Lm393n схема включения как работает

Для управления электронными схемами применяются различные устройства, которые помогают настраивать и разветвлять сигналы. Для сравнения двух разных импульсов часто используется компаратор с однополярным питанием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Lm393n схема включения как работает

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше.

Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта.

Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Lm393n схема включения как работает

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Lm393n схема включения как работает

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности.

Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-).

Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания.

Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи.

Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Lm393n схема включения как работает

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото – аналоговый компаратор

Видео: компараторы

Принцип работы

Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.

Lm393n схема включения как работает

Схема включения, по которой можно понять принцип работы компаратора, показана выше. Используя аналоговый сигнал во + входе, именуемым «неинвертируемым», и выходе, который называется под названием «инвертируемый», устройство использует два аналогичных разнополярных сигнала.

При этом если аналоговый вход больше, чем аналоговый выход, то выход будет «1», и это включит открытый коллектор транзистора Q8 на эквивалентной схеме LM339, которую нужно включить.

Но, если вход находится на отрицательном уровне, то сигнал будет равняться «0», из-за чего, коллектор будет находиться в закрытом виде.

Читать также:  Вертикальный ткацкий станок своими руками

Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания.

Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к.

компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.

Назначение

Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения.

Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д.

Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.

Lm393n схема включения как работает

Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.

Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.

Lm393n схема включения как работает

Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

  1. Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
  2. Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
  3. И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

50 шт. LM393 DIP Cдвоенный компаратор. US $2.00

Lm393n схема включения как работает

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Lm393n схема включения как работает

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Читать также:  Погрузка листового металла приспособления

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Lm393n схема включения как работает

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Читайте также:  Картинки ножей из фанеры

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы.

В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания.

В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Читать также:  Капролон характеристики и свойства

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

LM393N / LM393D

Lm393n схема включения как работает Корпус: DIP-8 (LM393N) Lm393n схема включения как работает Корпус: SO-8 (LM393D) LM393N/LM393D — двухканальный компаратор для работы в бытовом диапазоне температур (0..+70°С). Выход — открытый коллектор.

  • Микросхема компараторов LM393 по функциональному назначению и расположению выводов аналогична таким микросхемам как LM193, LM293, LM2903, но отличается от них температурным диапазоном работы и незначительно другими параметрами.
  • Аналоги: КР1401СА3 / КФ1401СА3.
  • Микросхема LM393 также может поставляться в зависимости от производителя с маркировкой DV393, UTC393, IL393N и др.
Расположение выводов LM393N/LM393D: Lm393n схема включения как работает Назначение выводов LM393N/LM393D:

Назначение
1 Выход 1
2 Инвертирующий вход 1
3 Неинвертирующий вход 1
4 — Питания (общий)
5
6 Инвертирующий вход 2
7 Выход 2
8 + Питания
Предельные режимы LM393N/LM393D:

Напряжение питания
  1. +36V
  2. или
  3. ±18V
Входное напряжение -0,3..+36V
Дифференциальное входное напряжение 36V
Выходной ток 20mA
Диапазон температур 0..+70°С

Замыкание выхода на +Vcc может вывести микросхему LM393 из строя.

Основные характеристики LM393N/LM393D:

Параметр Мин. Тип. Макс.
Напряжение смещения ±1mV ±5mV
Синфазный входной ток 25nA 250nA
Дифференциальный входной ток ±5nA ±50nA
Выходной втекающий ток 6mA 16mA
Коэффициент усиления по напряжению 50V/mV 200V/mV
Напряжение насыщения 400mV
Ток потребления 1,1mA 2,0mA
Время отклика 1,3µS
Время отклика на большом сигнале 300nS
Эквивалентная схема одного канала LM393N/LM393D: Lm393n схема включения как работает
Более подробные характеристики микросхемы LM393 с графиками работы и примерами схем включения Вы можете получить, скачав файл документации ниже (на английском языке).

LM393 — Cдвоенный компаратор

Lm393n схема включения как работает

1 Особенности

  • Одно или двух полярное питание
  • Широкий диапазон питающего напряжения
  • — Максимальные значения от 2 В до 36 В
  • — Прошли испытания напряжением до 30 В: без буквы «V» в маркировке
  • — Прошли испытания напряжением до 32 В: с буквой «V» в маркировке
  • Небольшой потребляемый ток, не зависящий от напряжения питания 0.4 мА
  • Низкий входной ток смещения: 25 нА
  • Низкий входной ток смещения нуля: 3 нА
  • Низкое входное напряжение смещения нуля: 2 мВ
  • Диапазон синфазного входного напряжения включает землю
  • Диапазон дифференциального входного напряжения равен максимуму напряжения питания
  • Низкое выходное напряжение насыщения
  • Выход совместим с ТТЛ, МОП и КМОП логикой

2 Применение

  • Датчики химических веществ или газов
  • Настольные ПК
  • Управление двигателями
  • Весы

3 Описание

Микросхемы данных серий состоят из двух независимых компараторов напряжения, которые могут работать от однополярного источника питания.

