Лампа накаливания на схеме

Каждый профессионал должен владеть определенным языком, соответствующим его профессии. В электрике таким языком является графический язык электрических/электронных схем.

На этом языке удобнее всего описывать (вернее, отрисовывать) объекты, с которыми электрик работает.

Причем как в случае построения каких-то новых сооружений, проведения проводки или целой системы питания или освещения, изготовления электроприборов, так и в случае устранения аварий, улучшения схем или просто подключения новых объектов к уже имеющимся системам.

Электрик должен уметь, например, при беглом взгляде на возникшую где-то проблему увидеть профессиональным оком возможные причины неисправности и свои гипотезы быстро набросать в виде схемы на любом клочке бумаги. И уже тогда решать задачу или объяснять кому-то варианты возможного решения.

Язык схем – это в какой-то мере язык специфических иероглифов, и их знание – просто разновидность грамотности. Во многом обозначения делаются логически понятными, так как часто происходят от рисунков соответствующих обозначаемых объектов или их деталей.

Два вида обозначений на электрических схемах

Графические обозначения должны быть интуитивно понятны с первого взгляда. Но есть множество свойств, которые простым рисуночком передать сложно. Поэтому на всех схемах, где требуется конкретика – а это все схемы, рассчитанные на практическое применение, – условные графические обозначения дополняются буквенными или цифровыми надписями.

То есть, обозначения на схемах можно отнести к:

  1. Графическим.
  2. Знаковым – буквенным или цифровым.

Также стоит выделить обозначения, сводимые в различные таблицы, спецификации, пояснительные тексты, обычно прилагаемые к схемам.

Самым главным свойством таких обозначений должна быть однозначность идентификации каждого объекта, отраженного на схеме.

Это касается как типа изображенного объекта, например, выключатель, лампочка, стабилизатор, так и конкретного номера на схеме или его электрических, монтажных, физических и других свойств.

При вычерчивании схем сейчас обычно используются компьютерные программы, которые автоматически дают красивую, понятную и удобно размещенную картинку, тем не менее так же, как мы все умеем писать карандашом или ручкой, должны суметь нарисовать и схему – хотя бы в общем виде и в черновом варианте.

И это несмотря на то, что существует множество программ, написанных для формирования и вычерчивания схем.

Графические условные обозначения электрических объектов являются общепринятыми и могут использоваться в схемах, планах и чертежах разного вида: принципиальных схемах, монтажных планах, планах проводки, разводки, и т. д. Эти обозначения, как и разновидности любой графической документации, регламентируются стандартами. Последним из таких стандартов можно назвать ГОСТ МЭК 60617-DB-12M-2015 «Графические символы для схем».

Из всего разнообразия схем, где изображаются электрические элементы, нас интересуют, прежде всего, схемы и условные обозначения на них, касающиеся освещения и осветительных систем.

При серьезном профессиональном подходе система освещения строящегося объекта является частью общего проекта, а после окончания строительства и с начала пользования объектом все электрические схемы должны храниться в надежном месте весь период эксплуатации здания. Хотя на практике часто бывает иначе.

Кратко рассмотрим на примере виды графических документов, касающихся электрической части проекта.

План здания (квартиры)

Очень условно, даже схематично на плане изображено расположение комнат, положение проемов и размеры.

Лампа накаливания на схемеПлан квартиры

Схема осветительной сети

На этой схеме важно как, в каких точках освещать помещение заданной конфигурации.

Лампа накаливания на схемеСхема осветительной сети

Разумеется, подводка энергии к светильникам тоже играет роль при этом, поэтому вполне уместно здесь ее и изобразить. Это несложно сделать в соответствии с разработанными стандартами: ГОСТ 21.608 и ГОСТ 21.614.

Розеточная сеть помещения

Схема размещения розеток органически дополняет схему освещения.

Лампа накаливания на схемеСхема размещения розеток

Как видим, схемы несложные, вполне по силам их вычертить даже в домашних условиях при производстве каких-то работ по созданию и модернизации бытовой электрической сети. Важно уметь в таких схемах ориентироваться.

Схема сети питания

Схема питания дает больше технических сведений, поэтому в ней много буквенно-цифровых обозначений и количественных данных. А данные пространственного расположения уже приведены в трех предыдущих, поэтому на схеме питания сведения заключены в виде схематической однолинейной таблицы.

Лампа накаливания на схемеСхема сети питания

Условные обозначения, которые встретились здесь, на примере этих схем, можно считать чаще всего встречающимися. Их все обычно и знают. Полный же перечень графических обозначений дают ГОСТы, приведенные выше.

