Лабораторный способ получения ацетилена

Перейти к основному содержанию
Profil

Атомы углерода могут быть связаны между собой не только одинарными или двойными, но также тройными связями. Простейшим углеводородом, содержащим тройную связь, является этин или ацетилен . Рассмотрим его строение.

Каждый атом углерода в ацетилене образует четыре химические связи. Образование этих связей происходит за счёт четырёх атомных орбиталей:

Лабораторный способ получения ацетилена

  • Вспомним строение этилена:    
  • Атомы углерода в этой молекуле находятся в состоянии sp2-гибридизации. За счет sp2-гибридных орбиталей каждый атом углерода образует три σсвязи: две связи с атомами водорода и одну — с соседним углеродом:
  • Лабораторный способ получения ацетилена
  • Вторая связь между атомами углерода образуется за счёт бокового перекрывания негибридных p-орбиталей атомов углерода — это π-связь:

Лабораторный способ получения ацетилена Таким образом, двойная связь состоит из одной σ- и одной π-связи.

В молекуле ацетилена H C C H имеется тройная связь. Она со  стоит из одной σ- и двух π-связей. Так как π-связи образуются за счёт перекрывания негибридных p-орбиталей, то в гибридизации будут принимать участие одна s- и одна p-орбитали атомов углерода. Такой тип гибридизации называется sp-гибридизация:

  1. Лабораторный способ получения ацетилена
  2. sp-Гибридные орбитали располагаются на одной прямой, под углом 180°. Две не участвующие в гибридизации р-орбитали атома углерода сохраняют свою первоначальную форму и располагаются взаимно перпендикулярно:
  3. Лабораторный способ получения ацетиленаЗа счёт перекрывания гибридных орбиталей каждый атом углерода образует две σ-связи — одну связь с атомом водорода и одну — с соседним углеродом:
  4. Лабораторный способ получения ацетиленаОрбитали, не участвующие в гибридизации, формируют две π-связи между атомами углерода:

Лабораторный способ получения ацетилена

Таким образом, в молекуле ацетилена имеется три σ-связи и две π-связи:

Лабораторный способ получения ацетилена

Молекула ацетилена линейная, валентный угол равен 180о. Связь между атомами углерода тройная:

Лабораторный способ получения ацетилена

Тройная связь короче двойной и одинарной: в молекуле ацетилена длина связи между атомами углерода равна 0,120 нм. Напомним, что в молекулах этилена и этана длина связи между атомами углерода составляет 0,134 и 0,154 нм соответственно.

Ацетилен является простейшим представителем алкинов — нециклических углеводородов, молекулы которых содержат одну тройную связь.

Ближайший  гомолог  ацетилена  —  пропин CH3 C CH.  Молекулярная формула пропина С3Н4. Так как соседние члены гомологического ряда различаются по составу на группу СН2, очевидно, что следующий гомолог должен иметь состав С4Н6. Отсюда легко можно вывести общую формулу алкинов СnH2n–2. Как вы уже  знаете,  общую  формулу  СnH2n–2  имеют  также алкадиены.

Пропустить Оглавление

Методы получения алкинов. Получение ацетилена

  • Основным промышленным способом получения ацетилена является электро- или термокрекинг метана, пиролиз природного газа и карбидный метод.
  • Карбидный метод (промышленный способ)
  • Прокаливанием в электрических печах смеси оксида кальция с коксом при 1800—2000°С получают карбид кальция:

Лабораторный способ получения ацетилена

При действии на полученный карбид воды образуется гидроксид кальция и ацетилен:

Лабораторный способ получения ацетилена

Пиролиз углеводородов (промышленный способ)

Суть способа заключается в пропускании над специальной огнеупорной насадкой смеси природного газа с воздухом, который сгорая поднимает температуру до 1500 °C. Затем на насадке происходит пиролиз метана:

Лабораторный способ получения ацетилена

Крекинг природного газа (промышленный способ)

Электрокрекинг

Метод заключается в пропускании метана между двумя металлическими электродами с огромной скоростью. Температура 1500—1600°С. С химической точки зрения метод аналогичен методу пиролиза, отличаясь лишь технологическим и аппаратным исполнением.

Термоокислительный крекинг

В этом методе используется частичное окисление метана благодаря использованию теплоты, образующейся при его сгорании:

Лабораторный способ получения ацетилена

Метод прямого синтеза

Углерод напрямую взаимодействует с водородом при очень высоких температурах:

Лабораторный способ получения ацетилена

Этот метод имеет чисто историческое значение (получение ацетилена в 1863 году М. Бертло).

