентах.
Например, конусность 1:5 может быть также обозначена как отношение 1:5, 11°25’16», десятичной дробью 0,2 и в процентах 20.

Для конусов, которые применяются в машиностроении, OCT/BKC 7652 устанавливает ряд нормальных конусностей. Нормальные конусности — 1:3; 1:5; 1:8; 1:10; 1:15; 1:20; 1:30; 1:50; 1:100; 1:200. Также в могут быть использованы — 30, 45, 60, 75, 90 и 120°.

Читайте также:  Зазор между статором и ротором

Построение уклона и конусности — Страница 5

Подробности Категория: Инженерная графика

 

ПОСТРОЕНИЕ И ОБОЗНАЧЕНИЕ УКЛОНА

Уклоном называют величину, характеризующую наклон одной прямой линии к другой прямой. Уклон выражают дробью или в процентах.

Уклон i отрезка ВС относительно отрезка ВА опре­деляют отношением катетов прямоугольного тре­угольника АВС (рис. 69, а), т. е.

Конусность на чертеже как посчитать

Для построения прямой ВС (рис. 69, а) с заданной величиной уклона к горизонтальной прямой, например 1:4, необходимо от точки А влево отложить отрезок А В, равный четырем единицам длины, а вверх отрезок АС, равный одной единице длины. Точки С и В соединяют прямой, которая дает направление искомого уклона.

Конусность на чертеже как посчитать

Уклоны применяются при вычерчивании деталей, например, стальных балок и рельсов, изготовляемых на прокатных станах, и некоторых деталей, изготов­ленных литьем (рис. 69, д).

При вычерчивании контура детали с уклоном сна­чала строится линия уклона (рис. 69, в и г), а затем контур.

Если уклон задается в процентах, например, 20% (рис. 69, б), то линия уклона строится так же, как гипо­тенуза прямоугольного треугольника. Длину одного из катетов принимают равной 100%, а другого — 20%. Очевидно, что уклон 20% есть иначе уклон 1:5.

По ГОСТ 2.307—68 перед размерным числом, опре­деляющим уклон, наносят условный знак, острый угол которого должен быть направлен в сторону уклона (рис. 69, в и г).

ПОСТРОЕНИЕ И ОБОЗНАЧЕНИЕ КОНУСНОСТИ

На рис. 70, а даны для примера детали: оправка, ко­нус и сверло, которые имеют конусность.

Конусность на чертеже как посчитать

Конусностью называется отношение диаметра осно­вания конуса к его высоте (рис. 70, б), обозначается конусность буквой С. Если конус усеченный (рис. 70, в) с диаметрами оснований D и d и длиной L, то конус­ность определяется по формуле:

Конусность на чертеже как посчитать

Например (рис. 70, в), если известны размеры D=30 мм, d= 20 мм и L=70 мм, то

Конусность на чертеже как посчитать

Если известны конусность С, диаметр одного из оснований конуса d и длина конуса L, можно опреде­лить второй диаметр конуса. Например, С=1:7,d=20

мм и L=70 мм; D находят по формуле D=CL+d= 1/7×70+20=30 мм (рис. 70, г).

По ГОСТ 2.307—68 перед размерным числом, харак­теризующим конусность, необходимо наносить услов­ный знак конусности, который имеет вид равнобедрен­ного треугольника с вершиной, направленной в сто­рону вершины конуса (рис. 70, в и г).

Обычно на чертеже конуса дается диаметр большего основания конуса, так как при изготовлении коничес­кой детали этот диаметр можно измерить значительно легче и точнее.

Нормальные конусности и углы конусов устанавли­вает ГОСТ 8593—81 (СТ СЭВ 512—77). ГОСТ 25548— 82 (СТ СЭВ 1779—79) устанавливает термины и опре­деления.

Конусность и уклон — построение, расчет, обозначение — значение, формула, как определить, построение

На изображениях конических элементов деталей размеры могут быть проставлены различно: диаметры большего и меньшего оснований усеченного конуса и его длина; угол наклона образующей (или угол конуса) или величина конусности и диаметр основания, длина и т.п.

