Модуль упругости материалов таблица

Модуль упругости материалов таблица

Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу — стали. Также будут рассмотрены эти показатели у других материалов, ради примера.

Связь с другими модулями упругости

  • В случае изотропного тела модуль Юнга связан с модулем сдвига и модулем объёмной упругости соотношениями
  • и
  • где  — коэффициент Пуассона.

Это интересно: Металлургия черная и цветная — отрасли, продукция, значение

Модуль упругости — что это?

Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

  • Модуль упругости материалов таблицаМодуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
  • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
  • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
  • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.

Температурная зависимость модуля Юнга

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости определяется как вторая производная от внутренней энергии по соответствующей деформации . Поэтому при температурах ( — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением

где  — адиабатический модуль упругости идеального кристалла при ;  — дефект модуля, обусловленный тепловыми фононами;  — дефект модуля, обусловленный тепловым движением электронов проводимости

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

  1. Модуль упругости материалов таблицаЖёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Модуль упругости материалов таблицаКоэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Модуль упругости материалов таблица

После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.

Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:

  • Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
  • Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
  • Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
  • Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
  • Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
  • Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
  • И напоследок коэффициент Пуассона для стали равен значению 0,3

Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

Сталь и несколько разных её марок

Модуль упругости материалов таблицаЗначения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.

Читайте также:  Скобы для степлера типы размеры канцелярские

Кстати, если не выражать все значения числовыми отношениями, а взять сразу и пос, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.

Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.

Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения.

Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода.

Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.

Модуль упругости для разных марок стали

Металлурги разработали несколько сотен марок сталей. Им свойственны разные значения прочности. В таблице 2 показаны характеристики для наиболее распространенных сталей.

Таблица 2: Упругость сталей

Наименование стали Значение модуля упругости, 10¹²·Па
Сталь низкоуглеродистая 165…180
Сталь 3 179…189
Сталь 30 194…205
Сталь 45 211…223
Сталь 40Х 240…260
65Г 235…275
Х12МФ 310…320
9ХС, ХВГ 275…302
4Х5МФС 305…315
3Х3М3Ф 285…310
Р6М5 305…320
Р9 320…330
Р18 325…340
Р12МФ5 297…310
У7, У8 302…315
У9, У10 320…330
У11 325…340
У12, У13 310…315

Видео: закон Гука, модуль упругости.

Модули прочности

Кроме нормального нагружения, существуют и иные силовые воздействия на материалы.

Модуль сдвига G определяет жесткость. Эта характеристика показывает предельное значение нагрузки изменению формы предмета.

Модуль объемной упругости К определяет упругие свойства материала изменить объем. При любой деформации происходит изменение формы предмета.

Коэффициент Пуассона μ определяет изменения отношение величины относительного сжатия к растяжению. Эта величина зависит только от свойств материала.

Для разных сталей значения указанных модулей приведены в таблице 3.

Таблица 3: Модули прочности для сталей

Наименование стали Модуль упругости Юнга, 10¹²·Па Модуль сдвига G, 10¹²·Па Модуль объемной упругости, 10¹²·Па Коэффициент Пуассона, 10¹²·Па
Сталь низкоуглеродистая 165…180 87…91 45…49 154…168
Сталь 3 179…189 93…102 49…52 164…172
Сталь 30 194…205 105…108 72…77 182…184
Сталь 45 211…223 115…130 76…81 192…197
Сталь 40Х 240…260 118…125 84…87 210…218
65Г 235…275 112…124 81…85 208…214
Х12МФ 310…320 143…150 94…98 285…290
9ХС, ХВГ 275…302 135…145 87…92 264…270
4Х5МФС 305…315 147…160 96…100 291…295
3Х3М3Ф 285…310 135…150 92…97 268…273
Р6М5 305…320 147…151 98…102 294…300
Р9 320…330 155…162 104…110 301…312
Р18 325…340 140…149 105…108 308…318
Р12МФ5 297…310 147…152 98…102 276…280
У7, У8 302…315 154…160 100…106 286…294
У9, У10 320…330 160…165 104…112 305…311
У11 325…340 162…170 98…104 306…314
У12, У13 310…315 155…160 99…106 298…304

Для других материалов значения прочностных характеристик указывают в специальной литературе. Однако, в некоторых случаях проводят индивидуальные исследования. Особенно актуальны подобные исследования для строительных материалов. На предприятиях, где выпускают железобетонные изделия, регулярно проводят испытания по определению предельных значений.

