Lm358 схема включения в зарядном устройстве

Под термином «операционный усилитель» подразумевается микросхема дифференциальный усилитель постоянного тока, с высоким коэффициентом усиления и высоким входным сопротивлением, адаптированная для работы с внешней цепью отрицательной обратной связи.

Lm358 схема включения в зарядном устройстве

Операционный усилитель (ОУ) имеет сложную внутреннюю структуру, в которую не будем углубляться сосредоточившись на практическом применении. Графический символ операционного усилителя относится не к его внешнему виду (тем более что он может быть доступен в различных корпусах), а к принципу работы:

Lm358 схема включения в зарядном устройстве

Графический символ операционного усилителя. We (In) — вход, Wy (Out) — выход

Символ этот очень упрощен. Если бы мы хотели разместить на нем все необходимые детали обвязки и коррекции, пришлось бы нарисовать еще контакты. Но чаще всего этого достаточно.

Принцип действия ОУ

Подаем на усилитель через входы, обозначенные здесь символом We (+) так называемый неинвертирующий вход и / или We (-) так называемый инвертирующий вход некоторый сигнал. У него может быть даже очень небольшое напряжение. Разница входного напряжения называется дифференциальным напряжением.

  • Этот усилитель является своего рода компаратором — он будет сравнивать оба сигнала друг с другом и вести себя по-разному в зависимости от того, какой сигнал будет сильнее:
  • We (+) > We (-) => Wy ~ Uпит — Uwo
  • Если подадим более высокое напряжение на неинвертирующий вход We (+), чем на инвертирующий вход We (-), выход будет близок к напряжению Uпит, подаваемому на усилитель, за вычетом падения напряжения на усилителе Uwo.
  • We (+) < We (-) => Wy ~ 0 В
  • Если подадим более низкое напряжение на вход неинвертирующего We (+), чем на вход инвертирующего We (-) контакта, выход будет близок к нулю.
  • We (+) = We (-) => Wy ~ 0 В
  • Если подадим один и тот же сигнал на оба входа (называемый в данном случае недифференциальным сигналом), выходное напряжение будет близко к нулю.
  • Операционный усилитель, с которым будем проводить тесты, имеет обозначение LM358 (это наверное самая распространённая микросхема ОУ). Согласно информации из документации, это двойной усилитель напряжения (то есть два усилителя в одном корпусе), поэтому он имеет восемь контактов:

Lm358 схема включения в зарядном устройстве

Слева операционный усилитель LM358; Справа схема его контактов

Вывод 8 (напряжение питания) и вывод 4 (масса) являются общими для обоих усилителей. Остальные ножки раздельные:

  1. первый усилитель состоит из ножек: 3 (We (+)), 2 (We (-)), 1 (выход).
  2. второй усилитель состоит из ножек: 5 (We (+)), 6 (We (-)), 7 (выход)

Если присмотритесь, то заметите небольшое углубление на одной стороне корпуса. На схеме в примечании вместо углубления рядом с цифрой 1 есть черная точка. Это стандартный способ маркировки передней части микросхемы. Ножки всегда нумеруются последовательно, начиная с выемки (или точки) против часовой стрелки.

Lm358 схема включения в зарядном устройстве

Операционный усилитель LM358 с маркировкой ключа

Проверим как это выглядит на практике — соберем макетную плату. Напряжение питания 6 В. Для желто-зеленого светодиода выбран резистор 220 Ом. Потенциометр P1 на 10 кОм.

Внимание! Перед подключением блока питания к схеме на плате убедитесь, что операционный усилитель подключен правильно, иначе можете его повредить.

Вариант 1. Резистор R1 и светодиод D1 (желтый) подключены между плюсом блока питания и выходом операционного усилителя; неинвертирующий вход We (+) (третий вывод усилителя) также подключен к плюсу питания.