Уклон

Плоские поверхности деталей, расположенные наклонно, обозначают на чертеже величиной уклона. Как подсчитать эту величину, покажем на примере. Клин, изображенный на рис. 6.40, я, имеет наклонную поверхность, уклон которой нужно определить. Из размера наибольшей высоты клина вычтем размер наименьшей высоты: 50 – 40 = 10 мм.

Разность между этими величинами можно рассматривать как размер катета прямоугольного треугольника, образовавшегося после проведения на чертеже горизонтальной линии (рис. 6.40, б). Величиной уклона будет отношение размера меньшего катета к размеру горизонтальной линии. В данном случае нужно разделить 10 на 100.

Величина уклона клина будет 1:10.

Рис. 6.40. Определение величины уклона

На чертеже уклоны указывают знаком и отношением двух чисел, например 1:50; 3:5.

Если требуется изобразить на чертеже поверхность определенного уклона, например 3:20, вычерчивают прямоугольный треугольник, у которого один из катетов составляет три единицы длины, а второй – 20 таких же единиц (рис. 6.41).

Рис. 6.41. Построение уклонов и нанесение их величин

При вычерчивании деталей или при их разметке для построения линии по заданному уклону приходится проводить вспомогательные линии. Например, чтобы провести линию, уклон которой 1:4, через концевую точку вертикальной линии (рис. 6.

42), отрезок прямой линии длиной 10 мм следует принять за единицу длины и отложить на продолжении горизонтальной линии четыре такие единицы (т.е. 40 мм). Затем через крайнее деление и верхнюю точку отрезка провести прямую линию.

Рис. 6.42. Построение линии по заданному уклону

Вершина знака уклона должна быть направлена в сторону наклона поверхности детали. Знак и размерное число располагают параллельно направлению, по отношению к которому задан уклон.

Обозначение конусности на чертеже

При создании технической документации должны учитываться все установленные стандарты, так как в противном случае она не может быть использована в дальнейшем. Рассматривая обозначение конусности на чертежах следует уделить внимание следующим моментам:

  1. Отображается диаметр большого основания. Рассматриваемая фигура образуется телом вращения, которому свойственен диаметральный показатель. В случае конуса их может быть несколько, а изменение показателя происходит плавно, не ступенчато. Как правило, у подобной фигуры есть больший диаметр, а также промежуточной в случае наличия ступени.
  2. Наносится диаметр меньшего основания. Меньшее основание отвечает за образование требуемого угла.
  3. Рассчитывается длина конуса. Расстояние между меньшим и большим основанием является показателем длины.
  4. На основании построенного изображения определяется угол. Как правило, для этого проводятся соответствующие расчеты. В случае определения размера по нанесенному изображению при применении специального измерительного прибора существенно снижается точность. Второй метод применяется в случае создания чертежа для производства неответственных деталей.

Простейшее обозначение конусности предусматривает также отображения дополнительных размеров, к примеру, справочную. В некоторых случаях применяется знак конусности, который позволяет сразу понят о разности диаметров.

Конусность на чертеже как посчитать

Выделяют достаточно большое количество различных стандартов, которые касаются обозначения конусности. К особенностям отнесем следующее:

  1. Угол может указываться в градусах дробью или в процентах. Выбор проводится в зависимости от области применения чертежа. Примером можно назвать то, что в машиностроительной области указывается значение градуса.
  2. В машиностроительной области в особую группу выделяют понятие нормальной конусности. Она варьирует в определенном диапазоне, может составлять 30, 45, 60, 75, 90, 120°. Подобные показатели свойственны большинству изделий, которые применяются при сборке различных механизмов. При этом выдержать подобные значения намного проще при применении токарного оборудования. Однако, при необходимости могут выдерживаться и неточные углы, все зависит от конкретного случая.
  3. При начертании основных размеров применяется чертежный шрифт. Он характеризуется довольно большим количеством особенностей, которые должны учитываться. Для правильного отображения используется табличная информация.
  4. Для начала указывается значок конусности от которого отводится стрелка и отображается величина. Особенности отображения во многом зависит от того, какой чертеж. В некоторых случаях наносится большое количество различных размеров, что существенно усложняет нанесение конусности. Именно поэтому предусмотрена возможность использования нескольких различных методов отображения подобной информации.

На чертеже рассматриваемый показатель обозначается в виде треугольника. При этом требуется цифровое значение, которое может рассчитываться при применении различных формул.