  Работа от двуполярного источника также возможна при условии, что разница между двумя полюсами питания от 2 В до 36 В, и Vcc не менее, чем на 1,5 В более положительно, чем  входное синфазное напряжение. Потребляемый ток не зависит от напряжения питания.

К выходам могут быть подключены другие выходы с открытым коллектором для получения схемы логического «И». Микросхема  LM193 может работать при температурах от  -55°C до 125°С. LM293 и LM293A  от -25°C до 85°C.  LM393 и LM393A  от 0°C до 70°C.  LM2903  от -40°C до 125°С.

Типы корпусов для разных серий

Серия
Тип корпуса
Размеры
LM193D, LM293D, LM293AD, LM393D, LM393AD, LM2903D SOIC (8) 4.90 мм x 6.00 мм
LM293DGK, LM293ADGK, LM393DGK, LM393ADGK, LM2903DGK VSSOP (8) 3.00 мм x 5.00 мм
LM293P, LM393P, LM393AP, LM2903P PDIP (8) 9.50 мм × 6.30 мм
LM393PS, LM393APS, LM2903PS SO (8) 6.20 мм x 7.90 мм
LM393PW, LM393APW, LM2903PW TSSOP (8) 6.40 мм x 3.00 мм
LM193JG GDIP (8) 10.00 мм x 7.00 мм
LM193FK CQCC (8) 9.00 мм x 9.00 мм
Расположение выводов

Lm393n схема включения как работаетD, DGK, JG, P, PS, или PW8-выводной SOIC, VSSOP, GDIP, PDIP, SO, или TSSOPВид Сверху Lm393n схема включения как работает20-Выводной CQCCВид сверху
Номер вывода
I/O
Описание
Обозначение
SOIC, VSSOP, GDIP, PDIP, SO, или TSSOP
LCCC
1OUT 1 2 Выход Выход компаратора 1
1IN- 2 5 Вход Отрицательный вход компаратора 1
1IN+ 3 7 Вход Положительный вход компаратора 1
GND 4 10 Вход Земля
2IN+ 5 12 Вход Положительный вход компаратора 2
2IN- 6 15 Вход Отрицательный вход компаратора 2
2OUT 7 17 Выход Выход  компаратора 2
VCC 8 20 Вход Напряжение питания
NC 1 N/A Не задействованы
 (Внутренне не подключенные выводы)
3
4
6
8
9
11
13
14
16
18
19
Абсолютные максимальные значения

MIN
MAX
UNIT

VCC Напряжение питания 36 В
VID Дифференциальное входное напряжение ±36 В
VI Входное напряжение (на любом выводе) –0.3 36 В
VO Выходное напряжение 36 В
IO Выходной ток 20 мА
Длительность короткого замыкания выхода на землю Неограниченна
TJ Рабочая температура кристалла 150 °C
Температура корпуса в течении 60 с FK корпус 260 °C
Температура припоя 1,6 мм для корпуса в течении 60 с J корпус 300 °C
Tstg Температура хранения –65 150 °C
Параметр
Условия
TA
LM193
LM293
LM393
Ед. изм.
Мин.
Тип.
Макс.
Мин.
Тип.
Макс.
VIO Входное напряжение смещения нуля VCC =  от 5 В до 30 В,
VIC = VICR(Мин.),
VO = 1.4 В
25°C 2 5 2 5 мВ
Весь диапазон 9 9
IIO Входной ток смещения нуля VO = 1.4 В 25°C 3 25 5 50 нА
Весь диапазон 100 250
IIB Входной ток смещения VO = 1.4 В 25°C –25 –100 –25 –250 нА
Весь диапазон –300 –400
VICR Диапазон входного синфазного напряжения 25°C от 0 до
VCC -1.5
от 0 до
VCC -1.5
В
Весь диапазон от 0 до
VCC -2
от 0 до
VCC -2
AVD Большой сигнал усиленного дифференциального напряжения VCC = 15 В,
VO = от 1.4 В до 11.4 В,
RL ≥ 15 кОм до VCC
25°C 50 200 50 200 В/мВ
IOH Высокий уровень выходного тока VOH = 5В VID = 1 В 25°C 0.1 0.1 50 нА
VOH = 30В VID = 1 В Весь диапазон 1 1 мкА
VOL Низкий уровень выходного напряжения IOL = 4 мА, VID = –1 В 25°C 150 400 150 400 мВ
Весь диапазон 700 700
IOL Низкий уровень выходного тока VOL = 1.5 V, VID = -1 В 25°C 6 6 мА
ICC Потребляемый ток RL = ∞ VCC = 5 В 25°C 0.8 1 0.8 1 мА
VCC =30В Весь диапазон 2.5 2.5
Примерные значения для схемы на Рис. 1