Lm358 схема включения в зарядном устройстве

Схема из источника питания B1, операционного усилителя LM358, резистора R1, потенциометра P1 и диода D1

Напряжение на входе We (+) (вывод 3) выше напряжения на входе We (-) (вывод 2), поэтому на выходе усилителя (вывод 1) получаем напряжение близкое к напряжению питания, минус падение напряжения на усилителе. Разность потенциалов между источником питания B1 и выходом операционного усилителя будет слишком низкой для питания светодиода, поэтому он останется выключенным.

Lm358 схема включения в зарядном устройстве

Вариант 2. Резистор R1 и светодиод R1 (в моем случае желтый) подключены между «плюсом» блока питания и выходом операционного усилителя; неинвертирующий вход We (+) (третий вывод усилителя) подключен к земле.

Lm358 схема включения в зарядном устройстве

Напряжение на входе We (+) (вывод 3) ниже напряжения на входе We (-) (вывод 2), поэтому выход усилителя (вывод 1) будет близок к 0 В. Разности потенциалов между источником питания B1 и выходом операционного усилителя будет достаточно для питания светодиода, поэтому он будет светиться.

Lm358 схема включения в зарядном устройстве

Вариант 3. Резистор R1 и светодиод D1 (теперь зеленый) подключены между выходом операционного усилителя и землей; неинвертирующий вход We (+) (третий выходной контакт усилителя) подключен к «плюсу» источника питания.

Lm358 схема включения в зарядном устройстве

Напряжение на входе We (+) (вывод 3) выше напряжения на входе We (-) (вывод 2), поэтому на выходе усилителя (вывод 1) получаем напряжение, близкое к напряжению питания минус падение напряжения на усилителе. Разности потенциалов между выходом операционного усилителя и землей будет достаточно для питания светодиода, поэтому он будет светиться.

Lm358 схема включения в зарядном устройстве

Вариант 4. Резистор R1 и светодиод D1 (зеленый) подключены между выходом операционного усилителя и массой; неинвертирующий вход We (+) (третий вывод усилителя) подключен к земле.

Напряжение на входе We (+) (вывод 3) ниже напряжения на входе We (-) (вывод 2), поэтому выход усилителя (вывод 1) будет близок к 0 В. Никакая разность потенциалов между выходом операционного усилителя и землей не предотвратит включение светодиода, поэтому он останется выключенным.

  1. Собраны результаты опытов в таблице ниже:
  2. Результаты проведенного эксперимента — влияние подключения We (+) — третьей ножки усилителя и свечения светодиода

Верна ли приведенная выше схема для всех операционных усилителей? Нет. Возьмем, к примеру, еще один, очень похожий операционный усилитель LM393. Он может проводить электричество только от точки в цепи с более высоким потенциалом (аналогично линиям 1 и 2 в таблице).

Он не проводит ток от выхода усилителя к точке в цепи с более низким потенциалом напряжения, например к земле (позиции 3 и 4 в таблице). Другими словами, если бы мы использовали усилитель LM393 для эксперимента который только что проводили, зеленый светодиод не светился бы независимо от входных сигналов.

Почему это происходит? Здесь более подробно рассмотрим внутреннюю структуру обоих усилителей:

Схема внутреннего устройства операционных усилителей: а) LM358; б) LM393

Схема слева (a) показывает внутреннюю структуру усилителя LM358, а схема справа (b) — LM393. Обе схемы сложны, поэтому не будем вдаваться в подробности. Сосредоточимся только на транзисторах, размещенных перед выходом (помечены как OUT или OUTPUT).

В LM358 прямо перед выходом есть два транзистора, которые проводят электричество в разных направлениях (пометили их красным кружком).

LM393 имеет только один транзистор непосредственно перед выходом (также в красном кружке), который предотвращает прохождение тока от усилителя через выход к земле (или к части схемы с более низким потенциалом).

Операционный усилитель адаптирован для работы с внешней цепью отрицательной обратной связи. Дело в том, что часть выходного сигнала может подаваться обратно на вход или наоборот со входа на выход усилителя.