Угол конуса

Важным показателем при построении различных чертежей считается угол конуса. Он определяется соотношение большого диаметра к меньшему. Высчитывается этот показатель по следующим причинам:

  1. На момент обработки мастер должен учитывать этот показатель, так как он позволяет получить требуемое изделие с высокой точностью размеров. В большинстве случаев обработка проводится именно при учете угла, а не показателей большого и малого диаметра.
  2. Угол конуса рассчитывается на момент разработки проекта. Этот показатель наносится на чертеж или отображается в специальной таблице, которая содержит всю необходимую информацию. Оператор станка или мастер не проводит расчеты на месте производства, вся информация должна быть указана в разработанной технологической карте.
  3. Проверка качества изделия зачастую проводится по малому и большему основанию, но также могут применяться инструменты, по которым определяется показатель конусности.

Конусность на чертеже как посчитать

Как ранее было отмечено, в машиностроительной области показатель стандартизирован. В другой области значение может существенно отличаться от установленных стандартов. Некоторые изделия характеризуются ступенчатым расположение поверхностей. В этом случае провести расчеты достаточно сложно, так как есть промежуточный диаметр.

Построение уклона и конусности

Уклоном называют величину, характеризующую наклон одной прямой линии к другой прямой. Уклон выражают дробью или в процентах. Уклон / отрезка В С относительно отрезка ВЛ определяют отношением катетов прямоугольного треугольника ЛВС (рисунок 50, а), т. е.

  • Для построения прямой ВС (рисунок 50. а) с заданной величиной уклона к горизонтальной прямой, например 1:4, необходимо от точки А влево отложить отрезок АВ, равный четырем единицам длины, а вверх отрезок АС, равный одной единице длины. Точки С и В соединяют прямой, которая даст направление искомого уклона.
  • Уклоны применяются при вычерчивании деталей, например, стальных балок и рельсов, изготовляемых на прокатных станах, и некоторых деталей, изготовленных литьем.
Читайте также:  Применение минеральной воды в лечении подагры

При вычерчивании контура детали с уклоном сначала строится линия уклона, а затем контур. Если уклон задается в процентах, например, 20 % (рисунок 50, б)> то линия уклона строится так же, как гипотенуза прямоугольного треугольника. Длину одного из катетов принимают равной 100 %, а другого — 20 %.

Очевидно, что уклон 20 % есть иначе уклон 1:5. Г1о ГОСТ 2.307—68 перед размерным числом, определяющим уклон, наносят условный знак, острый угол которого должен быть направлен в сторону уклона (рисунок 50, а и б). Подробнее обозначение уклона приведено в разделе 1.7 «Нанесение размеров и предельных отклонений».

Что такое уклон?

Как ранее было отмечено, довольно важным показателем можно считать уклон. Он представлен линией, которая расположена под углом к горизонту. Если рассматривать конусность на чертеже, то она представлена сочетанием двух разнонаправленных уклонов, которые объединены между собой.

Понятие уклона получило весьма широкое распространение. В большинстве случаев для его отображения проводится построение треугольника с определенным углом.

Две вспомогательные стороны применяются для расчета угла, которые и определяет особенности наклона основной поверхности.

Конусность на чертеже как посчитать

Как определить уклон

Для определения уклона достаточно воспользоваться всего одной формулой. Как ранее было отмечено, существенно упростить задачу можно при построении прямоугольного треугольника. Среди особенностей подобной работы отметим следующие моменты:

  1. Определяется начальная и конечная точка отрезка. В случае построения сложной фигуры она определяется в зависимости от особенностей самого чертежа.
  2. Проводится вертикальная линия от точки, которая находится выше. Она позволяет построить прямоугольный треугольник, который часто используется для отображения уклона.
  3. Под прямым углом проводится соединение вспомогательной линии с нижней точкой.
  4. Угол, который образуется между вспомогательной и основной линией в нижней точке высчитывается для определения наклона.

Формула, которая требуется для вычисления рассматриваемого показателя указывалась выше. Стоит учитывать, что полученный показатель также переводится в градусы.

Особенности построения уклона и конусности

Область черчения развивалась на протяжении достаточно длительного периода. Она уже много столетий назад применялась для передачи накопленных знаний и навыков. Сегодня изготовление всех изделия может проводится исключительно при применении чертежей.