Электролиз солей непредельных карбоновых кислот

В 1864 году Кекуле получил ацетилен электролизом фумарата и малеата натрия:

Лабораторный способ получения ацетилена

  1. Аналогично получается ацетилен и из акрилата натрия.
  2. Этот метод носит чисто историческое значение.
  3. Дегидрогалогенирование галогеналканов и галогеналкенов (лабораторный способ)
  4. Реакция дегидрогалогенирования проводят действием сильного основания на дигалогеналканы:

Лабораторный способ получения ацетилена

В качестве дегидрогалогенирующего агента удобно использовать амид натрия в жидком аммиаке:

Лабораторный способ получения ацетилена

  • Получение Ацетилена
  • В лаборатории ацетилен получают действием воды на карбид кальция.
  • CaC2+ 2 Н2О = С2Н2↑ + Са(ОН)2
  • а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:
  • 2СН4 = С2Н2↑ +3Н2↑

Заказать ✍️ написание учебной работы

Получение алкинов

  • Алкины – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна тройная связь между атомами углерода С≡С.
  • Остановимся на свойствах, способах получения и особенностях строения алкинов.
  • Строение, изомерия и гомологический ряд алкинов
  • Химические свойства алкинов
  • Получение алкинов

1. Дегидрирование алканов

При дегидрировании алканов, содержащих от двух до трех атомов углерода в молекуле, образуются двойные и тройные связи.

Например, при дегидрировании этана может образоваться этилен или ацетилен:

Лабораторный способ получения ацетилена

2. Пиролиз метана

  1. Пиролиз метана – это промышленный способ получения ацетилена.
  2. Лабораторный способ получения ацетилена
  3. Реакцию проводят, очень быстро пропуская метан между электродами (электродуговой способ) — примерно 0,1-0,01 секунды при температуре 1500оС.
  4. Если процесс проводить дольше, то метан разлагается на углерод и водород:
  5. Лабораторный способ получения ацетилена

3. Гидролиз карбида кальция

  • Лабораторный способ получения ацетилена – водный или кислотный гидролиз карбида кальция CaC2.
  • СаС2 + 2Н2О = Са(ОН)2 + С2Н2
  • В кислой среде образуется ацетилен и соответствующая соль:
  • CaC2 + 2HCl = CaCl2 + C2H2
  • Карбид кальция можно получить, нагревая оксид кальция с углеродом:
  •       СаО + 3С (изб) →  СаС2 + СО

4. Дегидрогалогенирование дигалогеналканов

Дигалогеналканы, в молекулах которых два атома галогена расположены у одного, либо у соседних атомов углерода, реагируют с избытком спиртового раствора щелочей с образованием алкинов.

Например, 1,2-дихлорпропан реагирует со спиртовым раствором гидроксида натрия

Лабораторный способ получения ацетилена

1,1-дихлорпропан реагирует со спиртовым раствором щелочи с образованием пропина.

5. Алкилирование соединений алкинов с металлами

Ацетилениды, пропиниды и прочие соединения алкинов с металлами реагируют с галогеналканами с образованием гомологов алкинов. При этом происходит удлиннение исходной молекулы алкина.

Например, пропинид натрия реагирует с бромэтаном с образованием пентина-2

Лабораторный способ получения ацетилена

Получение алкинов

1 Получение ацетилена 1.1 Способы получения алкинов

В современном мире ацетилен и его гомологи имеют большое значение. Они являются исходным веществом для многих простых и сложных органических соединений.

Поэтому немаловажное значение имеет изучение возможных способов получения ацетилена и других алкинов, изучение экономической эффективности и целесообразности.

Далее рассмотрим получение алкинов в лаборатории и промышленности, а также области их применения.

  1. Из карбида кальция путем нагрева в электрической печи (~2500°С) смеси негашеной извести и кокса. Полученный карбид кальция разлагают водой с образованием ацетилена (метод Велера, 1862 г.):
  2. Из углеводородов путем их пиролиза. Обычно сырьем служат газообразные предельные углеводороды (в частности метан) или жидкие фракции нефти (прямогонные бензин, керосин):
  3. Из элементов ацетилен можно получить пропуская вольтову дугу между угольными электродами в атмосфере водорода. В свое время Бертло так получил ацетилен. Метод не используется на практике, но исторически важен:
  4. Из солей непредельных карбоновых кислот. В 1864 г. Кекуле получил ацетилен путем электролиза фумарата натрия:

Данный способ получения ацетилена важен только с  исторической точки зрения и не имеет практического значения

Способы получения алкинов

  • 1) Из олефинов. Получение алкинов путем последовательного присоединения к олефинам молекулы галогена и отщепления двух молекул галогенводорода при воздействии спиртового раствора щелочи:
  • При воздействии цинка на полигалогеналканы также образуются алкины:
  • 2) Из кетонов. Путем воздействия хлористого фосфора на кетон (150-170°С) замещают кислород на два хлора и отщепляя от образовавшегося соединения двух молекул галогенводорода получают алкин:3) Из солей ацетиленовых углеводородов путем их алкилирования получают алкины с большим числом углеродных атомов:

Применение алкинов

Наибольшее значение и применение среди алкинов имеют ацетилен и винилацетилен.