Параметры
Примерные значения
Диапазон входного напряжения от 0 В до Vsup-1.5 В
Напряжение питания от 2 В до 36 В
Напряжение питания логической схемы от 2 В to 36 В
Выходной ток (RPULLUP) от 1 мкА до 20 мА
Входная разница напряжений 100 мВ
Опорное напряжение 2.5 В
Нагрузочная емкость  (CL) 15 пФ

Купить LM393 по самой низкой цене вы можете здесь.

Компаратор LM393 (SOIC)

Микросхема lm393 представляет собой сдвоенный дифференциальный компаратор компании Texas Instruments выполненный в едином пластиковом корпусе.

В нем  содержатся два независимых между собой операционных усилителя, которые применяются для сравнения поступающих на их входы аналоговых сигналов.

Положительным результатом такой работы становится появление напряжения на их выходах (логическая единица), отрицательным – его отсутствие (ноль).

В данной статье рассмотрена микросхема lm393 и приведено её техническое описание, схема включения. На примере простой схемы ночного светильника показано как она работает. Компаратор выпускается в корпусе для поверхностного монтажа на плату в SOIC (SO-8), который промаркирован символами «lm 393». В прайс-листах на устройство в конце обозначения указаны буквы «D» или «DR».

Lm393n схема включения как работает

Основные характеристики

Согласно описания на lm393 из datasheet, она способна функционировать как от одного, так и от двухполярного источника питания. Включение и работа компаратора начинается с подачи на его контакты Gnd и VCC постоянного напряжения. Сравниваемые сигналы подают на операционные усилители, каждый из которых имеет три контакта: по два входа (+IN, -IN) и по одному выходу (Output).

Максимальные параметры

Рассмотрим основные максимальные значения параметров lm393:

  • напряжение: интервал питающих (VI) от 0,3 до 36 В (на любой вход); дифференциальное входное (VID) ±36 В; на выходе (VO) до 36 В;
  • выходной ток (IO) до 20 мА;
  • температура при хранении (TSTG) от -65 oC до +150 oC;
  • время задержки до 300 нс.

Здесь приведены максимальные параметры, но это не значит, что они допустимы в штатном режиме эксплуатации. Кратковременные всплески скорее всего не смогут повредить микросхему, однако длительное превышение любого из указанных значений безусловно негативно скажется на работе устройства.

Микросхема lm393 не допускает короткое замыкания выходов на VCC, так как это может вызвать её перегрев и в конечном итоге – разрушение.

В даташит также не рекомендуется подключать микросхему к питанию превышающему значение более 30 В, так как в этом случает заявленное напряжение смещения (VIO) в 5 мВ уже не гарантируется.

Обязательным условием стабильной работы является соблюдение рабочей температуры (ТА) от 0 до +70 oC, потому перегревать её также не стоит.

Максимальная рассеиваемая мощность устройства (PD) ограничена тепловым сопротивлением корпуса (θJC), в котором она находится и рассчитывается по классической формуле PD = (TJ (max) — TC) / θJC

Аналоги

У lm393 есть современный аналог — это сдвоенный компаратор lm2903B с улучшенными тепловыми параметрами. Найти такой в продаже не трудно, но стоить он будет в разы дороже. В любом большом магазине радиодеталей его можно приобрести по цене от 90 р.

Стоит учитывать, что иногда рассматриваемый компаратор меняют на lm2903 или lm293. Они незначительно уступают ему по напряжению и большему току потребления. По остальным характеристикам практически идентичны, поэтому максимальные и электрические характеристики указываются в одном и том же даташит.

Российскими аналогами считаются к1401Са3 и 1040са1. Но в продаже их сейчас уже не найти. Постепенно с российского рынка их вытеснили более современные зарубежные устройства.