При этом ему больше всего внимания уделяется при наладке массового производства. За длительный период развития черчения были разработаны стандарты, которые позволяют существенно повысить степень читаемости всей информации. Примером можно назвать ГОСТ 8593-81.

Он во многом характеризует конусность и уклон, применяемые методы для их отображения. Начертательная геометрия применяется для изучения современной науки, а также создания различной техники.

Кроме этого, были разработаны самые различные таблицы соответствия, которые могут применяться при проведении непосредственных расчетов.

Различные понятия, к примеру, сопряжение, уклон и конусность отображаются определенным образом. При этом учитывается область применения разрабатываемой технической документации и многие другие моменты.

К особенностям построения угла и конусности можно отнести следующие моменты:

  1. Основные линии отображаются более жирным начертанием, за исключением случая, когда на поверхности находится резьба.
  2. При проведении работы могут применяться самые различные инструменты. Все зависит от того, какой метод построения применяется в конкретном случае. Примером можно назвать прямоугольный треугольник, при помощи которого выдерживается прямой угол или транспортир.
  3. Отображение основных размеров проводится в зависимости от особенностей чертежа. Чаще всего указывается базовая величина, с помощью которой определяются другие. На сегодняшний день метод прямого определения размеров, когда приходится с учетом масштаба измерять линии и углы при помощи соответствующих инструментов практически не применяется. Это связано с трудностями, которые возникают на производственной линии.

Конусность на чертеже как посчитать

В целом можно сказать, что основные стандарты учитываются специалистом при непосредственном проведении работы по построению чертежа.

Часто для отображения уклона в начертательной геометрии создаются дополнительные линии, а также обозначается угол уклона.

В проектной документации, в которой зачастую отображается конусность, при необходимости дополнительная информация выводится в отдельную таблицу.

Поделитесь в соц.сетях:

Как рассчитать конусность детали

Рассматривая конусность следует учитывать, что этот показатель напрямую связан с уклоном. Этот параметр определяет отклонение прямой лини от вертикального ил горизонтального положения. При этом конусность 1:3 или конусность 1:16 существенно отличается. Определение уклона характеризуется следующими особенностями:

  1. Под уклоном подразумевается отношение противолежащего катета прямоугольного треугольника к прилежащему. Этот параметр еще называют тангенс угла.
  2. Для расчета примеряется следующая формула: i=AC/AB=tga.

Стоит учитывать, что нормальные конусности несколько отличаются от рассматриваемого ранее параметра. Это связано с тем, что конусностью называется соотношение диаметра основания к высоте.

Рассчитать этот показатель можно самым различным образом, наибольшее распространение получила формула K=D/h. В некоторых случаях обозначение проводится в процентах, так как этот переменный показатель применяется для определения всех других параметров.

Рассматривая конусность 1:7 и другой показатель следует также учитывать особенности отображения информации на чертеже. Чаще всего подобное отображение проводится при создании технической документации в машиностроительной области.

Xatki.by

Уклон кровли — показатель крутизны ската крыши. Вычисляется как отношение высоты конька (H) к горизонтальной его проекции (заложению) (l). Иными словами, величина уклона равна тангенсу угла между поверхностью ската и горизонтальной его проекцией.

Итак, уклон рассчитывается по формуле: i=H/l Для примера дано: Высота конька (H): 2 м Заложение (l): 2,86 м Рассчитаем угол кровли (i): 2/2,86 = 0,699, что близко соответствует 35° по нижеприведенной таблице.

Уклон можно выразить в градусах, процентах, как отношение сторон, как абсолютный уклон, и как коэффициент уклона. Предложенная таблица поможет вам быстро перевести значения из одной меры в другую.

