Металлоискатель для золота своими руками схема

Металлоискатель — это электронное устройство предназначенное для обнаружения и различения металлов и предметов из металла. Такие приборы используются в аэропортах, профессиональными археологами, в строительстве и многих других сферах деятельности.

Приведены принципиальные схемы несложных металлоискателей, выполненных на транзисторах, микросхемах и микроконтроллерах. Металлоискатель заводского производства является достаточно дорогим устройством, поэтому в некоторых случаях самостоятельное изготовление самодельного металлоискателя может сэкономить не мало средств.

Самодельный металлоискатель может пригодиться в различной домашней автоматике и на производстве, а также при поиске утерянных вещей изготовленных из черных и цветных металлов.

Схемы современных металлоискателей могут быть построены по разным принципам работы, перечислим наиболее популярные из них:

  • Метод биений (измерение изменения эталонной частоты);
  • Индукционный баланс на низких частотах;
  • Индукционный баланс на разнесённых катушках;
  • Импульсный метод.

Как самостоятельно изготовить металлоискатель? — Желательно начать свое знакомство со сборки простой схемы металлодетектора, это позволит разобраться в работе подобного устройства, получить первые навыки применения. Более сложные схемы детекторов металла требуют больше опыта и знаний.

Простая схема металлоискателя — приставки к частотомеру
Металлоискатель для золота своими руками схема

Сейчас существует достаточно большой выбор мультиметров, по самой разной цене.Теперь радиолюбитель может не ограничиваться скромным набором функций «легендарного» М-838. Ненамного дороже можно приобрести более современный прибор, который способен так же измерять и частоту переменного тока …

0 2775 0

Простой металлодетектор на кремниевых транзисторах
Металлоискатель для золота своими руками схема

Металлоискатель предназначен для обнаружения металлического предмета (крышка колодца, отрезок трубы, скрытая проводка). Металлоискатель состоит из параллельного стабилизатора напряжения (транзисторы V1 V2)у генератора высокой (около 100 кГц) частоты на транзисторе V4, детектора ВЧ колебаний (V5) и…

13 8002 6

Простой металлоискатель на семи кремниевых транзисторах
Металлоискатель для золота своими руками схема

Металлоискатель позволяет на расстоянии до 20 см обнаруживать любой металлический предмет. Дальность обнаружения зависит только от площади металлического предмета.

Для тех, кому этого расстояния недостаточно, например искателям кладов, можно порекомендовать увеличить размеры рамки. Это должно увеличить и глубину обнаружения. Принципиальная схема металлоискателя приведена на рисунке.

Схема собрана на транзисторах, работающих в режиме…

9 8479 1

Схема кварцованного металлоискателя на биениях (5 микросхем)
Металлоискатель для золота своими руками схема

Схема самодельного металлоискателя на биениях, которая построена на пяти микросхемах. Находит монету 0,25мм на глубине 5см, пистолет — на глубине 10см, металлическую каску — 20см. Принципиальная схема металлоискателя на биениях изображена ниже. Схема состоит из следующих узлов: кварцевый генератор, измерительный генератор, синхронный детектор, триггер Шмидта, устройство индикации …

11 8513 6

Схема транзисторного металлоискателя с УНЧ на микросхеме TDA2822
Металлоискатель для золота своими руками схема

Схема, представленная на рисунке — это классический металлоискатель. Работа схемы основана на принципе супергетеродинного преобразования частоты, которое обычно используется в супергетеродинном приемнике.

Принципиальная схема металлоискателя с интегральным УНЧ, в нем используются два генератора радиочастоты, частоты которых составляют 5,5 МГц.

Первый радиочастотный генератор собран на транзисторе Т1 типа BF494, частота…

5 7689 2

Схема металлоискателя на микросхеме с пьезофильтром (К561ЛА7, ФП1П1-61-01)
Металлоискатель для золота своими руками схема

Этот металлоискатель, несмотря на малое число деталей и простоту в изготовлении, отличается достаточно большой чувствительностью.

Крупные металлические предметы, такие как батарея отопления, он способен обнаружить на расстоянии до 60 см, мелкие же, например, монету диаметром 25 мм — на расстоянии 15 см.

Принцип работы устройства основан на изменении частоты в измерительном генераторе под воздействием находящихся рядом металлов и…

20 8543 0

Малогабаритный металлоискатель на полевом транзисторе (КП303Г, К561ЛЕ5)
Металлоискатель для золота своими руками схема

Простой компактный металлоискатель нужен для обнаружения в стенах под слоем штукатурки разнообразных металлических предметов (например, труб, проводки, гвоздей, арматуры).

Это устройство полностью автономно, питается от 9 вольтовой батареи типа «Крона», потребляя от нее 4-5 мА.