Большая доля производимого ацетилена идет на сварку и резку металла. Ацетиленово — кислородное пламя имеет температуру — порядка 3500°С, что позволяет легко плавить сталь.

Некоторая часть ацетилена из-за его наркотического воздействия применяется в медицинской практике (нарцилен).

Как исходное вещество ацетилен используется в производстве соединений органического синтеза и целевой химической продукции — уксусной кислоты, ацетальдегида, этанола, хлоруксусные кислоты, изопрена, винилацетилена, который далее используется при получении хлоропренового каучука и т.п.

ПОИСК

    Выбор способа очистки диацетилена зависит от метода получения и цели его использования. Диацетилен, образующийся при пиролизе природного газа, достаточно хорошо очищается с помощью низкотемпературной перегонки. Этим способом очистки пользуются как в лабораторной, так и промышленной практике.

Очищенный таким образом диацетилен обладает степенью-чистоты, требуемой при физико-химических исследованиях [Ю] Этим же способом пользуется в промышленности для выделения диацетилена и винилацетилена из смеси их с ацетиленом 150].

]Метод селективного растворения для выделения ацетилена, его-гомологов и диацетилена из газовой смеси [50, 62, 63] в настоящее время широко применяется на заводах. В качестве растворителей для этого используются метанол, диметилформамид, N-ме-тилпирролидон, ацетон, керосиновые фракции нефти и др.

При этом, однако, необходимо учитывать возможность взаимодействия диацетилена с растворителем, как это имеет место в случае К-метилпирролидона-2 [382—384]. При пропускании диацетилена через N метилпирролидон-2 при охлаждении образуется устойчивый кристаллический комплекс, в котором молекулярное-отношение диацетилена к метилпцрролидону равно 1 1.

Этот комплекс при нагревании до 30 50° С распадается с образованием диацетилена, что было использовано для выделения его в чистом виде из смеси с моноацетиленами. Так, исходная газовая смесь, полученная при электродуговом крекинге углеводородов, содержала ацетилена — 38,4 мол. %, метилацетилена — 16,4 мол. % и диацетилена — 45,1 мол.%.

После пропускания этой смеси через К-метилпирролидоп-2 при 0° С до образования кристаллов отходящий газ имел следующий состав ацетилена — 55,7 мол.%, метилацетилена —42,2 мол.7о и диацетилена — 2,1 од.7о- При нагревании кристаллического комплекса до 40″ С образуется газ, содержащий 96,1 мол. % диацетилена. Повторная обработка дает совершенно чистый диацетилен.

[c.57]     Бертло первый показал, что при неполном сгорании органических веществ образуется ацетилен, и разработал метод для лабораторного получения ацетилена этим путем [2—3]. Гофман и Билль [5] первые стали изучать образование ацетилена при неполном сгорании некоторых органических соединений.

Читайте также:  Hilti te 5 характеристики

Так как при этом способе можно избежать и высокой стоимости электро-дугового нагрева и трудностей передачи тепла в случае других пирогенетических методов, то за последнее время были сделаны попытки применить его в промышленном масштабе.

Однако оптимальная температура образования ацетилена достигается этим путем нелегко, и полученный продукт обычно содержит ацетилен в концентрациях ниже, чем при других пирогенетических процессах.

Фишер и Пихлер [6] сообщают о получении ацетилена из коксового газа или метана в смеси с воздухом и кислородом, пропускаемых через нагретую фарфоровую трубку, при разных давлениях, с различными скоростями. Аппаратура для производства ацетилена методом неполного сгорания газообразных углеводородов явилась предметом многочисленных патентов 17—17]. В патентах/. О. Р. [7] защищается применение метода неполного сгорания в присутствии элементарного кремния с целью повышения выходов ацетилена. [c.49]

    Б лабораторных условиях были разработаны способы получения ТФК, спользующие в качестве исходного сырья бензол [38], ацетилен [55 цимол [56], п-ксилилендихлорнд [57] и др. [c.12]

    В самом начале текущего столетия появляется ряд работ Фаворского с учениками [5, 6] по изучению реакции взаимодействия фенилацетилена с кетонами в присутствии порошкообразного едкого кали. В результате этого исследования был получен ряд третичных жирноароматических спиртов ацетиленового ряда.