Градусы Проценты (%) Отношение Уклон (i) Коэфф. уклона (К)
4 6,99 1:14,31 0,0699 1,003
5 8,75 1:11,43 0,0875 1,004
6 10,51 1:9,52 0,1051 1,006
7 12,28 1:8,14 0,1228 1,008
8 14,05 1:7,12 0,1405 1,010
9 15,84 1:6,31 0,1584 1,012
10 17,63 1:5,67 0,1763 1,015
11 19,44 1:5,14 0,1944 1,019
12 21,26 1:4,70 0,2126 1,022
13 23,09 1:4,33 0,2309 1,027
14 24,93 1:4,00 0,2493 1,031
15 26,79 1:3,73 0,2679 1,035
16 28,67 1:3,49 0,2867 1,040
17 30,57 1:3,27 0,3057 1,046
18 32,49 1:3,08 0,3249 1,051
19 34,43 1:2,90 0,3443 1,058
20 36,4 1:2,75 0,3640 1,064
21 38,39 1:2,61 0,3839 1,071
22 40,4 1:2,48 0,4040 1,079
23 42,45 1:2,36 0,4245 1,086
24 44,52 1:2,25 0,4452 1,095
25 46,63 1:2,15 0,4663 1,104
26 48,77 1:2,05 0,4877 1,113
27 50,95 1:1,96 0,5095 1,122
28 53,17 1:1,88 0,5317 1,133
29 55,43 1:1,80 0,5543 1,143
30 57,74 1:1,73 0,5774 1,155
31 60,09 1:1,66 0,6009 1,167
32 62,49 1:1,60 0,6249 1,179
33 64,94 1:1,54 0,6494 1,192
34 67,45 1:1,48 0,6745 1,206
35 70,02 1:1,43 0,7002 1,221
36 72,65 1:1,38 0,7265 1,236
37 75,36 1:1,33 0,7536 1,252
38 78,13 1:1,28 0,7813 1,269
39 80,98 1:1,24 0,8098 1,287
40 83,91 1:1,19 0,8391 1,305
41 86,93 1:1,15 0,8693 1,325
42 90,04 1:1,11 0,9004 1,346
43 93,25 1:1,07 0,9325 1,367
44 96,57 1:1,04 0,9657 1,390
45 100 1:1 1 1,414
46 103,55 1:0,97 1,0355 1,439
47 107,24 1:0,93 1,0724 1,466
48 111,06 1:0,90 1,1106 1,495
49 115,04 1:0,87 1,1504 1,524
50 119,18 1:0,84 1,1918 1,556
51 123,49 1:0,81 1,2349 1,589
52 127,99 1:0,78 1,2799 1,624
53 132,7 1:0,75 1,3270 1,662
54 137,64 1:0,73 1,3764 1,701
55 142,82 1:0,70 1,4282 1,743
56 148,26 1:0,67 1,4826 1,788
57 153,99 1:0,65 1,5399 1,836
58 160,03 1:0,63 1,6003 1,887
59 166,43 1:0,60 1,6643 1,942
60 173,2 1:0,58 1,7320 2,000
61 180,4 1:0,55 1,8040 2,063
62 188,1 1:0,53 1,8810 2,130
63 196,3 1:0,51 1,9630 2,203
64 205,0 1:0,49 2,0500 2,281
65 214,5 1:0,47 2,1450 2,366
66 224,6 1:0,45 2,2460 2,459
67 235,6 1:0,42 2,3560 2,560
68 247,5 1:0,40 2,4750 2,670
69 260,5 1:0,38 2,6050 2,790
70 274,7 1:0,36 2,7470 2,924
72 307,8 1:0,33 3,0780 3,236
74 348,7 1:0,29 3,4870 3,628
Читайте также:  Какие марки нержавеющей стали магнитятся

Что такое конусность? Формула для расчёта конусности. Обозначение конусности на чертежах

Рассматривая конусность следует учитывать, что этот показатель напрямую связан с уклоном. Этот параметр определяет отклонение прямой лини от вертикального ил горизонтального положения. При этом конусность 1:3 или конусность 1:16 существенно отличается. Определение уклона характеризуется следующими особенностями:

  1. Под уклоном подразумевается отношение противолежащего катета прямоугольного треугольника к прилежащему. Этот параметр еще называют тангенс угла.
  2. Для расчета примеряется следующая формула: i=AC/AB=tga.

Стоит учитывать, что нормальные конусности несколько отличаются от рассматриваемого ранее параметра. Это связано с тем, что конусностью называется соотношение диаметра основания к высоте.

Рассчитать этот показатель можно самым различным образом, наибольшее распространение получила формула K=D/h. В некоторых случаях обозначение проводится в процентах, так как этот переменный показатель применяется для определения всех других параметров.