Металлоискатель имеет достаточную чувствительность для обнаружения: трубы на расстоянии 10-15 см; проводки и гвоздей на расстоянии 5-10…

8 7693 0

Схема транзисторного металлоискателя с низковольтным питанием (1,5В)
Металлоискатель для золота своими руками схема

Схема малогабаритного высокоэкономичного металлоискателя с хорошей повторяемостью и высокими эксплуатационными характеристиками, используя широко распространенные и недорогие детали. Анализ большинства распространённых схем показал, что все они питаются от источника с напряжением не ниже 9 В (то есть «Крона»), а это и дорого и неэкономично. Так, собранный на микросхеме K561ЛE5…

18 10426 1

Простой металлоискатель для начинающих с совмещенными катушками
Металлоискатель для золота своими руками схема

Схема металлоискателя каких-либо особенностей не имеет, проста и доступна для повторения даже начинающим радиолюбителям.

Как часто пишут в книгах и журналах, при правильном монтаже и исправных деталях работать начинает сразу.

Печатная плата устройства показана на рисунке, она выполнена под SMD компоненты, все детали устанавливаются со стороны фольги, и сверления отверстий не требуется. Изготовление поисковой катушки требует высокой…

2 6981 1

Двухтранзисторный металлоскитель с кварцом (1Т313Б, КП302Б)
Металлоискатель для золота своими руками схема

Принципиальная схема металлоискателя представлена на рисунке. Опорный генератор металлоискателя собран по схеме емкостной трехточки на транзисторе Т1. Контурная катушка L1 является датчиком прибора.

Конденсаторы СЗ—С6 предназначены для настройки генератора на частоту 50 кГц. Через разделительный конденсатор С7 синусоидальное напряжение с генератора поступает на кварцевый фильтр.

Емкость С7 выбрана небольшой, тем самым влияние…

6 7241 0

Металлоискатель своими руками — пошаговая инструкция

Металлоискатель используют для поиска руды, металлолома, монет, боевых орудий, ювелирных украшений и прочих изделий из металла. Его можно использовать в профессиональных и любительских целях.

Предназначение металлоискателя

Прибор для поиска металлических объектов используется в следующих видах деятельности:

  • таможня;
  • геологические изыскания;
  • исторические исследования;
  • сапёрное дело;
  • медосмотры;
  • прокладка магистралей;
  • поиске ценных вещей в сносимых домах;
  • поиск и сбыт металлолома.

Принцип работы

Металлоискатель для золота своими руками схемаВ основе работы любого металлоискателя лежит принцип электромагнитной индукции.

  1. Переменный ток внутри прибора испускает электромагнитное поле.
  2. Попадающий в область действия металл откликается на волны, начиная генерировать свои колебания.
  3. Катушка ловит колебания и регистрирует их.

Датчики определяют вид металла, его объём и глубину, на которой он находится. Полученные данные отображаются на дисплее или поступают в виде звуковых сигналов.

Какими бывают металлоискатели

Общие параметры

Конструкция металлоискателя включает синтезатор и усилитель магнитного излучения, одна катушка для дискриминации металла и другая – для ловли электромагнитных волн, приёмник с усилителем, индикатор. В некоторых моделях для передачи и приёма колебаний служит одна катушка или один усилитель.

К основным параметрам, которые важны для работы устройства, относятся:

  1. Глубина обнаружения. Зависит от размеров датчика и диаметра диска.
  2. Дискриминация. Способность идентифицировать по типу сигнала параметры металлических объектов.
  3. Чувствительность. Способность искать мелкие предметы из металла.
  4. Частота колебаний.
  5. Устойчивость к электропомехам. Линии электропередач, находящиеся поблизости, путают показатели прибора.

Рабочая частота

Частота колебаний магнитного поля влияет на работу металлоискателя. Низкочастотное излучение способно проникнуть на большую глубину.

  1. Сверхнизкочастотные (СНЧ). Частота – 100–150 Гц. Используются в профессиональных целях. Устанавливаются на автомобильный транспорт.
  2. Низкочастотные (НЧ). Частота – 150–2000 ГЦ. Проникают на глубину 4–5 м. Просты в сборке. Обладают малой чувствительностью.
  3. Повышенной частоты (ПЧ). Частота – 1700–75000 Гц. Проникает на глубину 1-1,5 м. Устойчивы к помехам. Плохо различают неоднородную руду. Показатели начинают плавать при высоком уровне грунтовых вод.
  4. Высокочастотные (ВЧ). Работают на радиочастотах. Работает на глубине 0,5-0,8 м. Хорошо ищет тяжёлые металлы. При изготовлении катушки стоит проявлять максимальную аккуратность.

Металлоискатель для золота своими руками схемаИмпульсные металлоискатели подают периодические сигналы настраиваемой длины. Такой прибор совмещает в себе положительные характеристики НЧ, ПЧ и ВЧ. Импульсные устройства сложны в обращении, поэтому не подходят для новичков.

Метод поиска

Существует несколько применяемых технологий для обнаружения металла в почве. Многие из них требуют специализированного оборудования, поэтому их могут взять на вооружение только крупные заводы.