Может быть несколько конфигураций с использованием операционного усилителя и усилителя обратной связи (например, суммирующий, вычитающий, интегрирующий и дифференцирующий усилитель), но тут рассмотрим только две из самых простых и наиболее популярных из них — неинвертирующий и инвертирующий.

Неинвертирующий усилитель

Графический символ неинвертирующего усилителя

Напряжение, подаваемое на вход We (+) выше, чем подаваемое на We (-), поэтому выходной сигнал большой, потому что он близок к напряжению питания Uпит, за вычетом падения напряжения на усилителе Uwo (We (+) > We (-) => Wy ~ Uпит — Uwo).

Часть выходного сигнала возвращается через резистор на вход We (-), таким образом этот сигнал становится больше, чем напряжение на We (+), и напряжение на выходе становится близким к 0 В (We (+) < We (-)) => Wy ~ 0 В).

Читайте также:  Как упражнения лечебной гимнастики помогают избавиться от остеохондроза шейного отдела позвоночника?

Вследствие падения напряжения на выходе (и отсутствия на нем усиления сигнала на We (-)) напряжение на We (+) снова будет больше We (-).

  • На практике быстро устанавливается состояние равновесия при котором выходной сигнал будет постоянным. Его размер легко рассчитать по формуле:
  • Uwy = Uwe (+) x [(R1 + R2) / R1]
  • Предположим, что на вход We (+) поступает напряжение 0,5 В, а на выходе хотим получить в 5 раз больше, то есть 2,5 В. Подставим данные в формулу:
  • Uwy = Uwe (+) x [(R1 + R2) / R1]
  • 2,5 В = 0,5 В x [(R1 + R2) / R1]
  • [(R1 + R2) / R1] = 2,5 В / 0,5 В
  • [(R1 + R2) / R1] = 5

Отношение суммы сопротивлений резисторов R2 и R1 к R1 должно дать нам 5. Итак, предположим, что сопротивление R2 = 10 кОм и R1 = 2,2 кОм (соотношение их сопротивлений составляет 5,54).

Соберем всё на макетной плате по следующей схеме:

Прежде всего необходимо убедиться, что на вход We (+) подается соответствующее напряжение. Для этого подключите вольтметр между землей и третьей ножкой усилителя, а затем поверните ручку потенциометра до тех пор, пока мультиметр не покажет результат 0,5 В (или как можно более близкий).

Теперь измерьте напряжение на выходе усилителя, то есть между первым контактом и массой. Теоретически должны получить результат близкий к 2,5 В. Между тем, показание вольтметра составляет целых 2,88 В.

Откуда эта разница? Помните, мы не использовали резисторы с коэффициентом 5,54, а не 5. Давайте снова подставим данные (на этот раз реальные) в формулу:

  1. Uwy = Uwe (+) x [(R1 + R2) / R1]
  2. Uwy = 0,51 В x [(2,16 кОм + 10 кОм) / 2,16 кОм
  3. Uwy = 0,51 В x 5,63
  4. Uwy = 2,87 В
  5. Теоретически и практически получили почти такой же результат — 2,87 В.

Инвертирующий усилитель

  • Графический символ инвертирующего усилителя
  • Принцип действия будет объяснен на основе схемы:

Некоторым нововведением на схеме выше являются два источника питания (B1, B2), каждый из которых будет иметь напряжение 3 В. Но в нашем распоряжении только одна аккумуляторная батарейка. Это не будет проблемой — подключим вывод из центра за второй батареей. Таким образом получаем два источника питания по 3 В каждый.

Кроме того для сборки указанной схемы на макетной плате используйте: P1 — потенциометр, R1 — резистор 2,2 кОм, R2 — резистор 10 кОм (резисторы будут иметь такие же номиналы, как и в предыдущем эксперименте), D1 — зеленый светодиод, D2 — красный светодиод.

Подключим узел между источниками напряжения к земле — теоретически это будет нулевая точка. Это сделано только для расчетов.