Рассматривая конусность 1:7 и другой показатель следует также учитывать особенности отображения информации на чертеже. Чаще всего подобное отображение проводится при создании технической документации в машиностроительной области.

  Нарезание резьбы на токарном станке с ЧПУ

Техническое черчение

Уклоном прямой ВС относительно прямой AB (фиг. 57, а) называется отношение:

  • i=AC/AB=tga
  • Конусностью называется отношение разности диаметров двух попе­речных сечений конуса к расстоянию между ними (фиг. 57,б)
  • k=(D-d)/l=2tga
  • Таким образом,
  • k = 2i
  • Уклон и конусность могут быть указаны: а) в градусах; б) дробью простой, в виде отношения двух чисел или десятичной; в) в процентах.
  • Например: конусность, выраженная в градусах — 11°25’16»; отношением — 1:5; дробью —0,2; в процентах — 20%, и соответственно этому уклон в градусах — 5°42’38»; отношением — 1:10; дробью—0,1; в процентах — 10%.
  • Для конусов, применяемых в машиностроении, OCT/BKC 7652 устанавливает следующий ряд нормальных конусностей — 1 :3; 1 :5; 1 :8; 1 : 10; 1 :15; 1:20; 1 :30; 1:50; 1 :100; 1:200, а также 30, 45, 60, 75, 90 и 120°.
  • Допускаются в особых случаях также конусности 1:1,5; 1:7; 1:12 и 110°.

Если требуется через точку Л, лежащую на прямой AB (фиг. 57, в), провести прямую с уклоном i=l:n относительно AB, надо отложить от точки А по направлению данной прямой n произвольных единиц; в конце полученного отрезка AB восстановить перпендикуляр ЕС длиной в одну такую же единицу. Гипотенуза AС построенного прямоугольного треугольника определяет искомую прямую.

Для проведения прямой заданного уклона l:n через точку M, не лежащую на данной прямой AB, можно поступать двояко (фиг. 58):

1) построить в стороне прямоугольный треугольник KLN (или KLN1) с отношением катетов l:n, причём катет KL ll AB; затем через точку M провести искомую прямую MD (или MD1) параллельно гипотенузе вспомогательного треугольника KN (или LN1);

  Как размагнитить металл в домашних условиях?

2) опустить из точки M перпендикуляр ME на прямую AВ и при­нять его за единицу. По направлению прямой AB влево или вправо от точки E отложить n таких же отрезков; гипотенузы DM или MD1 по­строенных таким образом прямоугольных треугольников являются иско­мыми прямыми.

Построение конусности l:n относительно данной оси сводится к построению уклонов l:n/2 с каждой стороны оси.

Уклон или конусность чаще всего указывается в процентах или отношением единицы к целому числу. Рассмотрим эти способы построе­ния на примерах.

Пример 1. Требуется построить профиль сечения швеллера № 5 ОСТ 10017-39 (фиг. 59, а), если известно, что уклон его полок равен 10%

Размеры для построения берём из ОСТ 10017-39.

Проводим вертикальную прямую ek, равную h = 50 мм. Из точек e и k проводим прямые ec и kf, равные ширине полки b = 37 мм.

Ввиду того, что обе полки швеллера одинаковы, ограничимся построе­нием только одной из них. Откладываем на прямой ec от точки с отре­зок cm, равный (b-d)/2.

В точке m на перпендикуляре к прямой ec от­кладываем отрезок mn, равный t = 7 мм. Через точку n проводим прямую np параллельно ec, равную 50 мм.

  1. Перпендикулярно к np из точки p проводим отрезок ps, равный по длине десяти процентам отрезка np. Величина его определяется из от­ношения:
  2. ps/np=10/100,
  3. откуда
  4. ps=10*50/100=5 мм.

Прямая sn является искомой прямой, имеющей уклон 10% по отно­шению к ec. Дальнейшее построение профиля не представляет затруд­нений.

Отрезок np можно взять любой длины. Чем больше его величина, тем точнее будет построена прямая уклона. Однако для удобства вы­числения следует принимать отрезок np таким, чтобы длина его, выра­жаемая в миллиметрах, оканчивалась на 0 или 5.

П p и м e p 2. Построить профиль сечения двутавра № 10 ОСТ 10016-39 (фиг. 59, б), если известно, что уклон полок его равен 1:6. Размеры для построения берём из ОСТ 10016-39.