  1. Параметрический. Сравнение параметров, которые были до и после поиска.
  2. Приёмно-передающий. Отражение сигнала, передаваемого устройством.
  3. С накоплением фазы. Установлены две катушки.
  4. На биениях. Работает на двух сигналах.

С приёмником и передатчиком

Наличие приёмника и передатчика улучшает точность показателей. Металлоискатели, на которых установлена одна катушка, легко настраиваются, при этом с трудом определяют вторичный сигнал. Устройства, оснащённые двумя катушками, должны иметь идентичные соленоиды.

Можно ли сделать своими руками подводный металлоискатель

Подводный металлоискатель ищет предметы под водой. Датчики устройства позволяют преодолевать плохую видимость или фоновый шум. Подводные искатели металла обычно занимаются поиском мелких драгоценностей. Для создания потребуется силиконовый герметик и водозащитные порты.

Металлоискатель для золота своими руками схема

Пошаговая инструкция по сборке простого металлоискателя

Берём провод 14 м диаметром 0,65 мм, пластмассовую крышку для ведра, 16 гвоздей-метизов 30 мм, малярный скотч, компоненты для печатной платы, батарейку, наушник от гарнитуры, лист из поликарбоната, полимерные трубки, металлический контейнер.

  1. Чертим на фанере окружность диаметром 150 мм и вырезаем её.
  2. Забиваем метизы по краям окружности.
  3. Закрепляем проволоку и сворачиваем её в 30 плотных витков.
  4. Обматываем катушку малярным скотчем для изоляции.
  5. Делаем вторую катушку по тому же принципу.
  6. Изготавливаем по схеме приемопередающее устройство.
  7. Берём наушник из гарнитуры для передачи звукового сигнала.
  8. Ставим электронную плату и батарею в приготовленную коробку.
  9. Размещаем катушки на поликарбонатном листе.
  10. Изготавливаем штангу из труб, создаём ручку в виде полукольца.
Читайте также:  Анкер под крестовую отвертку

Металлоискатель для золота своими руками схемаТестируем металлоискатель сначала в искусственных условиях, разбросав разные предметы по полу, затем на природе.

Параметрический прибор обнаружения металлов

Данный агрегат используют для поиска труб и чёрных металлов. В основе параметрического прибора лежит транзистор МП40, который можно заменить на КТ361. Действует на низких частотах. В момент обнаружения металла издаёт низкий звук на частоте 50 Гц.

Как самостоятельно закрепить катушку

Каркас катушки выполняется из фанеры или CD-дисков. Стоит учитывать, что доска обладает низкой влагоустойчивостью. Обматываем диски изолентой или скотчем, оставляя между ними расстояние 5–7 мм.

Импульсный параметрический прибор

Работает на ферритовой антенне, которая испускает волны на средних частотах. Обладает низким энергопотреблением. Источниками питания служат батарейки АА. Недорогие комплектующие и простые чертежи позволяют спаять конструкцию самостоятельно. Импульсное устройство требует отладки.

Приемопередающие металлоискатели

Нацелены на поиск цветных и драгоценных металлов. Внутри прибора стоит катушка ДД, создающая излучение 2000–2500 Гц. Волны проникают на глубину 70 см, где выискивают чугун и сталь. На уровне 20 см прибор регистрирует на сплавы чёрных металлов, на уровне 10 см – цветные металлы.

Как собрать печатную плату металлоискателя своими руками

Переводим распечатанный дизайн платы на медную пластину при помощи лазерного принтера. В итоге получаем зеркальное отображение конструкции платы. Заполняем плату элементами: добавляем транзисторы, конденсаторы, резисторы, провода питания, катушки. Наматываем на катушку витки. Настраиваем частоту для катушек.Металлоискатель для золота своими руками схема

Испытание металлоискателя

Размещаем на любой поверхности металлические предметы и оцениваем работу металлоискателя. Определяем расстояния, на которых устройство начинает реагировать на разные типы металла. Далее испытываем прибор в естественных условиях. Во время поиска нужно сохранять медленную скорость и стараться охватить большую площадь.

Металлоискатель с катушкой

Подбор соответствующей катушки

Чтобы катушка хорошо работала, она должна правильно подходить остальным частям устройства. Дорогие соленоиды от известных производителей могут показать себя хуже бюджетных запчастей, если у них будет низкая сходимость с общей конструкцией. Параметры требуют ручной настройки.

Размеры катушки

Размеры катушки влияют на площадь, которую она охватывает. Некоторые соленоиды имеют диаметр 15 м. Катушки с диаметром 20–100 мм используются для обнаружения железобетонных конструкций в толще земли, с катушкой 130–150 мм выискивают золото в людных местах, 200–600 мм помогают искать металлолом.