Теперь проверим что будет, если ползунок потенциометра повернуть как можно дальше к земле. Красный светодиод будет тускло светиться. Почему? Когда регулятор потенциометра P1 заземлен, сигнал, поступающий на усилитель со входа We (+), больше, чем We (-). Посчитаем какое напряжение ожидаем получить на выходе в этом случае.

  1. Uwy = — (R2 / R1) x Uwe (-)
  2. Uwe (-) в этой ситуации связан с точкой, которая по отношению к нашей нулевой точке (теоретической массе) имеет напряжение -3 В, и это значение подставляем в формулу:
  3. Uwy = — (10 кОм / 2,2 кОм) x -3 В
  4. Uwy = — 4,54 x -3 В
  5. Uwy = 13,62 В

На выходе ожидаем 13,62 В — почему? Ведь питаем схему только от 4-х аккумуляторов с общим напряжением 6 В! Можно ли на выходе получить 13,62 В? Конечно нет.

Полученный нами теоретический результат лишь доказывает, что усилитель полностью насыщен.

В этой ситуации на выходе мы можем получить только предельное напряжение питания, за вычетом падения напряжения на самом усилителе. На практике получился результат: 1,57 В.

Теперь осторожно повернём ручку потенциометра. В какой-то момент красный светодиод погаснет, а зеленый загорится. Чем дальше потенциометр находится от земли, тем большее напряжение будет поступать на вход We (-), пока оно не станет больше чем напряжение на входе We (+).

Согласно сказанному, если сигнал на входе We (-) больше сигнала на входе We (+), на выходе получим напряжение близкое к 0 В. Но помните, что резистор R2 соединяет вход We (-) с выходом, тем самым становясь каналом для тока, который каким-то образом обходит усилитель и подключается к току на выходе.

Какого напряжения тогда ждем на выходе?

  • Uwy = — (R2 / R1) x Uwe (-)
  • Uwe (-) в этой ситуации связан с точкой, которая имеет напряжение +3 В по отношению к нулевой точке (теоретическая масса), и это значение, которое подставим для формулы:
  • Uwy = — (10 кОм / 2,2 кОм) x + 3 В
  • Uwy = — 4,54 x 3 В
  • Uwy = — 13,62 В
  • Получили тот же результат что и раньше, но со знаком минус.

Почему не получили одинаковые значения, но с противоположными знаками? Причина может заключаться в том, что усилитель работает на предельных значениях, поэтому результат может быть неверным. По этой причине будем выполнять другие измерения в диапазоне, в котором усилитель работает линейно.

Для этого установим ручку потенциометра немного вправо и немного левее от центра.

Вариант 1. На усилитель подадим напряжение + 0,2 В (естественно относительно теоретической нулевой точки). Для этого поднесите красный щуп вольтметра к средней ножке потенциометра, а черный — к третьей ножке усилителя. Осторожно поверните ручку потенциометра, пока мультиметр не покажет 0,2 В (в этом эксперименте светодиоды можно удалить, чтобы они не мешали измерениям).

Теперь измерьте напряжение на выходе — черный щуп к третьему и красный щуп к первому выводу усилителя. Как и положено настоящему инвертирующему усилителю, после подачи небольшого положительного напряжения получаем на выходе гораздо более высокое напряжение, но со знаком минус!

Вариант 2. Подадим на усилитель напряжение — 0,21 В (опять же по отношению к теоретической нулевой точке). Для этого поднесите красный щуп вольтметра к средней ножке потенциометра, а черный — к третьей ножке усилителя. Осторожно поверните ручку потенциометра, пока мультиметр не покажет — 0,21 В.

Измерьте выходное напряжение так же, как и раньше (черный щуп к третьему, красный щуп к первому контакту усилителя). Результат станет таким же, но на этот раз со знаком плюс.