Схема включения

Ниже приведена простая схема одного из способов включения lm393. Она даёт необходимое представление и понимание того, как работает данное устройство. Собрать её можно самостоятельно используя небольшое количество дополнительных электронных компонентов:

  • фоторезистор;
  • резисторы на 33 кОм и 330 Ом;
  • потенциометр от 1 до 20 кОм;
  • светодиод;
  • батарейка типа АА – 3 шт.

Lm393n схема включения как работаетКомпаратор lm393 в представленной схеме полезен тем, что сверяет уровень поступающих сигналов с эталонным (пороговым) значением для принятия решения о подаче питания на светодиод. Используя дополнительный фоторезистор, можно сделать миниатюрный электронный ночник. В темноте он будет светится, а с появлением света гаснуть.

Потенциометр в схеме используется в качестве калибратора. С его помощью настраивается сопротивление включения (когда ночью) и выключения (при свете) светодиода. После такой настройки компаратор сможет сравнивать опорное питание с напряжением от делителя, которое он получает по линии подключённой между резистором 33 кОм и фоторезистором.

Когда на фоторезистор попадёт свет, его сопротивление падает ниже 30 кОм. Таким образом, большая часть напруги попадает на обычный резистор 33 кОм. В результате на входе микросхемы,  через резистивный делитель, напряжение будет меньше опорного. На выходе выводится высокий уровень и светодиод гаснет.

В темноте фоторезистор будет иметь очень большое сопротивление, поэтому большая часть напруги передастся уже ему. Напряжение получаемое от резистивного делателя будет выше опорного. В результате на выходе микросхемы выводится низкий уровень и светодиод светится.

Пример работы в схеме

По схеме представленной выше делают датчик освещённости lm393, работающий с arduino. В продаже существуют уже готовые одноименные электронные модули в названии которых присутствует имя микросхемы. Пример реализации такого решения (без контроллера) представлен в видеоролике.

Производители

Скачать datasheet на lm393 можно кликнув по ссылке с наименованием производителя. Все крупные зарубежные компании выпускают рассмотренную микросхему. Наиболее известными являются Texas Instrument, ON Semiconductor, ST Microelectronics.

Lm393 генератор прямоугольных импульсов

Микросхема lm393 является удвоенным дифференцированным компаратором от производителя Texas Instruments. У прибора — цельный корпус из пластика. Внутри него расположены 2 операционных усилителя lm393, которые никак не связаны друг с другом. Их основная задача — сравнивать друг с другом все аналоговые сигналы, которые поступают на их входы.

Итогом работы этих элементов является возникновение выходного напряжения, либо, наоборот, его нулевое значение.

Данная статья представляет собой обзор микросхемы, ее технических характеристик, схемы включения lm393 и ее работы на примере обычной настольной лампы.

Онлайн-калькулятор для расчета генератора: Эта схема работает наподобие триггера Шмитта. Опорное напряжения компаратора зависит от его выходного напряжения. На картинке ниже показан принцип работы генератора на основе компаратора.

[Период выходного сигнала]

Когда V1 достигает +λ*VCC, то на выходе происходит переключение к -VCC. Емкость конденсатора заряжается до +λ*C*VCC, и начинает разряжаться.

Основное уравнение для определения заряда конденсатора, который имел начальный заряд:

Для этого случая V = -VCC, и q0 = λ*C*VCC, так что получится следующее выражение для заряда конденсатора:

Когда заряд q получит значение λ*VCC, произойдет другое переключение. Прошедшее время составит половину периода прямоугольного сигнала, T/2. Обратное переключение произойдет в нижней точке заряда:

Период сигнала может быть вычислен по формуле:

Обратите внимание, что хотя в выражениях содержится напряжение питания VCC (генератор переключает выходное напряжение от -VCC до +VCC), период переключения не зависит от его значения. Частоту генератора (период его сигнала T) можно менять с помощью значений емкости конденсатора C и резистора R.

Компаратор может быть заменен на любой операционный усилитель.

[Пример использования]

На компараторе LMV331 я собрал генератор автоматического огня для джойстика KEMPSTON. Компаратор LMV331 выполнен в миниатюрном 5-выводном корпусе SC70, поэтому схема легко поместилась в корпусе джойстика.