Катушка с монопетлей

Монопетля делается из длинного провода. Толщина наматывания должна быть в 15–20 раз меньше, чем диаметр окружности. Особенности грунта не влияют на показатели прибора, небольшая масса позволяет свободно переносить устройство по территории. Прибор с монопетлей подвержен влиянию радиопомех, параметры требуют постоянной настройки.

Пошаговое изготовление простейшей катушки

Используем пластиковые трубы, чтобы уберечь провода от влаги. Берём эмалированный провод длиной 12 м, пластиковую трубку диаметром 12,5 мм и длиной 471 мм, два фрагмента трубы, телевизионный провод длиной 120 см.Металлоискатель для золота своими руками схема

  1. Пробуем свернуть трубу в окружность. Если заготовка слишком жёсткая, её следует прогреть горячей водой или паром.
  2. Проделываем в тройнике дыру для проводов и очищаем края от острых выступов.
  3. Вставляем в тройник фрагменты трубы.
  4. Вдеваем пластиковую трубку в тройник через фрагменты. Вставляем оба конца друг в друга. Прогреваем место на стыке.
  5. Продеваем провод в трубу. Подтягиваем выпадающие витки.
  6. Присоединяем экранированный кабель к эмалированному проводу.

Осталось соединить катушку со штангой. Ещё более простой способ – сделать катушку из дерева.

Катушка из медной проволоки на деревянной основе

Для изготовления, стоит использовать ориентированно-стружечную плиту (OSB):

  1. Очерчиваем контур катушки на листе фанеры и вырезаем его лобзиком.
  2. Наматываем провода на края катушки.
  3. Изготавливаем штангу из полипропиленовых труб и прикрепляем к катушке.
  4. Окрашиваем катушку алкидно-полиуретановой эмалью.

Чтобы избежать вздутия древесины от воды, стоит покрыть деревянную поверхность несколькими слоями краски.

Как рассчитать индуктивность катушки

Быстрое определение индуктивности возможно при помощи номограммы. Для более точного определения нужна специальная методика с расчётом основных параметров.

Таблица определение поправочного коэффициента

D₂+D₁D₂ – D₁ k
1,2 3,31
1,5 2,98
1,8 2,72
2,0 2,58
3,0 2,07
5,0 1,57
8,0 2,23
10,0 1,03

Еще идеи по созданию металлоискателя

Как собрать металлоискатель без использования микросхем

Устройство без микросхемы имеет малую производительность, хромающую чувствительность и отсутствующую дискриминацию. В основе аналоговой конструкции лежит транзистор.

Схема индикатора металла

Металлоискатель для золота своими руками схема

Металлодетекторы для поиска мелких предметов

Пинпойнтер облегчает добычу мелких металлических объектов при горных работах. Карманный металлодетектор позволяет быстро обнаруживать и изымать из грунта чешуйки, монеты, дробинки. Прибор выполнен в форме конуса, позволяющей раскапывать труднодоступные объекты.

Простые детекторы металла из готовых электроприборов

Металлодетектор легко соорудить из радиоприёмника, оснастив его высокочастотным передатчиком. Катушка состоит из 16 витков диаметром 12 см, сечение провода 0,5 мм². В момент обнаружения металла меняется высота сигнала.

Самодельный металлодетектор, изготовленный по схеме, может быть не менее надёжным, чем прибор фабричного производства. Простейший детектор металла можно изготовить без специализированного оборудования, даже не имея навыка в работе с радиоэлектроникой.

Видео

Металлоискатель на Arduino c дискриминацией металлов

В данной статье мы рассмотрим создание металлоискателя (металлодетектора) на основе платы Arduino с возможностью дискриминации металлов.

Данный металлоискатель будет способен обнаруживать мелкие металлические предметы (например, монеты) на глубине до 15 см, а крупные предметы из металла он сможет обнаруживать на глубине до 50 см (и даже более).

Также он будет способен отличать железосодержащие металлы (ferrous) от цветных металлов (nonferrous). Металлоискатель отличается достаточно простой конструкцией и в то же время он обеспечивает приемлемую чувствительность.

Ранее на нашем сайте рассматривался проект простого металлоискателя на Arduino, рекомендуем его прочитать чтобы понять принцип работы металлоискателя (металлодетектора).

Необходимые компоненты

  1. Плата Arduino Nano (купить на AliExpress).
  2. ЖК дисплей 16х2 (купить на AliExpress).
  3. Операционный усилитель TL081 или 741, также подойдет LT1677 (использован автором проекта) (купить на AliExpress).

  4. Громкоговоритель (Speaker) 0,25 Вт, 8 Ом.
  5. Транзистор общего назначения NPN типа.
  6. Катушка индуктивности – 2 шт.
  7. Потенциометр 10 кОм (купить на AliExpress).
  8. Конденсаторы и резисторы (согласно схеме, представленной далее).

  9. Переключатели.
  10. Батарейка.

Схема проекта

Схема металлоискателя на Arduino c дискриминацией металлов представлена на следующем рисунке.