  1. Для обобщения информации о неинвертирующем и инвертирующем усилителе будут использованы два графика:
  2. Неинвертирующий усилитель — небольшой сигнал на входе (положительный) даст большой сигнал на выходе (тоже положительный)
  3. Инвертирующий усилитель — небольшой сигнал на входе (положительный) даст большой сигнал на выходе (отрицательный), а небольшой сигнал на входе (отрицательный) даст большой сигнал на выходе (положительный).
  4. Конечно это простейшие схемы включения ОУ, и есть ещё немало всяких нюансов, но если вы хорошо поймёте хотя бы это, то уже встанете на более высокую ступень радиолюбительства!
  5.    Форум
  6.    Форум по обсуждению материала Работа операционного усилителя lm358

Микросхема LM358: datasheet на русском, применение, аналоги, назначение выводов

LM358 (N) — востребованный двухканальный операционный усилитель с однополярным питанием. Обладает низким энергопотреблением, широким диапазоном синфазного входного напряжения – от нуля до напряжения питания. Схема питания предполагает работу от однополярного или двухполярного источника напряжения. Функционально LM358 это половина LM324.

  • Микросхемы LM358 и LM358N отличаются только корпусом.
  • Эта серия обладает рядом существенных преимуществ в сравнении с другими типами операционных усилителей, работающих с одними источником питания.
  • Lm358 схема включения в зарядном устройстве
Читайте также:  Металлы с низкой теплопроводностью

Они могут работать при напряжениях питания до 3,0 В или до 32 В, с токами покоя около одной пятой от тех, которые связаны с MC1741 (на основе каждого усилителя).

Диапазон входного сигнала синфазного режима включает в себя отрицательный источник питания, тем самым устраняя необходимость во внешних компонентах смещения во многих приложениях.

Диапазон выходного напряжения также включает в себя отрицательное напряжение питания.

Особенности

  • Внутренняя защита выходов от короткого замыкания.
  • Дифференциальный входной каскад.
  • Параметры источника питания – 3,0…32 В.
  • Низкий уровень входных токов смещения.
  • Внутренняя частотная компенсация.
  • Диапазон синфазного режима ограничен только напряжением питания.
  • Две схемы питания, – одинарная и раздельная.
  • Защита выводов от электростатического электричества повышает надежность микросхемы и не влияет на ее работу.
  • Элемент не содержит свинец и удовлетворяет требованиям директивы RoHS, – запрет использования вредных веществ.

Корпуса и распиновка

Lm358 схема включения в зарядном устройстве

Lm358 схема включения в зарядном устройстве

  • Output – выход.
  • Inputs – вход.
  • VCC – «+» источника питания.
  • VEE/Gnd – «-» минус источника питания/Земля.
  • Top view – вид сверху.

Применение

  • генератор импульсов и пульсаций (устройства типа «мигающий маяк»);
  • блоки питания и зарядные устройства;
  • сплит системы внутреннего и наружного применения;
  • материнские платы;
  • бытовая техника;
  • симетричный усилитель;
  • мостовой усилитель тока;
  • схемы управления двигателем;
  • источники бесперебойного питания;
  • холодильные установки, посудомоечные и стиральные машины;
  • различные виды инверторов;
  • контроллеры и другое.

Сферы применения микросхемы производители, как правило, указывают в технических описаниях.

Способы питания

Lm358 схема включения в зарядном устройстве

Внутренняя принципиальная схема одного канала ИМС LM358

Lm358 схема включения в зарядном устройстве

LM358 представляет собой два операционных усилителя, каждый из которых состоит из двух каскадов усиления и цепей частотной компенсации. Входные сигналы поступают в дифференциальное устройство на транзисторах Q20 и Q18.

Роль согласующих элементов исполняют буферные транзисторы Q21 и Q17, обеспечивающие высокое входное сопротивление.

Дополнительно усиливают сигнал по напряжению транзисторы Q3 и Q4 дифференциального несимметричного преобразователя, включенные по схеме с общей базой.

В основе второй ступени лежит стандартный усилительный каскад с токовой нагрузкой.

Схемные решения (эмиттерные повторители и т.п.) выводят транзисторы в зону активной работы, тем самым обеспечивая низкий температурный коэффициент. В результате операционные усилители имеют хорошие показатели по температуре и подавлению помех по питанию.