Затем, когда была решена проблема дешевого и довольно безопасного в обращении (в лабораторных условиях) ацетилена, решается проблема синтетического изоиреиового каучука, а вслед за этим открывается блестящая страница огромных успехов органической химии — целый ряд исследований Фаворского, его учеников и последователей по синтезу терпенов и родственных им веществ.

В основе этих исследований лежит все тот же общий метод синтеза третичных спиртов ацетиленового ряда, о котором оворилось выше. В тридцатых годах этот метод был испытан на самом ацетилене и показана техническая возможность получения таким способом диметилацетиленилкарбинола [7].

Путем селективного гидрирования диметилацетиленилкарбинола до диметилвинилкарбинола и дегидратации последнего образуется изопрен. [c.127]

    Абсолютный снирт может быть получен различными способами. В лабораторных условиях спирт можно обезводить химическим путем, при помощи негашеной извести, которая образует гидрат окиси кальция, или с карбидом кальция, который, реагируя с водой, дает ацетилен. Другой метод, который все больше внедряется в практику, состоит в том, что к спирту прибавляют этилат алюминия, А1(ОС2Н5)д, который, реагируя с водой, дает гидрат окиси алюминия и этиловый спирт  [c.86]

    Способ добывания ацетилена по Савичу и Мясникову долгое время был наиболее удобным в лабораторных условиях, пока не был вытеснен методом получения ацетилена из карбида кальция, после изобретения электрической дуговой печи. Например, для своих обширных работ с ацетиленом и его производными А. П. Сабанеев [76] С2Н2 получал по способу названных русских ученых. [c.92]

    В соответствии с большим интересом, который представляют научные основы этого процесса, изучался также механизм этой реакции. Однако условия проведения реакции весьма сложны и полностью выяснить ее механизм нам не удалось.

Следует все же отметить, что ацетилен образуется особым способом через промежуточное образование этилового спирта и формальдегида с последующим взаимодействием обоих этих кислородных соединений.

Несомненно, представляет иптерес и то, что, как показали наши лабораторные опыты, в качество исходного сырья, пригодного для получения ацетилена неполным окислением, могут служить не только мотан или этан, по и значительно более высокомолекулярные углеводороды, [c.261]

    В лабораторных условиях тиофен может быть синтезирован без использования катализаторов, например, взаимодействием трехсернистого фосфора с янтарной кислотой или ее ангидридом серы с этиленом или ацетиленом, реакцией ацетилена с диэтилдисульфидом, дивинилсульфоксидом пиролизом дибутилдисульфида или алкилвинилсульфидов по реакции бутана с серой при высокой температуре.

Для этих способов характерен невысокий выход целевого продукта, низкая селективность, образование смолообразных продуктов.

Более эффективны способы, основанные на взаимодействии сероводорода с углеводородами, включающими С4-фрагмент, или с фураном, синтезируемым из фурфурола, который в большом количестве вырабатывают из пентозансодержащих отходов сельского и лесного хозяйства и деревообрабатывающей промышленности. Возможен синтез тиофенов путем превращения алифатических и циклических соединений серы.

Для получения тиофена и его низших гомологов можно проводить дезалкилирование тиофенов, вьще-ляемых из продуктов переработки каменноугольных смол, высокосернистых сланцев, и из некоторых типов сернистых нефтей или из продуктов их реформирования. [c.157]

Смотреть страницы где упоминается термин Ацетилен, лабораторный способ получения: [c.33]    [c.638]    [c.190]    [c.513]   
Лабораторная техника органической химии (1966) — [ c.625 ]

Ацетилен получение

азы лабораторные способы получения

© 2022 chem21.info Реклама на сайте

Получение алкинов

Важнейший в практическом смысле алкин – ацетилен – может быть получен тремя способами:

  1. Получение ацетилена из кокса — Реакция Вёллера (промышленный способ):

    Ацетилен, полученный этим методом, обладает характерным запахом вследствие присутствия в нем следов сероводорода и фосфина, которые могут быть удалены при пропускании газа через раствор хлорной ртути в разбавленной соляной кислоте. Чистый ацетилен практически не имеет запаха.

  2. Термическое разложение метана (промышленный способ). Процесс получения ацетилена при нефтехимическом синтезе включает частичное окисление углеводородов нефти с образованием в качестве побочных продуктов окиси углерода и водорода. При этом можно исходить как из метана, так и из высших углеводородов:

    Технически данный способ реализуется либо сжиганием над специальной насадкой смеси природного газа с воздухом, в результате чего на этой насадке происходит пиролиз метана, либо пропусканием метана между двумя электродами с высокой скоростью.