Металлоискатель для золота своими руками схемаПри обнаружении металла устройство будет издавать звуковой сигнал, а на ЖК дисплее с помощью столбчатой диаграммы (bar graph) будет отображать степень близости металла, а также указываться тип металла – железо (ferrous) или цветной (nonferrous).

Устройство представляет собой индукционно-балансный металлодетектор, работающий на очень низкой частоте (very low frequency, VLF). Металлоискатель содержит передающую и приемную катушки индуктивности. Как и во всех схемах подобных детекторов, для нашего прибора очень важен баланс между катушками.

Потенциометр в схеме детектора используется для устранения влияния противофазного компонента (out-of-phase component) сигнала – приводит сдвиг по фазе к нулю, а синфазный компонент (in-phase component) обнуляется с помощью соответствующего расположения катушек – по принципу работы IB-детекторов.

Каждая катушка индуктивности изготовляется при помощи намотки 64 витков провода сечением 0,5 мм2 из эмалированной меди на D форму (D shape) диаметром 11 см.

После этого конструкция катушки обматывается лентой и экранируется алюминиевой фольгой, после чего к ней к ней прикрепляется луженая медная проволока – необходимо оставить небольшой пропуск в фольге чтобы ее прикрепить.

После чего обе катушки закрепляются на пластиковое основание. Внешний вид собранных катушек индуктивности для металлоискателя показан на следующем рисунке.

Более подробно процесс их сборки вы можете посмотреть на видео, приведенном в конце статьи. Внешний вид собранной конструкции металлоискателя показан на следующем рисунке.

Для настройки работы проекта нам первым делом необходимо определить резонансную частоту колебательного контура в нашей схеме. Для этого можно использовать известную из курса физики формулу, online калькуляторы, либо же ее можно измерить с помощью осциллографа. Если собрали катушки описанным способом, то резонансная частота нашего контура должна составлять примерно 7.64 кГц. Если вы получили другое значение резонансной частоты, то вам необходимо внести соответствующие изменения в следующую строчку программы:

#define TIMER1_TOP (249) // fine-tune the frequency

Читайте также:  Как правильно клеить эпоксидной смолой
#define TIMER1_TOP (249) // fine-tune the frequency

Как вы можете посмотреть на далее представленном видео, результаты работы металлоискателя получились весьма впечатляющими. В отсутствии металла прибор показывает устойчивую работу.

Металлический круг диаметром 15 см обнаруживается на расстоянии более 30 см. Металлические предметы большего размера обнаруживаются на расстояниях, превышающих 40-50 см.

Маленькую монету можно обнаружить на расстоянии 15 см (в воздухе).

Для питания металлоискателя автор проекта использовал два литиевых аккумулятора, которые при последовательном соединении обеспечивают питающее напряжение 7.4 В – это напряжение подается на контакт Vin платы Arduino. Энергопотребление устройства не превышает 20mA, поэтому от таких аккумуляторов оно будет работать достаточно долго.

Для значительного увеличения чувствительности металлоискателя автор проекта предлагает осуществлять управление передающей катушкой с помощью мощного MOSFET транзистора – в дальнейшем он на странице проекта планирует опубликовать результаты подобного эксперимента.

Примечание: рекомендации по практической сборке данного проекта металлоискателя от активного читателя нашего сайта с именем Александр с описанием, фотографиями и видео можно скачать по следующей ссылке.

Исходный код программы (скетча)

// Induction balance metal detector

// We run the CPU at 16MHz and the ADC clock at 1MHz (АЦП работает на 1 МГц). ADC resolution is reduced to 8 bits at this speed. (разрешение АЦП уменьшено до 8 бит)

// Timer 1 is used to divide the system clock by about 256 to produce a 62.5kHz square wave. (Таймер 1 использовается для формирования прямоугольных импульсов с частотой 62,5 кГц)
// This is used to drive timer 0 and also to trigger ADC conversions.
// Timer 0 is used to divide the output of timer 1 by 8, giving a 7.8125kHz signal for driving the transmit coil.
// Таймер 0 делит выход таймера 1 на 8, и, таким образом, формирует сигнал частотой 7.8125kHz для управления передающей катушкой
// This gives us 16 ADC clock cycles for each ADC conversion (it actually takes 13.5 cycles), and we take 8 samples per cycle of the coil drive voltage.
// The ADC implements four phase-sensitive detectors at 45 degree intervals. Using 4 instead of just 2 allows us to cancel the third harmonic of the
// coil frequency.

// Timer 2 will be used to generate a tone for the earpiece or headset. (таймер 2 используется для генерации тона для наушников)

// Other division ratios for timer 1 are possible, from about 235 upwards.