Предельно допустимые значения

Данные в таблице действительны при температуре воздуха 25°С.

ПараметрОбозн.ВеличинаЕд. изм.
Напряжение питания Vdc
простое VCC 32
раздельное VCC, VEE ±16
Диапазон входного дифференциального напряжения VIDR ±32 Vdc
Диапазон входного синфазного напряжения VICR −0.3…+32 Vdc
Продолжительность короткого замыкания на выходе tSC непрерывно
Температура кристалла TJ 150 °C
Тепловое сопротивление кристалл-воздух RθJA C/W
Case 846A 238
Case 751 212
Case 626 161
Температурный диапазон хранения Tstg −65…+150 °C
Температурный диапазон окружающей среды при работе TA 0…+70 °C

ESD – защита от электростатического разряда

  • HBM (модель человеческого тела – имитирует контакт с человеком) – 2000 V.
  • ММ (модель машины – имитирует контакт с оборудованием) – 200 V.

Электрические параметры

Данные действительны при температуре воздуха 25°С.

ПараметрОбозн.Мин.Тип.Макс.Ед. изм.
Разница входных напряжений смещения VCC = 5…30 V, TA = 25°C VIO 2 7 mV
Средний температурный коэффициент VIO, при TA = Thigh…Tlow ΔVIO/ΔT 7 µV/°C
Разница входных токов смещения IIO 5 50 nA
Входной ток смешения IIB -45 -250 nA
Средний температурный коэффициент IIO ΔIIO/ΔT 10 pA/°C
Максимальное значение входного синфазного напряжения при напряжении питания 30 V VICR 28,3 V
Дифференциальное входное напряжение VIDR VCC V
Коэффициент усиления большого сигнала с разомкнутой обратной связью AVOL 25 100 V/mV
Коэффициент разделения каналов 1,0 kHz ≤ f ≤ 20 kHz CS -120 dB
Коэффициент подавления синфазного сигнала CMR 65 70 dB
Подавление помех в цепи питания PSR 65 100 dB
Верхний предел выходного напряжения VCC = 5.0 V VOH 3,3 3,5 V
VCC = 30 V 27 28
Нижний предел выходного напряжения VCC = 5.0 V VOL 5 20 mV
Выходной ток – нагрузка на землю VCC = 15 V IO + 20 40 mA
Выходной ток – нагрузка на плюс источника питания
VCC = 15 V 10 20 mA
VO = 200 mV 12 50 µA
Ток короткого замыкания на землю ISC 40 60 mA
Ток потребления микросхемы mA
VCC = 30 V 1,5 3
VCC = 5 V 0,7 1,2

Импортные и отечественные аналоги

LM358 весьма популярна в промышленной и любительской электронной технике. Она активно используется в различных сравнивающих и генерирующих устройствах, активных фильтрах, усилителях различного назначения. Неудивительно, что многие производители радиоэлектронных компонентов включили в перечень своей продукции аналоги LM358 или близкие ей по своим параметрам микросхемы.

Ниже в таблице приведены элементы, которыми можно заменить LM358. По корпусу и распиновке они идентичны LM358. Но по электрическим параметрам они могут немного отличаться (в допустимых пределах) от оригинала.

Перед установкой подменных элементов рекомендуется свериться с даташит производителя.

ПроизводителиАналоги
Импортные GL358, NE532, OP295, OP290, OP221, OPA2237, TA75358P, UPC1251C, UPC358C
Отечественные КР1040УД1, КР1053УД2, КР1401УД5

Типовые эксплуатационные характеристики

Lm358 схема включения в зарядном устройстве

Зависимость тока потребления от напряжения источника питания.

Lm358 схема включения в зарядном устройстве

Зависимость входного тока смещения от напряжения источника питания.

Lm358 схема включения в зарядном устройстве

Зависимость входного напряжения от напряжения источника питания.

Lm358 схема включения в зарядном устройстве

Зависимость коэффициента усиления с разомкнутой обратной связью от частоты.