  3. Синтез Бертло:

    Эта реакция эндотермичная ($ riangle H$ = 55 ккал) и, следовательно, требует большого количества энергии поэтому в настоящее время практически не используется и имеет лишь историческое значение в смысле получения органического соединения из неорганических веществ.

Алкилирование ацетиленид-иона и карбанионов терминальных алкинов

Алкилирование ацетиленид-ионов равно как и прочих карбанионов с терминальной (т.е. концевой) тройной связью происходит под действием первичных алкилгалогенидов (бромидов или иодидов) путем бимолекулярного нуклеофильного замещения у насыщенного атома углерода. То есть происходит удлинение углеродной цепи молекулы:

где ГМФТА – гексаметилфосфотриамид, а ДМСО – диметилсульфоксид.

Поскольку карбанионы ацетилена и его гомологов являются сильными основаниями ($pK_a$ сопряженной кислоты = 25), высокий выход алкина (до 70 %) может быть достигнут лишь при использовании в качестве алкилирующего агента $R^2CH_2Br$ неразветвленных первичных алкилгалогенидов. В случае вторичных алкилгалогенидов выход продукта реакции алкилирования резко снижается и редко превышает 10% из-за протекания конкурирующей реакции элиминирования. Третичные алкилгалогениды полностью участвуют в элиминировании с образованием соответствующих алкенов.

Дегидрогалогенирование вицинальных дигалогенидов

Вицинальными дигалогенидами называются углеводороды, содержащие два атома галогена у соседних атомов углерода. Отщепление галогеноводорода осуществляется с помощью сильных оснований, таких, как $KOH$ в этаноле, диэтиленгликоле или триэтиленгликоле.

Для отщепления последовательно двух молекул галогеноводорода требуются очень жесткие условия, поэтому чаще используется раствор $KOH$ в диэтиленгликоле или триэтиленгликоле при нагревании до 200-290°С.

Следует иметь в виду, что в спиртовой среде при температуре выше 150 °С в ходе реакции происходит миграция тройной связи и терминальные алкины изомеризуются с перемещением тройной связи внутрь цепи:

При этом образуется химически устойчивое соединение, поскольку дизамещенные при тройной связи алкины термодинамически более стабильны, чем терминальные алкины. Для получения терминальных алкинов предпочтительнее использовать вместо спиртового раствора $KOH$ раствор амида натрия в жидком аммиаке (реакция проводится на холоде при температуре около -33°С):

Дегидрогалогенирование геминальных дигалогенидов

Геминальными дигалогенидами называются углеводороды, содержащие два атома галогена у одного и того же атома углерода. Отщепление галогеноводорода осуществляется с применением слабого раствора $KOH$ в диэтиленгликоле:

Повысить выход реакции можно, применяя раствор амида натрия в смеси жидкого аммиака и эфира.

Прочие лабораторные способы получения алкинов

  1. Синтез алкинов из альдегидов – реакция Кори-Фукса:

Получение и применение ацетилена

Прежде чем приступить к объяснению, где применяется ацетилен, давайте рассмотрим, как его получить.

Содержание

  • Получение ацетилена производят двумя основными способами:
  • На данный момент способ получения ацетилена из карбида кальция используется редко, поскольку он довольно громоздкий, дорогой и требующий затрат большого количества электроэнергии.
  • Поэтому на смену ему пришел способ получения ацетилена из природного газа (метана) термоокислительным пиролизом метана с кислородом (так называемый пиролизный ацетилен).
  • Пиролизный ацетилен получают путем сжигания метана в смеси с кислородом в реакторах при температуре 1300-1500°C. В результате чего получается смесь, которая содержит:
  • ацетилен — до 8%;
  • водород — 54%;
  • окись углерода — 25%;
  • примеси – до 13%.
Читайте также:  Болт на 19 размер резьбы

При помощи растворителя (диметилформамида) из нее извлекается ацетилен концентрации 99,0-99,2%.

Оставшаяся часть пиролизных газов используется для производства аммиака и других продуктов.

Также ацетилен получают путем разложения жидких горючих (нефть, керосин) действием электродугового разряда, который называется электропиролизом.

Пиролизный и электропиролизный ацетилена по своим свойствам является идентичным ацетилену, получаемому из карбида кальция, но дешевле на 30-40%.

Ацетилен применяется при всех процессах газопламенной обработки металлов (газовой сварке и газовой резки), благодаря высокой температуре пламени, достигнуть которой при использовании других горючих не удается.