Здесь мы тоже их перечислим, их не так много, важно их рассмотреть и понять логику изображения в них различных свойств и деталей.

Так как нас интересуют больше осветительные устройства, лампы и прочие светильники в этом перечне вынесены вперед. Остальное оборудование приведем, но следом за ними.

  • Лампа накаливания на схеме
  • Лампа накаливания на схеме
  • Лампа накаливания на схеме Лампа накаливания на схеме Лампа накаливания на схеме
  • Лампа накаливания на схеме

Буквенные обозначения в электрических схемах

Буквенные обозначения – это аббревиатуры, которые по смыслу тоже легко расшифровываются и запоминаются. Все делается в соответствии с ГОСТ 7624-54, можно привести их и здесь.

Буквенные обозначения электронных элементов схем тоже всем известны. Они часто обозначаются латинскими буквами, как сокращение от соответствующих им названий физических величин. Например, R – resistance, электрическое сопротивление.

Ну вот и все, что может понадобиться, чтобы нарисовать или, наоборот, понять схемы электрического питания помещений.

Как устроена лампа накаливания: принцип работы и потребление электрики

Для создания искусственного освещения часто используют обычную лампу накаливания. Этот элемент знаком всем еще со времен СССР. Стеклянная колба, патрон и спираль — основные видимые части продукта. Как устроена лампа накаливания изнутри, интересно и мастеру-новичку, и профессионалу.

История изобретения лампочки

Лампа накаливания на схемеВнешний вид лампы накаливания

Изделие проектировалось и дорабатывалось многими учеными в разные периоды. Первая электрическая дуга была зажжена ученым Петровым В.В. в 1802 году. Изобретение состояло из двух угольных стержней, которые подключались к полюсам гальванической батареи. В момент их сближения возникал электрический разряд, и над элементами формировалась светящаяся дуга. Применение такой лампы в быту было невозможным по ряду причин – неудобство конструкции, быстрое перегорание угольных стержней. Зато мировые ученые начали понимать, из чего сделать лампу.

Спустя 70 лет в 1872 году Лодыгин А.Н. получил патент на лампу накаливания. В качестве спирали в ней был использован стержень ретортного угля, который находился под стеклянным колпаком.

Уже в 1880 году 10 мая лампочкой Лодыгина было обустроено уличное освещение в Санкт-Петербурге на Литейном мосту. Срок службы источника света составлял всего 2 месяца (пока не перегорал угольный стержень).

В 1880 году в США Томас Эдисон представил усовершенствованную лампу накаливания Лодыгина. Он сумел добиться устранения воздуха из стеклянной колбы, что обеспечило более длительное горение спирали и более яркое её свечение. Эдисон также разработал цоколь с резьбой для ввинчивания лампы в патрон.

В 1910 году было принято решение скручивать вольфрамовую нить в спираль для увеличения ресурса её службы. Таким образом, изделие теперь работает вместо первоначальных 50-100 часов целых 1000 ч.

Принцип теплового получения излучения используют и при производстве галогеновых ламп дневного света.

Из чего состоит лампа

Лампа накаливания на схемеСтроение лампы накаливания

Строение и схема лампы накаливания выглядят так:

  • стеклянная колба грушевидной или округлой формы;
  • тело накала (вольфрамовая или угольная нить), расположенное в ней на двух держателях-крючках;
  • два электрода;
  • предохранитель;
  • ножка;
  • цоколь (корпус) с изолятором;
  • его контакт (донышко).

Окисление вольфрамовой нити (спирали, тела накала) исключается за счет её помещения в вакуум или газообразную среду. Ими наполняют стеклянную колбу.

Электротехнические параметры

Все лампочки производятся для разных напряжений. Поскольку тугоплавкий металл вольфрам имеет малое удельное сопротивление, для устройства светового элемента нужен длинный провод.

Таким образом, нить накаливания в электрической лампочке часто достигает 50 микрометров. При включении света через тело накала проходит ток, превышающий рабочий в 10-14 раз.

Читайте также:  На каких свойствах ацетилена основано его применение

Чем больше прогревается нить, тем сильнее увеличивается сопротивление нити и снижается сила тока.

Принцип работы электрической лампы накаливания

Рассмотрев, из чего состоит лампочка, важно понять и принцип её работы:

  • При включении света через донышко цоколя к телу накала проходит ток.
  • Вольфрамовая нить сильно разогревается после замыкания электрической цепи, что приводит к её свечению.
  • На этот момент температура нити достигает 570 градусов.
  • Таким образом спектр свечения лампочек сдвинут в сторону теплых температур.