Ниже на рисунке приведена схема генератора для автоматического огня. Подстроечный резистор 220 кОм позволяет регулировать частоту генератора в диапазоне от 0.7 Гц до 36 Гц, что вполне достаточно (максимальная частота, с которой человек обычно нажимает на кнопку «Огонь» джойстика, равна приблизительно 4 Гц).

Источник

Принципы измерения угла поворота робота с помощью датчика H206

Существует много способов определения угла поворота робота. Обычно для этих целей используют акселерометры или гироскопы.

Но более дешевый способ, который использовали мы в нашем проекте – это установка датчиков H206 на оба колеса робота. Таким образом мы сможем узнать сколько оборотов сделало каждое колесо.

На следующем рисунке показан принцип расчета угла поворота робота в соответствии с данным способом.

Когда мы только подали питание на робота предполагается что угол его поворота равен 0°.

Если вращается левое колесо угол инкрементируется в отрицательную сторону, а если вращается правое колесо угол инкрементируется в положительную сторону.

Для упрощения понимания рассмотрим диапазон углов от -90 до +90 как показано на выше приведенном рисунке. Поскольку оба колеса одинакового диаметра, то если одно колесо сделает один полный оборот, то робот повернется на угол 90°.

К примеру, если левое колесо сделает полный оборот (80 прерываний), то робот повернется на 90° влево. Аналогично, если правое колесо сделает полный оборот (80 прерываний), то робот повернется на -90° вправо.

То есть если плата Arduino обнаружит 80 прерываний от одного колеса, то мы можем считать что робот повернулся на 90° в соответствующую сторону, поэтому для расчета углов поворота мы можем использовать формулу:

  Как проверить обмотку электродвигателя мультиметром

Arduino

1 2 int angle_left = (left_intr % 360) * (90/80);int angle_right = (right_intr % 360) * (90/80);

90 в этой формуле обозначает угол, покрываемый за 80 прерываний. Мы также используем модуль по основанию 360 чтобы результирующее значение никогда не превышало 36. Когда мы рассчитаем по приведенной формуле углы поворота вправо и влево, то результирующий угол поворота мы можем найти с помощью разницы между этими углами:

Arduino

1 angle = angle_right — angle_left;

Texas Instruments CD4001B CD40106B LM311 LM339-N LM393

Приведены схемы несложных устройств, позволяющих регулировать ширину сигналов, снимаемых с внешних генераторов импульсов, в пределах от 0 до 100%

Регуляторы ширины цифровых сигналов чаще всего используют в цепях управления работой преобразовательной техники, различного рода регуляторах, в усилителях D-класса и т.д.

Классические регуляторы ширины сигналов, синтезируемых генераторами импульсов, достаточно хорошо известны и изучены. Известны и их недостатки, связанные с тем, что одновременно с изменением коэффициента заполнения импульса D изменяется и частота генерации.

Казалось бы, что более предпочтительно менять в заданных пределах ширину уже сформированного импульсного сигнала от внешнего генератора. Однако при анализе доступных источников патентно-технической информации найти таковые устройства не удалось.

Расширители/сжиматели импульсов не решали поставленную задачу.

Рисунок 1. Регулятор ширины 0…100% импульсов внешнего генератора на КМОП-микросхемах.

На представленных ниже Рисунках 1–4 показаны варианты управления шириной выходного сигнала в пределах от 0 до 100%.

Для полноценной реализации идеи управления желательно, чтобы скважность входного сигнала была близка к 2, хотя некоторые из схем допускают возможность сохранения работоспособности устройств при существенном отклонении от выдвинутого условия. Вторая особенность схем управления – они могут работать в ограниченном диапазоне частот входного сигнала.

Рисунок 2. Регулятор ширины импульсов на операционном усилителе LM339.

На Рисунке 1 приведен вариант схемы плавного регулирования ширины 0…100% импульсов, снимаемых с внешнего генератора. Работа устройства основана на динамическом сравнении уровней напряжения на обкладках конденсатора С1 при периодических зарядно-разрядных процессах. Элемент DD1.

1 не является обязательным и предназначен лишь для обеспечения стабильности амплитуды импульсов на его выходе. Устройство работает в диапазоне частот 10…200 кГц при коэффициенте заполнения входных импульсов 50%.

Особенностью схем регуляторов здесь и далее является то, что с ростом частоты равный диапазон регулировки ширины выходных импульсов от 0 до 100% достигается во все более узком диапазоне регулировки движка потенциометра (R2 – Рисунки 1, 2 или R3 – Рисунки 3, 4).

Рисунок 3. Регулятор ширины импульсов на компараторе LM311.