Для пайки, резки, наплавки, газопламенной закалки, металлизации, газопрессовой сварки, сварки цветных металлов и сплавов с успехом применяются газы-заменители ацетилена:

  • пропано-бутановые смеси
  • городской газ
  • природные газы
  • водород
  • пары бензина
  • пары керосина
  • МАФ
  • и др.
  1. По химическому составу все они, за исключением водорода, представляют собой или соединения, или смеси различных углеводородов.
  2. Правильный выбор и использование газов-заменителей позволяет добиться высокого качества сварки и резки, а при газовой резке металлов малых толщин дает более высокую чистоту резки.
  3. Газовая сварка возможна при условии, что температура пламени в два раза превышает температуру плавления свариваемого металла. Поэтому газы-заменители температура пламени которых ниже, чем у ацетилена применяют для сварки металлов с температурой плавления ниже, чем у сталей
  4. Для газовой резки выбор горючего газа основывается на его теплотворной способности, но необходимо учитывать, что газ при сгорании в смеси с кислородом должен образовывать пламя с температурой не ниже 2000°C.
  5. Давайте остановимся еще на некоторых особенностях применения ацетилена при газовой сварке – влияние примесей на качество сварного шва. Вредное влияние имеют следующие примеси:
  • сероводород
  • фосфористый водород

Вышеуказанные примеси обязательно удаляются из ацетилена, не только из-за влияния на качество сварного шва, но также из-за пагубного влияния на органы дыхания и зрения сварщика (см. статью Взрывоопасность, ядовитость и самовоспламенение ацетилена).

Сероводород при сгорании образовывает серную кислоту, которая при переходе в металл сварного шва вызывает красноломкость. Установлено, что наличие сероводорода до 0,007% не оказывает вредного влияния на прочность сварного шва.

Определить наличие сероводорода в ацетилене довольно легко, необходимо поднести фильтровальную бумагу, смоченную в растворе хлористой ртути под струю ацетилена. При наличии сероводорода — бумага побелеет.

Процесс очистки от сероводорода тоже довольно простой – необходимо ацетилен пропустить через воду, в результате чего сероводород растворится в воде.

Фосфористый водород при сгорании образовывает фосфорную кислоту, которая при переходе в металл сварного шва вызывает хладноломкость. Установлено, что наличие фосфористого водорода до 0,027% не оказывает вредного влияния на прочность сварного шва.

Для определения наличия фосфористого водорода необходимо кусок фильтровальной бумаги, смоченный в десятипроцентном растворе азотнокислого серебра поднести под струю ацетилена. При содержании 0,01% фосфористого водорода бумага принимает отчетливую светло- желтую окраску, при содержании более 0,02% — бумага темнеет.

Химическим путем очистка ацетилена от фосфористого водорода производится путем пропускания через особую очистительную массу – гератоль. Гератоль представляет собой массу желтого цвета, которая в результате взаимодействия с фосфористым водородом приобретает зеленый цвет.

Помимо газопламенной обработки ацетилен используют в области химической промышленности в качестве основного исходного вещества для получения ряда важнейших продуктов органического синтеза: синтетического каучука, пластмасс, растворителей, уксусной кислоты и т. п. Далее мы рассмотрим, как ацетилен используется для получения тех или иных химических соединений.

Продуктом присоединения воды к ацетилену является уксусный альдегид. Впервые этот синтез был осуществлен М. Г. Кучеровым в 1881 г. Реакция протекает по уравнению:

HC = CH + H2O ? CH3 — CHО

Реакция проводится пропусканием ацетилена через сернокислый раствор соли окиси ртути при температуре 70-80°C.

Применение этой реакции явилось началом промышленного синтеза органических веществ с применением ацетилена в качестве исходного продукта.

  • При пропускании смеси ацетилена и паров воды в соотношении примерно 1:10 при температуре 430-450°C над цинк-ванадиевым катализатором происходит образование ацетона по уравнению:
  • 2C2H2 + 3H2O ? CH3-CО-CH3 + CО2 + H2О
  • Указанный процесс нашел применение в промышленных масштабах.
  • При взаимодействии ацетилена с хлористым водородом при 200°C над катализатором, представляющим собой двухлористую ртуть, нанесенную на активированный уголь, образуется хлористый винил по уравнению:
  • C2H2 + HCl ? CH2 = CHCl
  • C уксусной кислотой также в присутствии ртутных солей ацетилен образует винилацетат:
  • C2H3 + CH3COOH ? CH2 = CH-ОCО-CH3
  • Хлористый винил и винилацетат широко применяются при производстве пластмасс.
  • При пропускании ацетилена через насыщенный раствор однохлористой меди и хлористого аммония при температуре 50°C образуется винилацетилен.
  • Реакция протекает по уравнению:

CH ? CH + CH ? CH ? CH ? C-CH ? CH2

В результате присоединения хлороводорода к винилацетилену образуется хлоропрен, который способен к быстрой и самопроизвольной полимеризации с образованием каучука высоких технических качеств.