Для справки: чем ниже градус вольфрамовой/угольной нити, тем ниже будет доля энергии, которая подходит к телу накала и провоцирует его видимое излучение. Ретро-лампы тем и отличаются, что медленнее и слабее прогревают спираль.

Разновидности световых элементов

Лампа накаливания на схемеТипы колб ламп

Классифицируют все изделия по разным параметрам. По типу наполнения колбы различают такие лампы:

  • самые простые вакуумные (при их изготовлении из колбы отсасывается весь воздух);
  • наполненные газом аргоном;
  • ксенон-галогенные;
  • наполненные криптоном.

По типу предназначения лампочки делят на такие виды:

  • Декоративные. Работают по привычному принципу. Колба выполнена в виде свечи или шара.Лампа накаливания на схемеДекоративные лампы накаливания
  • Общего назначения. Это знакомые всем обычные элементы, которые вкручиваются в люстру или бра. Часто мастера волнует вопрос, сколько ватт потребляет лампочка. Можно купить изделие на 40, 60, 90, 100, 120, 150, 200 и более Вт. Чем больше показатель, тем ярче будет свечение.
  • Лампы для локального освещения. Конструктивно они ничем не отличаются от обычных элементов. Но рабочее напряжение для них находится в диапазоне 12-42 В.
  • Лампочки для иллюминации. Имеют окрашенную в яркие цвета колбу. Рабочая мощность в диапазоне 10-25 Вт.
  • Сигнальные. Имеют предельно низкую мощность и используются для светосигнальных устройств. На сегодняшний день такие изделия уверенно вытесняются современными светодиодными лампами.
  • Прожекторные. Тело накала здесь укладывается особым образом за счет удобной её подвески в колбе. В результате удается достичь лучшей фокусировки свечения. Мощность таких ламп достигает 10-50 киловатт.Лампа накаливания на схемеЗеркальная лампа 
  • Зеркальные. Имеют особое покрытие колбы. Она частично обтянута пленкой распыленного термическим способом алюминия. Таким образом удается добиться узкой направленности светового луча. Зеркалки применяются для устройства локального освещения.
  • Транспортные. Эти изделия отличаются повышенной прочностью, устойчивостью к вибрациям. Для транспортных ламп используют специальные цоколи, благодаря которым можно быстро заменить осветительный элемент в стесненных условиях машины. Работают такие элементы от электросети авто 6-220 В.
  • Изделия для оптических приборов. Сегодня почти не выпускаются. Ранее использовались для кинопроекторов, медтехники. Лампы такого типа имеют колбу особой формы.
  • Коммутаторная лампочка. Относятся к классу сигнальных. Имеют малый размер колбы, что позволяет размещать их под кнопками панелей различных установок.Лампа накаливания на схемеДвухнитевая сигнальная лампа 

По количеству нитей накаливания все элементы бывают:

  • Двухнитевые. Имеют одно тело накала для дальнего (сильного) света и одно – для ближнего (слабого) освещения. Используются в авто, авиации, ж/д светофорах, в звездах Московского Кремля.
  • Однонитевые. Привычные лампочки с вольфрамовым телом накала.

Тело накала малоинерционных изделий имеет крайне тонкую спираль. Ранее они применялись для систем оптической записи звука. Существуют также нагревательные лампы, которые используют для устройства сушильных камер, электроплит, оргтехники и др.

Преимущества и недостатки

Лампа накаливания на схемеЛампы накаливания имеют ряд своих достоинств:

  • приемлемую стоимость;
  • компактные габариты;
  • мгновенную реакцию на включение/выключение;
  • отсутствие мерцания, неблагоприятно воздействующего на глаза;
  • инертность к скачкам напряжения;
  • мягкая гамма свечения, способствующая расслаблению, созданию атмосферы уюта;
  • хороший индекс цветопередачи, равный Ra 90;
  • работа в любых условиях (в том числе при высокой влажности);
  • постоянная доступность для потребителя;
  • экологичность;
  • отсутствие шума при работе;
  • инертность к ионизирующей радиации.

К недостаткам ламп накаливания относят такие моменты:

  • хрупкость, чувствительность к механическим повреждениям;
  • сравнительно малый срок эксплуатации;
  • низкий КПД, не превышающий 5-7% (отношение расходуемой мощности к видимому излучению);
  • пожарная опасность при прямом контакте лампы с горючими веществами (текстиль, солома и др.);
  • вероятность взрыва при термическом ударе или разрыве спирали под напряжением.

Несмотря на все перечисленные недостатки, привычные лампочки уверенно сохраняют за собой занятые позиции. Более 70% населения СНГ все еще пользуются ими.