Lm358 схема включения в зарядном устройстве

Зависимость выходного напряжения от частоты.

График отклика выходного сигнала на входной импульс.

LM358 схема включения

Говоря операционный усилитель, я зачастую подразумеваю LM358. Так как если нету каких-то особых требований к быстродействию, очень широкому диапазону напряжений или большой рассеиваемой мощности, то LM358 хороший выбор.

Какие же характеристики LM358 принесли ему такую популярность:

  • низкая стоимость;
  • никаких дополнительных цепей компенсации;
  • одно или двуполярное питание;
  • широкий диапазон напряжений питания от 3 до 32 В;
  • Максимальная скорость нарастания выходного сигнала: 0,6 В/мкс;
  • Ток потребления: 0,7 мА;
  • Низкое входное напряжение смещения: 0,2 мВ.

LM358 цоколевка

Так как LM358 имеет в своем составе два операционных усилителя, у каждого по два входа и один выход (6 — выводов) и два контакта нужны для питания, то всего получается 8 контактов.

Lm358 схема включения в зарядном устройстве

LM358 корпусируются как в корпуса для объемного монтажа (LM358N — DIP8), так и в корпуса для поверхностного монтажа (LM358D — SO8). Есть и металлокерамическое исполнение для особо тяжелых условий работы.
Я применял LM358 только для поверхностного монтажа – просто и удобно паять.

Lm358 схема включения в зарядном устройстве

Аналоги LM358

Полные аналоги LM358 от разных производителей NE532, OP04, OP221, OP290, OP295, OPA2237, TA75358P, UPC358C.
Для LM358D — KIA358F, NE532D, TA75358CF, UPC358G.

Вместе с LM358 выпускается большое количество похожих операционных усилителей. Например LM158, LM258, LM2409 имеют аналогичные характеристики, но разный температурный диапазон работы.

Тип Минимальная температура, °C Максимальная температура, °C Диапазон питающих напряжений, В
LM158 -55 125 от 3(±1,5) до 32(±16)
LM258 -25 85 от 3(±1,5) до 32(±16)
LM358 70 от 3(±1,5) до 32(±16)
LM358 -40 85 от 3(±1,5) до 26(±13)

Если диапазона 0..70 градусов не хватает, то стоит применить LM2409, однако следует учитывать что у неё диапазон питания уже:

Кстати если нужен только один операционный усилитель в компактном 5 выводном корпусе SOT23-5 то вполне можно применить LM321, LMV321 (аналоги AD8541, OP191, OPA337).
Наоборот, если нужно большое количество рядом расположенных операционных усилителей, то можно применить счетверенные LM324 в 14 выводном корпусе. Можно вполне сэкономить пространство и конденсаторы по цепям питания.

LM358 схема включения: неинвертирующий усилитель

Lm358 схема включения в зарядном устройстве

Коэффициент усиления этой схемы равен (1+R2/R1).
Зная сопротивления резисторов и входное напряжение можно посчитать выходное:
Uвых=Uвх*(1+R2/R1).

Читайте также:  Как сделать подручник для наждака своими руками

При следующих значениях резисторов коэффициент усиления будет равен 101.

  • DA1 – LM358;
  • R1 – 10 кОм;
  • R2 – 1 MОм.

LM358 схема включения: мощный неинвертирующий усилитель

Lm358 схема включения в зарядном устройстве

  • DA1 – LM358;
  • R1 – 910 кОм;
  • R2 – 100 кОм;
  • R3 – 91 кОм.

Для этой схемы коэффициент усиления по напряжению равен 10, в общем случае коэффициент усиления этой схемы равен (1+R1/R2).
Коэффициент усиления по току определяется соответствующим коэффициентом транзистора VT1.

LM358 схема включения: преобразователь напряжение — ток

Lm358 схема включения в зарядном устройстве
Выходной ток этой схемы будет прямо пропорционален входному напряжению и обратно пропорционален значению сопротивления R1.
I=Uвх/R, [А]=[В]/[Ом].