Химия винилацетилена нашла широкое теоретическое обобщение, что позволило значительно расширить область применения этого продукта.

  1. При взаимодействии ацетилена со спиртами в щелочном растворе образуются простые виниловые эфиры.
  2. Так, например, реакция между ацетиленом и этиловым спиртом протекает по уравнению:
  3. C2H2 + C2H5OH ? H2C = CH-O-C2H5

Эта реакция была открыта А. Е. Фаворским в 1887 г.

Подводя итог всему вышенаписанному, мы установили, что ацетилен получают не только из карбида кальция, но также путем сжигания метана. При этом выяснили, что ацетилен применяют не только для газовой сварки и газовой резки, но и в химической отрасли для получения пластмасс, растворителей и т. д.

Ацетилен: формула, свойства, получение, преимущества

Ацетилен можно получить в лабораторных и промышленных условиях. Для получения ацетилена в лаборатории достаточно на карбид кальция (это его формула — СаС2) капнуть небольшое количество воды. после этого начинается бурная реакция выделения ацетилена. Для ее замедления допустимо использовать поваренную соль (формула NaCl).

В промышленных условиях все несколько сложнее. Для производства ацетилена применяют пиролиз метана, а так же пропана, бутана. В последнем случае формула ацетилена будет содержать большое количество примесей.

Карбидный способ производства ацетилена обеспечивает производство чистого газа. Но, такой метод получения продукта должен быть обеспечен большим количеством электроэнергии.

Пиролиз не требует большого количества электричества, все дело в том, что для производства газа, необходимо выполнить нагрев реактора и для этого используют газ, циркулирующий в первом контуре реактора. Но в потоке, который там перемещается, концентрация газа довольно мала.

Выделение ацетилена с чистой формулой во втором случае не самая простая задача и ее решение обходится довольно дорого. Существует несколько способов производства формулы ацетилена в промышленных условиях.

  Как специалисты точат нож мясорубки?

Электрический крекинг

Превращение метана в ацетилен происходит в электродуговой печи, при этом ее нагревают до температуры в 2000-3000 °С. При этом, напряжение на электродах достигает 1 кВ. Метан разогревают до 1600 °С. Для получения одной тонны ацетилена необходимо затратить 13 000 кВт×ч. Это существенный недостаток производства формулы ацетилена.

Технологическая схема крекинга

Пиролиз окислительный

Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.

Технологическая схема процесса окислительного пиролиза

Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.

Преимущества

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени.

Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий.

Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Ацетилен: применение в строительстве и промышленности

Автогенные и сварочные работы сопровождают практически все этапы строительства. Именно в этих видах работ применяется ацетилен. В специальном устройстве под названием горелка происходит смешивание газов и непосредственно сама реакция горения. Наивысшая температура данной реакции достигается при содержании ацетилена 45 % от всего объема баллона.

Баллоны с этим газом маркируют следующим образом: окрашивают в белый цвет и большими красными буквами наносят надпись: «Ацетилен»

Читайте также:  Сплав титана и железа

Строительные работы проводятся в основном на открытом воздухе. Применение ацетилена и его гомологов в этих условиях не должно проходить под воздействием прямых солнечных лучей. Небольшие перерывы должны сопровождаться перекрыванием вентилей на горелке, а длительные – перекрыванием вентилей на самих баллонах.

Читать также: Чехол для телефона из резиночек на рогатке

  Пробойник для люверсов: описание, как пользоваться

В химической промышленности очень востребован ацетилен. Применение его заключается в использовании данного вещества в процессе получения продуктов органического синтеза. Это синтетический каучук, пластмассы, растворители, уксусная кислота и т.д.

Ацетилен, являясь универсальным горючим, часто используется в процессах, сопровождающихся газопламенной обработкой. Важно, что применение ацетилена в промышленности возможно только при соблюдении мер безопасности, так как он является взрывоопасным газом.

Формула ацетилена

Строение молекулы ацетилена

Ацетилен имеет простую формулу — С2Н2. Относительно дешевый способ его получения путем перемешивания воды и карбида кальция сделал его самым применяемым газом для соединения металлов. Температура с которой горит смесь кислорода и ацетилена вынуждает выделяться твердые частицы углерода.

Ацетилен можно доставить к месту выполнения работ в специальных емкостях (газовых баллонах), а можно получить его непосредственно на рабочем месте используя для этого специально сконструированный реактор. Где происходит смешивание воды и карбида кальция.