// Wiring:
// Connect digital pin 4 (alias T0) to digital pin 9
// Connect digital pin 5 through resistor to primary coil and tuning capacitor
// Connect output from receive amplifier to analog pin 0. Output of receive amplifier should be biased to about half of the analog reference.
// When using USB power, change analog reference to the 3.3V pin, because there is too much noise on the +5V rail to get good sensitivity.
#include
#include
#define max_ampAverage 200
LiquidCrystal lcd(6, 7, 10, 11, 12, 13);
LcdBarGraph lbg(&lcd, 16, 0, 1);

#define TIMER1_TOP (259) // can adjust this to fine-tune the frequency to get the coil tuned (see above) (это значение используется для точной настройки частоты катушки)

#define USE_3V3_AREF (1) // set to 1 of running on an Arduino with USB power, 0 for an embedded atmega28p with no 3.3V supply available

// Digital pin definitions
// Digital pin 0 not used, however if we are using the serial port for debugging then it's serial input
const int debugTxPin = 1; // transmit pin reserved for debugging (передающий контакт, зарезервированный для целей отладки)
const int encoderButtonPin = 2; // encoder button, also IN0 for waking up from sleep mode
const int earpiecePin = 3; // earpiece, aka OCR2B for tone generation
const int T0InputPin = 4;
const int coilDrivePin = 5;
const int LcdRsPin = 6;
const int LcdEnPin = 7;
const int LcdPowerPin = 8; // LCD power and backlight enable
const int T0OutputPin = 9;
const int lcdD4Pin = 10;
const int lcdD5Pin = 11; // pins 11-13 also used for ICSP
const int LcdD6Pin = 12;
const int LcdD7Pin = 13;

// Analog pin definitions (используемые аналоговые контакты)
const int receiverInputPin = 0;
const int encoderAPin = A1;
const int encoderBpin = A2;
// Analog pins 3-5 not used

// Variables used only by the ISR
int16_t bins[4]; // bins used to accumulate ADC readings, one for each of the 4 phases (используются для хранения значений, считываемых с АЦП)
uint16_t numSamples = 0;
const uint16_t numSamplesToAverage = 1024;

// Variables used by the ISR and outside it
volatile int16_t averages[4]; // when we've accumulated enough readings in the bins, the ISR copies them to here and starts again
volatile uint32_t ticks = 0; // system tick counter for timekeeping
volatile bool sampleReady = false; // indicates that the averages array has been updated

// Variables used only outside the ISR
int16_t calib[4]; // values (set during calibration) that we subtract from the averages (значения, устанавливаемые во время калибровки, в дальнейшем мы их вычитаем из средних значений)

volatile uint8_t lastctr;
volatile uint16_t misses = 0; // this counts how many times the ISR has been executed too late. Should remain at zero if everything is working properly.

const double halfRoot2 = sqrt(0.5);
const double quarterPi = 3.1415927/4.0;
const double radiansToDegrees = 180.0/3.1415927;

// The ADC sample and hold occurs 2 ADC clocks (= 32 system clocks) after the timer 1 overflow flag is set.
// This introduces a slight phase error, which we adjust for in the calculations.
const float phaseAdjust = (45.0 * 32.0)/(float)(TIMER1_TOP + 1);

float threshold = 5.0; // lower = greater sensitivity. 10 is just about usable with a well-balanced coil.
// The user will be able to adjust this via a pot or rotary encoder. (эту границу можно сделать настраиваемой с помощью потенциометра или энкодера)

void setup()
{
lcd.begin(16, 2);// LCD 16X2
pinMode(encoderButtonPin, INPUT_PULLUP);
digitalWrite(T0OutputPin, LOW);
pinMode(T0OutputPin, OUTPUT); // pulse pin from timer 1 used to feed timer 0
digitalWrite(coilDrivePin, LOW);
pinMode(coilDrivePin, OUTPUT); // timer 0 output, square wave to drive transmit coil

cli();
// Stop timer 0 which was set up by the Arduino core
TCCR0B = 0; // stop the timer
TIMSK0 = 0; // disable interrupt
TIFR0 = 0x07; // clear any pending interrupt

// Set up ADC to trigger and read channel 0 on timer 1 overflow
#if USE_3V3_AREF
ADMUX = (1

Металлоискатель для золота своими руками: принцип

Здравствуйте, читатели! Сегодня я хочу поговорить о том, как собрать металлоискатель своими руками. Когда очень хочется купить полезную вещь, а денег на нее нет, приходится откладывать покупку на потом или брать кредит.

Кредит обходится дорого. И в голове возникает мысль: «Вот бы найти клад». А какой главный инструмент кладоискателя? Правильно, металлоискатель. Эта статья расскажет вам, как устроен этот прибор и какие детали нужны для его сборки.

Конструкция и принцип работы

Конструкция металлоискателей состоит из следующих основных элементов:

  1. Катушка принимает и передает электромагнитный сигнал, сканируя поверхность с искомым металлом.
  2. Блок управления обрабатывает сигнал, получаемый от катушки, оповещает пользователя графическим или звуковым сигналом, а также позволяет своими руками настраивать режимы работы детектора.
  3. Нижняя штанга фиксирует катушку и регулирует угол ее наклона.
  4. Средняя штанга – промежуточное звено между нижней и верхней штангой, позволяет регулировать высоту металлоискателя.
  5. Верхняя штанга. Здесь размещается блок управления, а также удобная рукоятка с подлокотником, чтобы руки пользователя не устали от длительного удерживания металлоискателя.