Второй вариант регулятора ширины импульсов (Рисунок 2) также основан на сравнении плавающих на обкладках конденсатора С1 напряжений.

Рисунок 4. Балансный регулятор ширины импульсов на компараторе LM393.

Следующий вариант регулятора ширины импульсов (Рисунок 3) использует иную схему построения, хотя и его работа основана на периодических зарядно-разрядных процессах конденсатора С1 и сравнении уровней плавающих напряжении при помощи компаратора DA1 LM311. Для обеспечения крутых фронтов выходных импульсов предназначен инвертор на элементе DD1.2 CD40106.

Рисунок 5. Динамика переходных процессов на входах и выходе балансного регулятора ширины импульсов на компараторе LM393.

Завершает небольшую коллекцию регуляторов ширины сигналов, получаемых от внешних генераторов импульсов, балансный регулятор ширины импульсов, выполненный на компараторе LM393 (Рисунок 4).

Устройство работает в диапазоне частот входных сигналов от 5 до 150 кГц.

Динамика переходных процессов на входах и выходе балансного регулятора при нахождении движка регулятора (потенциометр R3) в его среднем положении показана на Рисунке 5, что соответствует коэффициенту заполнения импульсов выходного сигнала 50%.

Источник

Датчик скорости LM393 (H206)

Основную роль в нашем проекте играет датчик скорости LM393, поэтому кратко рассмотрим принцип его работы.

Датчик скорости LM393 (H206) состоит из интегрированного в него инфракрасного датчика и микросхемы компаратора напряжения LM393, поэтому он и получил название датчика скорости LM393.

Также в состав датчика входит пластина с сетчатой градуировкой, которую необходимо смонтировать на вращающейся оси двигателя. Внешний вид данного датчика показан на следующем рисунке.

Шим на компараторе lm393

Добрый день! Недавно стал интересоваться цифровой схемотехникой и незаметно перешёл к аналоговой.

А почему так произошло? Во время проектирования динамической индикации на дискретной логике, появилась идея реализовать ШИМ. Идея интересная, но опыта особенно не было. Поэтому сразу возникла идея поставить микроконтроллер.

Но это не так интересно, особенно когда цель учится. И так спустя некоторое время я пришёл к тому, что можно реализовать ШИМ на компараторах.

Концепция ШИМ состоит в том, что есть пилообразный сигнал который поступает на вход компаратора и сигнал с делителя напряжения. И в момент возникновения пересечения, выставляется сигнал на выходе компаратора. Чем ближе напряжение с делителя к пику пилы, тем меньше время высокого сигнала и наоборот.

Задача была сгенерировать пилообразный сигнал. Для этого я решил собрать релаксационный генератор на компараторе. Но особенность его заключается в том, чтобы он был с маленькой скважностью (то есть 90-95% высокий уровень и 5-10% низкий).

Это нужно для того, чтобы размах для регулировки ШИМ был практически полным. В ином случае будет доступно только 50% и не более (если генератор со скважностью 50%).

И для создания низкой скважности была использована схема разрядки RС цепочки через диод и резистор (резистором R2 задаётся соотношение высокого и низкого уровня).

А затем с помощью интегрирующей (RC) цепочки необходимо сделать пилу. Во время тестирования возникла идея вместо резистора в RC цепочке, использовать источник тока на двух транзисторах. Это было сделано для равномерной зарядки конденсатора. А быстрая разрядка происходит благодаря диоду.

Теперь когда есть источник пилообразного сигнала, не составит труда создать ШИМ сигнал. Для этого необходимо на инвертирующий вход компаратора подать напряжения с делителя.

Но тут возникает проблема в том, что для регулировки используется фоторезистор.

Его особенность в том, что на свету его сопротивление порядка 1 килоома или нескольких, а в темноте достигает 2-3 мегаомов.

Принципы измерения пройденной дистанции с помощью датчика H206

Как мы уже знаем, в нашем проекте плата Arduino за время полного оборота колеса обнаружит 40 прерываний. Очевидно, что расстояние, пройденное роботом за один оборот колеса, будет равно длине его окружности. Поскольку мы знаем радиус колеса, следовательно, мы можем рассчитать и пройденную дистанцию по следующей формуле:

Arduino

1 2 Distance = 2πr * number of rotationsdistance = (2*3.141*radius_of_wheel) * (left_intr/40)

Питание мощных светодиодов от 12 вольт на микросхеме LM393

Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению.

Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Читать также: Обжим 100 мбит 4 жилы

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]