Химические и физические свойства

Некоторые химические свойства

Свойства ацетилена во многом определены его формулой. То есть наличием атомов углерода и водорода связанных между собой.

Смешивание ацетилена с водой, при добавлении катализаторов типа солей ртути, приводит к получению уксусного альдегида. Тройная связь атомов, содержащихся в молекуле ацетилена приводит к тому, что при сгорании она выделяет 14 000 ккал/куб. м. В процессе сгорания температура поднимается до 3000 °C.

Этот газ, при соблюдении определенных условий, может превращаться в бензол. Для этого необходимо разогреть его до 4000 °С и добавить графит.

Водород, содержащийся в молекулах показывает кислотные свойства. То есть они довольно легко отрываются от молекулы в виде протонов. Ацетилен в состоянии обесцвечивает воду содержащую бром и раствор «марганцовки».

Молярная масса ацетилена составляет 26,04 г/моль. Плотность ацетилена 1,1 кг/м³.

Физические свойства

В стандартных условиях ацетилен представляет собой бесцветный газ, который практически не растворяется в воде. Он начинает кипеть в -830 °С. При сжимании он начинает разлагаться с выделением большого количества энергии. Поэтому для его хранения применяют стальные баллоны способные хранить газ под высоким давлением.

Этот газ недопустимо выпускать в атмосферу. Его формула может отрицательно сказываться на окружающей среде.

Ацетилен: применение в медицине

Как используется вещество в этой сфере? Общая анестезия предполагает применение алкинов. Ацетилен является одним из тех газов, которые используются при ингаляционном наркозе. Но повсеместное его применение в этом качестве осталось в прошлом. Сейчас появились более современные и безопасные способы анестезии.

  Прессы для холодной и горячей штамповки листового металла

Хотя следует отметить, что и применение ацетилена не представляло большой опасности, так как прежде чем значение его концентрации во вдыхаемом воздухе дойдет до опасного предела, нижний порог горючести будет пройден.

Самым главным условием использования данного газа является соблюдение мер безопасности. Сложно переоценить, насколько опасен ацетилен. Применение его возможно только после проведения всех необходимых инструктажей с работниками различных сфер, в которых он используется.

Ацетилен в условиях нормальной влажности воздуха и температуры является бесцветным газом, который получают в стационарных генераторах методом действия воды на карбид кальция.

При понижении температуры до -85 градусов по Цельсию вещество переходит в твердое состояние, одновременно с этим образуются кристаллы. Важным свойством ацетилена является то, что при ударах или под воздействием трения он взрывается.

Этот параметр во многом определяет область использования.

Технология и режимы сварки

Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.

Сварка при помощи ацетилена

Пламя при ацетиленовой сварке

Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм3/час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

  • толщину стенки свариваемых заготовок;
  • вид сварки — левый, правый;

На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4.

То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3.

Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм3/час, при правом 650-750 дм3/час.

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва.

По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй.

Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Виды ацетилена

Промышленность выпускает два вида ацетилена — твердый и в виде газа.

Газообразный

Ацетилен обладает резким запахом и это дает определённые преимущества при его утечке. По своей массе он близок к атмосферному воздуху.

Жидкий

Жидкий ацетилен не обладает ни каким цветом. У него есть одна особенность он преломляет цвет. Ацетилен и жидкий, и газообразный, представляет собой опасное вещество.

То есть при нарушении правил обращения с ним взрыв может произойти в любую секунду, даже при комнатной температуре. Для повышения безопасности при обращении с ним, применяют так называемую флегматизацией.

То есть в ёмкости, предназначенной для хранения ацетилена размещают пористое вещество. Которое снижает его опасность

Преимущества растворенного ацетилена

Основное преимущество растворенного ацетилена перед тем, который получают с использованием переносных генераторов из карбида кальция, состоит в том, что при применении баллонов происходит повышение труда сварщика примерно на 20 %, а потери ацетилена при этом снижаются на 25 %.

Также следует отметить повышение оперативности и маневренности сварочного поста, безопасность.

В отличие от газа, полученного из карбида кальция, растворенный ацетилен содержит значительно меньше посторонних веществ, то есть примесей, что позволяет использовать его в особо ответственных сварочных работах.

Реакции ацетилена

Ацетилен вступает в реакцию с различными соединениями, например, солями меди и серебра. В результате таких взаимодействий получают вещества под названием ацетилениды. Их отличительная черта — взрывоопасность.

  • Получение ацетилена
  • Горение ацетилена
  • Реакция окисления ацетилена
  • Реакция полимеризации
  • Реакция замещения ацетилена

Безопасность

Поскольку ацетилен нерастворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест».

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]