Кпд и долговечность

Лампа накаливания на схемеВлияние напряжения на срок службы лампочки

Разбирая, как устроена лампа накаливания, важно понять коэффициент ее полезного действия. При световой температуре 3400 Кельвинов КПД элемента составляет 15%. Имеется в виду отношение потребляемой мощности к видимому человеческим глазом световому излучению. При температуре 2700 К (средняя нормальная для обычной бытовой лампы) коэффициент полезного действия равен всего 5%.

Чем выше температура накала, тем большим будет КПД. Но при этом срок службы изделия снижается. К примеру, если повысить напряжение на 20%, яркость освещения станет сильнее — повысится КПД лампочки, однако срок эксплуатации сократится на 90-95%. Соответственно, снижение напряжения приводит к уменьшению коэффициента полезного действия изделия и увеличению срока его эксплуатации.

Как увеличить срок службы лампы накаливания

Лампа накаливания на схемеСхема устройства для увеличении срока службы лампы накаливания

В среднем обычная бытовая лампочка накаливания служит 700-1000 часов. Но на деле элемент перегорает гораздо быстрее. Чтобы продлить срок службы лампочки, нужно предотвратить провоцирующие перегорание спирали факторы.

  • Учитывать диапазон напряжений. Его указывают на колбе изделия. Как правило, он равен 125-135 Вт, 220-230 Вт, 2,3-2,4 кВт. При превышенном напряжении в доме изделие будет перегорать скорее. К примеру, в квартире максимальное напряжение 220 В, а лампа куплена с диапазоном 125-135 В. Здесь нить накала перегорит однозначно быстрее, поскольку увеличивается КПД изделия.
  • Устранить неисправность патрона. Если лампы перегорают часто, стоит осмотреть его, перепроверить контакты. При необходимости патрон меняют.
  • Исключить вибрации. Они приводят к быстрому перегоранию вольфрамовой нити. Поэтому перенос мобильных светильников лучше выполнять с выключенной лампочкой.

Для продления срока службы лампы накаливания можно снизить напряжение в сети всего на 7-8%. В этом случае изделие проработает дольше в 3-3,5 раза при экономном расходе электроэнергии.

Лампа накаливания на схеме

Вам также может понравиться

Чтение схем: лампы и фотоэлементы | Каталог самоделок

Лампа накаливания – представляет собой электрический источник света. Принцип сборки довольно прост: тело накала  (обычно это тугоплавкий проводник) который помещается в вакуумный сосуд. Иногда данный сосуд заполняют инертным газом.

Такое заполнение, при протекании электрического тока через него, нагревается и начинает излучать в широком спектральном диапазоне свет. Лампы нашли довольно таки широкое применение в современной электротехнике.

Давайте разберемся, как же лампы изображаются на схемах.

Лампы накаливания.

Общее обозначение всех видов ламп накаливания, то есть осветительной  и сигнальной приведены ниже на рисунке под номерами № 1 и № 2 соответственно. Если на схемах, возле обозначений ламп накаливания стоит надпись «IR», то это значит, что здесь идет инфракрасное излучение.

Лампа накаливания на схеме

Важно! Раньше, в изображении сигнальных ламп секторы допускалось зачернять (смотрите обозначение № 3).

Сегодня этот стандарт отменен, но если необходимо показать цвет лампы, то используются соответствующие надписи: C2 – красный, С4 – желтый, С5 – зеленый, С6 – синий, С9 – белый.

Здесь на рисунке видно, что изображенная лампа под № 4 имеет синий цвет, так как имеется надпись С6.

  • Газоразрядные лампы.
  • Пример изображения газоразрядных ламп проиллюстрированы на рисунках:
  • Лампа накаливания на схеме

Здесь № 5 – обозначает лампу тлеющего разряда, то есть неоновая лампа, а № 6 обозначает пускатель, то  есть стартер, для люминесцентных ламп.

Пример схемы  газоразрядной лампы приведен на рисунке № 9. Рисунок дает ясно понять, что лампочка имеет одну сигнальную газоразрядную осветительную лампу с 2-мя выводами.

Читайте также:  Лазерный станок для резки фанеры: возможности, принцип работы, виды

Точка внутри обозначения свидетельствует о том, что это лампа низкого давления.

Важно! Раньше данную точку располагали иначе – см № 10. Далее даны примеры обозначений газоразрядных ламп с простыми электродами (черточка – это анод, кружочек – это катод). На рис.