Для сопротивления резистора R1 равного 1 Ом, каждый Вольт входного напряжения будет давать, один Ампер выходного напряжения.

LM358 схема включения: преобразователь ток — напряжение

Lm358 схема включения в зарядном устройстве
А эта схема нужна для преобразования малых токов в напряжение.
Uвых = I * R1, [В]= [А]*[Ом].

Например при R1 = 1 МОм, ток через 1 мкА, превратиться в напряжение 1В на выходе DA1.

LM358 схема включения: дифференциальный усилитель

Lm358 схема включения в зарядном устройстве

Эта схема дифференциального усилителя с высоким входным сопротивление, может применятся для измерения напряжении источников с высоким внутренним сопротивлением.
При условии, что R1/R2=R4/R3, выходное напряжение можно рассчитать как:
Uвых = (1+R4/R3)(Uвх1 – Uвх2).
Коэффициент усиления соответственно будет равен: (1+R4/R3).

Для R1 = R2 = R3 = R4 = 100 кОм, коэффициент усиления будет равен 2.

LM358 схема включения: дифференциальный усилитель с регулируемым коэффициентом усиления

Стоит отметить, что предыдущая схема не позволяет подстраивать коэффициент усиления, так как требует одновременного изменения двух резисторов. Если необходимо иметь возможность регулировки коэффициента усиления в дифференциальном усилителе, то можно воспользоваться схемой на трех операционных усилителях.
В данной схеме подстройка коэффициента усиления осуществляется за счет регулировки резистора R2.
Для этой схемы нужно соблюсти условия равенства значений сопротивлений резисторов: R1 = R3 и R4 = R5 = R6 = R7.
Тогда коэффициент усиления будет равен: (1+2*R1/R2).

Uвых = (1+2*R1/R2)(Uвх1 – Uвх2).

LM358 схема включения: монитор тока

Lm358 схема включения в зарядном устройстве

Еще одна интересная схема позволяющая измерять ток в питающем проводе и состоящая из шунта R1, операционного усилителя npn – транзистора и двух резисторов.

  • DA1 – LM358;
  • R1 – 0,1 Ом;
  • R2 – 100 Ом;
  • R3 – 1 кОм.

Напряжение питания операционного усилителя должно быть минимум на 2 В, выше напряжения нагрузки.

LM358 схема включения: преобразователь напряжение – частота

Lm358 схема включения в зарядном устройстве

И напоследок схема которую можно использовать в качестве аналого-цифрового преобразователя. Нужно только подсчитать период или частоту выходных сигналов.

  • C1 – 0,047 мкФ;
  • DA1 – LM358;
  • R1 – 100 кОм;
  • R2 – 50 кОм;
  • R3,R4,R5 – 51 кОм;
  • R6 — 100 кОм;
  • R7 — 10 кОм.

Стабилизатор тока для зарядки аккумулятора — простая схема

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.

Простое зарядное устройство стабилизатор тока из подручных материалов

Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.

Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.

Lm358 схема включения в зарядном устройстве

В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:

  • два входа (инвертирующий и неинвертирующий);
  • один выход.

Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.

Зарядное устройство или простой стабилизатор – это прибор, который:

  • сглаживает пульсации сети;
  • поддерживает прямую линию графика тока на одном уровне.

Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока.

Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами.

Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.

Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.

В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.

Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.

Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.

Сборка устройства

Конечно, интересно посмотреть на готовое самодельное изделие, тогда приступим к сборке устройства. В интернет-магазинах существует много компактных плат под эту схему. Стоимость деталей для сборки данного стабилизатора напряжения обойдётся менее двухсот рублей. Если покупать готовый стабилизатор напряжения, придется заплатить в несколько раз больше.

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться.

Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания.

И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Lm358 схема включения в зарядном устройстве

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Lm358 схема включения в зарядном устройстве

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Зарядка для аккумулятора. (часть2) Стабилизатор тока автоматический.

Ссылка на основную публикацию
Adblock
detector