Металлоискатель через катушку излучает электромагнитное поле. Когда в этом поле оказывается металл или любой другой токопроводящий материал, поле искажается и ослабляется. Блок управления улавливает это и подает сигнал.

Более электропроводные цветные металлы сильнее искажают излучаемое детектором поле, чем черные.

Поэтому чувствительные электронные схемы позволяют своими руками создавать приборы с дискриминацией металлов, которые могут отличать цветмет от чермета.

Металлоискатель без микросхем

Если у начинающего «кладоискателя» нет желания связываться с микросхемами, существуют схемы и без них.

Простая схема на тронзисторных генераторах

Читайте также:  Рубильник перекидной на три положения

Существуют более простые схемы, основанные на использовании традиционных транзисторов. Такой прибор может найти металл на глубине в несколько десятков сантиметров.

Какие виды можно сделать в домашних условиях своими руками

Для самоделок хорошо подходят параметрические и фазочувствительные детекторы. Они просты в изготовлении, а детали для них стоят сущие копейки. Для сборки своими руками достаточно обладать базовыми знаниями по радиотехнике.

Металлоискатели с накоплением фазы намного чувствительнее параметрических. При правильной настройке они имеют хорошую дискриминацию и позволяют находить даже мелкие драгоценности, что делает их любимым инструментом пляжных золотоискателей. На сухом песке удается найти серьги и кольца на глубине до 38 см.

Разновидности металлодетекторов

На рынке представлена широкая номенклатура металлодетекторов, применяемых во многих сферах. Ниже приведен список, в котором указаны некоторые разновидности этих устройств:

  1. Грунтовые. Эти приборы предназначены для поиска своими руками металлического лома, ювелирных украшений, монет и пр.
  2. Глубинные. Эти приборы применяют для поиска вышеназванных металлических изделий на большой глубине.
  3. Подводные. Устройства этого типа предназначены для работы подводой. Они могут работать на разных глубинах.
  4. Металлодетекторы для поиска золота. Эти приборы позволяют найти золото и украшения для него в любых средах.
  5. Охранные устройства. Эти приборы применяют для обнаружения металлических изделий на теле человека и в багаже. Такие устройства выполняют в виде арок и устанавливают на входе в места большого скопления людей, например, на вокзалах, торговых центрах и пр.
  6. Промышленные. Это оборудование входит в состав конвейерных линий. Их основная задача обнаружение металла в других веществах. Например, в добываемой песчано-грунтовой смеси.
  7. Армейские. Военные применяют такие приборы для обнаружения своими руками мин, неразорвавшихся снарядов, бомб и пр. Военные называют такие приборы миноискателями.
  8. Устройства собранные своими руками, чаще всего их собирают начинающие «кладоискатели».

Использование современных материалов позволяет проектировать и изготавливать приборы с высокой точности обнаружения металлов в разных средах. Применение микроэлектроники позволило минимизировать их габаритно-весовые параметры. Кроме этого, простота электрической схемы позволяет с минимальными затратами изготовить металлодетектор своими руками.

Основные параметры

Метод поиска

Индукционные металлодетекторы (МД) состоят из приемопередающей катушки индуктивности.

Излучаемый сигнал при попадании на металлический предмет отражается обратно и регистрируется приемником. Эти устройства достаточно просты в изготовлении своими руками, но их чувствительность сильно зависит от типа грунта и качества катушки.

Импульсные МД возбуждают в поисковой зоне вихревые токи и измеряют вторичное затухающее электромагнитное поле. Чувствительность этих приборов выше и не зависит от типа грунта. Однако они потребляют много электроэнергии, что не позволяет работать в автономном режиме продолжительное время.

Фазочувствительные МД могут быть:

  1. Импульсными. Приемник и передатчик здесь – один и тот же элемент. Он фиксирует сдвиг фаз отраженного от металла сигнала. Нарастание сдвига фаз вызывает в наушниках щелчки: чем ближе МД к металлу, тем чаще они становятся, в итоге сливаясь в единый звук. На этом методе основана работа популярного металлоискателя «Пират».
  2. Двухконтурными. Состоят из 2 симметричных генераторов и 2 детекторов. Металлический предмет нарушает синхронизацию генераторов, и возникают те же щелчки, сливающиеся в непрерывный тон.

    Двухконтурные проще в изготовлении своими руками, чем импульсные.