12 проиллюстрирована лампа уже высокого давления (2 точки свидетельствуют это) с ультрафиолетовым излучением (UV– обозначение ультрафиолета). № 13 – лампа сверхвысокого давления с флуоресценцией (флуоресценция обозначается буквами «FL»).

Очень часто на схематических обозначениях ламп могут встретиться буквы, которые характеризуют название газового наполнителя: I– йод; Хе – ксенон; Ne– неон; Na– натрий; Hg– ртуть.

На рисунке приведен пример включения газоразрядной осветительной лампы № 9 с пускателем № 6, где «LL1»  – дроссель. Ознакомиться со схематическими обозначениями дросселей можно здесь.

Фотоэлементы. В обозначениях фотоэлементах практически нет ничего сложного, они обозначаются, как показано на рисунках №№ 7-8.

Устройство лампы накаливания

Разбирая строение лампы накаливания (рисунок 1, а) мы обнаруживаем, что основной частью ее конструкции является тело накала 3, которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы.

Крепление тела накала внутри лампы осуществляется при помощи электродов 6, обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4.

Держатели посредством впайки устанавливают на стеклянном стержне 5, именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой.

Ножка, она изображена на рисунке 1, б, состоит из электродов 6, тарелочки 9, и штенгеля 10, представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8, штабика, тарелочки и штенгеля образует лопатку 7.

Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11, соединяемые между собой электросваркой.

Лампа накаливания на схеме

Рисунок 1. Устройство электрической лампы накаливания (а) и ее ножки (б)

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1. Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2, после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13, крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12.

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света.

Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Лампа накаливания на схеме

Рисунок 2. Конструкция тела накала: а – высоковольтной проекционной лампы; б – низковольтной проекционной лампы; в – обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света.

Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити.

Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками.

Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала: а – в плоскости, перпендикулярной оси лампы; б – в плоскости, проходящей через ось лампы; 1 – кольцевая спираль; 2 – прямая биспираль; 3 – спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света.

Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами.

В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры.

Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Таблица 1

Температура плавления металлов и их соединений

Металлы T, °С Карбиды и их смеси T, °С Нитриды T, °С Бориды T, °С
Вольфрам Рений Тантал Осмий Молибден Ниобий Иридий ЦирконийПлатина 3410 3180 3014 3050 2620 2470 2410 18251769 4TaC + + HiC 4TaC + + ZrC HfC TaC ZrC NbC TiC WC W2C MoC VnC ScCSiC 3927

  • 3927
  • 3887 3877 3527 3427 3127 2867 2857 2687 2557 2377
  • 2267
TaC + + TaN HfN TiC + + TiN TaN ZrN TiNBN 3373

  1. 3307 3227
  2. 3087 2977 2927
  3. 2727
HfB ZrBWB 3067 29872927

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10-10 и 9,95×10-8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам.

Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 – 30% ниже, чем у вольфрама.

Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

  • В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.
  • Таблица 2
  • Основные физические свойства вольфрамовой нити
Читайте также:  Самодельные железные колеса на мотоблок
Температура, К Скорость испарения, кг/(м²×с) Удельное электрическое сопротивление, 10-6 Ом×см Яркость кд/м² Световая отдача, лм/Вт Цветовая температура, К
1000 1400 1800 2200 2600 30003400 5,32 × 10-35 2,51 × 10-23 8,81 × 10-17 1,24 × 10-12 8,41 × 10-10 9,95 × 10-8 3,47 × 10-6 24,93 37,19 50,05 63,48 77,49 92,04107,02 0,0012 1,04 51,2 640 3640 1326036000 0,0007 0,09 1,19 5,52 14,34 27,2543,20 1005 1418 1823 2238 2660 30923522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре.

При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией.

В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру.

Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей.

Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO2 вместе со щелочными металлами – калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al2O3. Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля.

Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами.

Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре.

Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева.

Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10-7 К-1. Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей.

Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10-7 К-1.

Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость.

Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10-7 К-1. Эти стекла могут работать при температурах от 200 до 523 К.

Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10-7 К-1).

Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 – 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами.

Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 – 15%.

При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи.

В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название «платинит». Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла.

При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки.

Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения.

Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует.

Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом.

Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Газы

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями.

К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов.

Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Таблица 3

Основные параметры инертных газов

Газ Молекулярная масса Потенциал ионизации, В Теплопроводность, 10-2 Вт/(м×К)
Водород Аргон КриптонКсенон 28,01 39,94 83,70131,30 15,80 15,69 13,9412,08 2,38 1,62 0,800,50

Источник: Афанасьева Е. И., Скобелев В. М., «Источники света и пускорегулирующая аппаратура: Учебник для техникумов», 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272с.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]