Литература

  • Модули упругости // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). — 3-е изд. — М.: Сов. энциклопедия, 1974. — Т. XVI. — С. 406. — 616 с.
  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

Эта страница в последний раз была отредактирована 21 февраля 2019 в 15:38.

Поделитесь в соц.сетях:

Модуль упругости стали: таблица, характеристики

►Модуль упругости стали
►Модуль упругости разных марок стали
►Таблица модулей прочности марок стали
►Модуль упругости для металлов и сплавов
►Упругость сталей
►Предел прочности

При проектировании стальных изделий или элементов конструкций учитывают способность сплава выдерживать разнонаправленные виды нагрузок: ударные, изгибающие, растягивающие, сжимающие. Значение модуля упругости стали, наряду с твердостью и другими характеристиками, показывает стойкость к этим воздействиям.

Например, в железобетонном строительстве используют продольные и поперечные арматурные стержни. В горизонтальной плоскости они подвержены растяжению, а в вертикальной — давлению всей массы конструкции.

В местах концентрации напряжений: углы, технологические проемы, лифтовые шахты и лестничные пролеты — размещают большее количество арматуры.

Способность бетона впитывать воду служит причиной постоянных изменений сжимающих и растягивающих нагрузок. 

Рассмотрим другой пример. В военное время создавалось множество разработок в сфере авиации. Самыми частыми причинами катастроф были возгорания двигателей. Отрываясь от земли, самолет попадает в атмосферные слои с разреженным воздухом и его корпус расширяется, обратный процесс происходит при посадке.

Кроме этого, на конструкцию воздействует сопротивление воздушных потоков, давление искривленных слоев воздуха и другие силы. Несмотря на прочность, существующие в то время сплавы не всегда были пригодны для изготовления ответственных деталей, в основном, это приводило к разрывам топливных баков.

 

В различных видах промышленности из стали изготавливают детали подвижных механизмов: пружины, рессоры. Марки, используемые для таких целей, не склонны к трещинообразованию при постоянно изменяющихся нагрузках. 

Модуль упругости стали

Упругость твердых тел  — это способность принимать исходную форму после прекращения деформирующих воздействий. Например, брусок пластилина обладает нулевой пружинистостью, а резиновые изделия можно сжимать и растягивать. При различных применениях сил к предметам и материалам, они деформируются. В зависимости от физических свойств тела или вещества, различают два вида деформации:

  • Упругая — последствия исчезают по окончании действия внешних сил;
  • Пластическая — необратимое изменение формы.

Модуль упругости — название нескольких физических величин, характеризующих склонность твердого тела деформироваться упруго. 

Впервые понятие было введено Томасом Юнгом. Ученый подвешивал грузы к металлическим стержням и наблюдал за их удлинением. У части образцов длина увеличилась в два раза, другие — были разорваны в ходе эксперимента.

Сегодня определение объединяет ряд свойств физических тел:

Модуль Юнга: Вычисляется по формуле E= σ/ε, где  σ — напряжение, равное силе, деленной на площадь ее приложения, а ε — упругая деформация, эквивалентная отношению удлинения образца с начала деформации и сжатию после ее прекращения.

Модуль сдвига (G или μ): способность сопротивляться деформации при сохранении объема, когда направление нагрузок производится по касательной. Например, при ударе по шляпке гвоздя, если он был произведен не под прямым углом, изделие искривляется. В сопромате величину используют для вычисления сдвигов и кручения.

Модуль объемной упругости или объемного сжатия (К): изменения, вызванные действием всестороннего напряжения, например, гидростатического давления.

Коэффициент Пуансона (Ⅴ или μ): отношение поперечного сжатия к продольному удлинению, вычисляется для образцов материалов. У абсолютно хрупких веществ он равен нулю.

Константа Ламе: энергия, провоцирующая возвращение в исходную форму, вычисляется через построение скалярных комбинаций.

Читайте также:  Как сделать широкополосный трансформатор

Модуль упругости материалов таблица

Модуль упругости стали соотносится с рядом других физических величин. Например, при проведении эксперимента на растяжение, важно учитывать предел прочности, превышение которого оборачивается разрушением детали.

  • Соотношение жесткости и пластичности;
  • Ударная вязкость;
  • Предел текучести;
  • Относительное сжатие и растяжение (продольное и поперечное);
  • Пределы прочности при ударных, динамических и др. нагрузках.

Применение ряда подходов обусловлено требованиями к механическим свойствам материалов в разных отраслях промышленности, строительства, приборостроения.

Модуль упругости разных марок стали

Наибольшей способностью противостоять деформации обладают рессорно-пружинистые стальные сплавы. Эти материалы характеризуются высоким пределом текучести. Величина показывает напряжение, при котором деформация растет без внешних воздействий, например при сгибании и скручивании.