  3. Параметрические МД не имеют ни приемной, ни передающей катушки, что делает их простыми, дешевыми и популярными для сборки своими руками. LC-генератор создает электромагнитное поле звуковой частоты. Любой металл рядом с металлоикателем изменяет параметры катушечного детектора, что влияет на частоту и амплитуду генерируемых сигналов. Схему таких приборов легко найти. Однако чувствительность их низкая и не позволяет вести сложные поиски. Параметрические МД делятся на:
  4. Частотные МД. Излучают многочастотные сигналы. При приближении к металлам прибор фиксирует изменение частоты.
  5. Металлоискатели, регистрирующие изменение добротности контура. Когда расстояние между прибором и металлом уменьшается, прибор фиксирует это.

Глубина обнаружения

Глубина обнаружения зависит от диаметра катушки, электронной схемы и частоты работы. Чем больше диаметр мотка провода, мощнее излучаемое электромагнитное поле и ниже его частота, тем глубже зона обнаружения металлоискателя, сделанного своими руками.

Однако с увеличением глубины поиска ухудшается чувствительность металлоискателя к мелким предметам, селективные возможности также снижаются. Возрастает энергопотребление и вес устройства, что усложняет длительное удержание металлоискателя в руках.

  Основные виды антропогенного воздействия на почву

Частота работы

По частоте работы МД делятся на:

  1. Высокочастотные. Работают на частотах нескольких сотен кГц. Применяются в приборах, рассчитанных на поиски золота, так как имеют отличную дискриминацию. Но резко теряют чувствительность на мокрых и магнитных грунтах, а также на глубине больше 40 см.
  2. Среднечастотные. Частота работы до нескольких десятков кГц. Требования к качеству катушки ниже, хорошая чувствительность. Глубина обнаружения до 1,5 метров при условии, что грунт сухой и маломинерализованный.
  3. Низкочастотные. Работают на частоте от сотен Гц до нескольких кГц. Это глубинные металлоискатели, обнаруживающие предметы до 5 метров под землей. Они просты в изготовлении своими руками. Из недостатков: низкая чувствительность и высокое энергопотребление. Подходят в качестве магнитодетекторов, а также для поиска крупных предметов из черного металла (арматура, проводка).
  4. Сверхнизкочастотные. Не подходят для любительского поиска, так как имеют высокое энергопотребление и большие габариты, а для обработки сигнала требуются специальные программы. Частота работы до нескольких сотен Гц. Эти металлоискатели невозможно удерживать на руках, поэтому они устанавливаются на автомобиле.

У нас вы можете найти схемы, для самостоятельной сборки следующих моделей металлоискателей:

Металлоискатель Малыш FM и малыш FM-2
Принцип работы Электронного частотомера FM
Дискриминация металлов есть (Черный и все остальные)
Максимальная глубина поиска 0,6 метра
Программирумые микроконтроллеры есть
Рабочая частота 19 кГц
Уровень сложности начальный
Металлоискатель ПИРАТ
Принцип работы PI (импульсный)
Дискриминация металлов нет
Максимальная глубина поиска 1,5 метр
Программирумые микроконтроллеры нет
Рабочая частота
Уровень сложности начальный
Металлоискатель ШАНС
Принцип работы PI (импульсный)
Дискриминация металлов есть
Максимальная глубина поиска 1 метр
Программирумые микроконтроллеры есть
Рабочая частота
Уровень сложности средний
Металлоискатель Clone PI
Принцип работы PI (импульсный)
Дискриминация металлов нет
Максимальная глубина поиска 2,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота
Уровень сложности средний
Металлоискатель Clone PI AVR
Принцип работы PI (импульсный)
Дискриминация металлов нет
Максимальная глубина поиска 2,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота
Уровень сложности средний
Металлоискатель Clone PI W
Принцип работы PI (импульсный)
Дискриминация металлов нет
Максимальная глубина поиска 2,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота
Уровень сложности средний
Металлоискатель Квазар
Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1-1,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4 — 17 кГц
Уровень сложности Средний
Металлоискатель Квазар ARM
Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1-1,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4 — 16 кГц
Уровень сложности Средний
Металлоискатель Соха 3TD-M
Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1 — 1,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 5 — 17 кГц
Уровень сложности Средний
Металлоискатель Фортуна
Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1 — 1,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4,5 — 19,5 кГц
Уровень сложности Средний
Металлоискатель Фортуна ПРО-2
Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1 — 2 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4,5 — 19,5 кГц
Уровень сложности Высокий
Металлоискатель Фортуна М2 и М3
Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1 — 2 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4,5 — 19,5 кГц
Уровень сложности Высокий
Металлоискатель Фортунам М
Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1,5 — 2 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 7 — 16 кГц
Уровень сложности Высокий
Металлоискатель ТЕРМИНАТОР-3
Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1 метр (Зависит от размера катушки)
Программирумые микроконтроллеры нет
Рабочая частота 7 — 20 кГц
Уровень сложности Высокий

Пошаговая инструкция по сборке простого самодельного металлоискателя своими руками

Необходимые инструменты и материалы

Для сборки металлоискателя своими руками понадобятся:

  1. Инструменты: кусачки, ножик, пила мелкая, отвертка, паяльник.
Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]