Проводим горизонтальную прямую cc, равную ширине полки b = = 68 мм. Через точку e, являющуюся серединой ширины полки, прово­дим вертикальную линию. Откладываем от точки с отрезок mс, равный

  Свойства и широкое применение неодимовых магнитов

(b-d)/4. В точке m, перпендикулярно к отрезку cc, проводим прямую и

на ней откладываем отрезок mn, равный t=6,5 мм. Через точку n проводим горизонтальную прямую np, равную 30 мм, которая будет служить катетом прямоугольного треугольника. Чем длиннее катет, тем точнее будет построен уклон. Для удобства принимают длину отрезка np кратной шести, тогда второй катет будет равен целому числу. Вели­чина второго катета определяется из формулы

  • i=ps/np=1/6
  • где i — заданный уклон.
  • Подставив в формулу числовые значения, получим
  • ps=30/6=5 мм.

Откладываем в точке p под углом 90° к прямой np вычисленную длину второго катета, получим точку 5. Проводим через точки s и n прямую, которая и будет соответствовать искомой прямой, имеющей уклон 1 :6.

Построение сопряжений такое же, как и для швеллера в предыду­щем примере.

Обозначение конусности на чертеже

При создании технической документации должны учитываться все установленные стандарты, так как в противном случае она не может быть использована в дальнейшем. Рассматривая обозначение конусности на чертежах следует уделить внимание следующим моментам:

  1. Отображается диаметр большого основания. Рассматриваемая фигура образуется телом вращения, которому свойственен диаметральный показатель. В случае конуса их может быть несколько, а изменение показателя происходит плавно, не ступенчато. Как правило, у подобной фигуры есть больший диаметр, а также промежуточной в случае наличия ступени.
  2. Наносится диаметр меньшего основания. Меньшее основание отвечает за образование требуемого угла.
  3. Рассчитывается длина конуса. Расстояние между меньшим и большим основанием является показателем длины.
  4. На основании построенного изображения определяется угол. Как правило, для этого проводятся соответствующие расчеты. В случае определения размера по нанесенному изображению при применении специального измерительного прибора существенно снижается точность. Второй метод применяется в случае создания чертежа для производства неответственных деталей.

Простейшее обозначение конусности предусматривает также отображения дополнительных размеров, к примеру, справочную. В некоторых случаях применяется знак конусности, который позволяет сразу понят о разности диаметров.

Выделяют достаточно большое количество различных стандартов, которые касаются обозначения конусности. К особенностям отнесем следующее:

  1. Угол может указываться в градусах дробью или в процентах. Выбор проводится в зависимости от области применения чертежа. Примером можно назвать то, что в машиностроительной области указывается значение градуса.
  2. В машиностроительной области в особую группу выделяют понятие нормальной конусности. Она варьирует в определенном диапазоне, может составлять 30, 45, 60, 75, 90, 120°. Подобные показатели свойственны большинству изделий, которые применяются при сборке различных механизмов. При этом выдержать подобные значения намного проще при применении токарного оборудования. Однако, при необходимости могут выдерживаться и неточные углы, все зависит от конкретного случая.
  3. При начертании основных размеров применяется чертежный шрифт. Он характеризуется довольно большим количеством особенностей, которые должны учитываться. Для правильного отображения используется табличная информация.
  4. Для начала указывается значок конусности от которого отводится стрелка и отображается величина. Особенности отображения во многом зависит от того, какой чертеж. В некоторых случаях наносится большое количество различных размеров, что существенно усложняет нанесение конусности. Именно поэтому предусмотрена возможность использования нескольких различных методов отображения подобной информации.

На чертеже рассматриваемый показатель обозначается в виде треугольника. При этом требуется цифровое значение, которое может рассчитываться при применении различных формул.

Угол уклона — показатель наклона какой либо поверхности (дороги, крыши, пандуса, лестничного марша и пр.) относительно уровня горизонта.

Угловые размеры указывают на чертежах в градусах, минутах и секундах с обозначением единицы измерения (ГОСТ 2.307-2011 «Единая система конструкторской документации (ЕСКД).

Нанесение размеров и предельных отклонений«).

Ссылка на основную публикацию
Adblock
detector