Характеристики упругости стали зависят от легирующих элементов и строения кристаллической решетки. Углерод придает стальному сплаву твердость, однако в высоких концентрациях снижается пластичность и пружинистость. Основные легирующие добавки, повышающие упругие свойства: кремний, марганец, никель, вольфрам.

Нередко, нужных показателей можно достичь лишь с помощью специальных режимов термообработки. Таким образом все фрагменты детали будут иметь единые показатели текучести, а слабые участки будут исключены.

В противном случае изделие может надломиться, лопнуть или растрескаться.

Марки 60Г и 65Г обладают такими характеристиками, как сопротивление разрыву, вязкость, стойкость к износу, они применяются для изготовления промышленных пружин и музыкальных струн.

В металлургической промышленности создано несколько сотен марок стали с разными модулями упругости. В таблице приведены характеристики популярных сплавов.

Модуль упругости материалов таблица

Таблица модулей прочности марок стали

Наименование стали Модуль упругости Юнга, 10¹²·Па Модуль сдвигаG, 10¹²·Па Модуль объемной упругости, 10¹²·Па Коэффициент Пуассона, 10¹²·Па
Сталь низкоуглеродистая 165…180 87…91 45…49 154…168
Сталь 3 179…189 93…102 49…52 164…172
Сталь 30 194…205 105…108 72…77 182…184
Сталь 45 211…223 115…130 76…81 192…197
Сталь 40Х 240…260 118…125 84…87 210…218
65Г 235…275 112…124 81…85 208…214
Х12МФ 310…320 143…150 94…98 285…290
9ХС, ХВГ 275…302 135…145 87…92 264…270
4Х5МФС 305…315 147…160 96…100 291…295
3Х3М3Ф 285…310 135…150 92…97 268…273
Р6М5 305…320 147…151 98…102 294…300
Р9 320…330 155…162 104…110 301…312
Р18 325…340 140…149 105…108 308…318
Р12МФ5 297…310 147…152 98…102 276…280
У7, У8 302…315 154…160 100…106 286…294
У9, У10 320…330 160…165 104…112 305…311
У11 325…340 162…170 98…104 306…314
У12, У13 310…315 155…160 99…106 298…304

Модуль упругости для металлов и сплавов

Наименование материала Значение модуля упругости, 10¹²·Па
Алюминий 65—72
Дюралюминий 69—76
Железо, содержание углерода менее 0,08 % 165—186
Латунь 88—99
Медь (Cu, 99 %) 107—110
Никель 200—210
Олово 32—38
Свинец 14—19
Серебро 78—84
Серый чугун 110—130
Сталь 190—210
Стекло 65—72
Титан 112—120
Хром 300—310

Упругость сталей

Наименование стали Значение модуля упругости, 10¹²·Па
Сталь низкоуглеродистая 165—180
Сталь 3 179—189
Сталь 30 194—205
Сталь 45 211—223
Сталь 40Х 240—260
65Г 235—275
Х12МФ 310—320
9ХС, ХВГ 275—302
4Х5МФС 305—315
3Х3М3Ф 285—310
Р6М5 305—320
Р9 320—330
Р18 325—340
Р12МФ5 297—310
У7, У8 302—315
У9, У10 320—330
У11 325—340
У12, У13 310—315

Предел прочности

Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:

  • Продолжительное применение деформирующего усилия;
  • Кратковременные и длительные ударные воздействия;
  • Растяжение и сжатие;
  • Гидравлическое давление и др.

В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.

Оцените нашу статью

Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)

  • Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.
  • Модуль Юнга или модуль продольной упругости в дин/см2.
  • Модуль сдвига или модуль кручения G в дин/см2.
  • Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.
  • Объем сжимаемости k=1/K/.
  • Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.
  • Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:
  • G = E / 2(1 + μ)  —  (α)
  • μ = (E / 2G) — 1   —  (b) 
  • K = E / 3(1 — 2μ)  —  (c) 

Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.

Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона

Курсивом даны значения, вычисленные из соотношений (a), (b), (c).

Материал при 18°С Модуль Юнга E, 1011 дин/см2. Модуль сдвига G, 1011 дин/см2. Коэффициент Пуассона µ Модуль объемной упругости К, 1011 дин/см2.
Алюминий 7,05 2,62 0,345 7,58
Висмут 3,19 1,20 0,330 3,13
Железо 21,2 8,2 0,29 16,9
Золото 7,8 2,7 0,44 21,7
Кадмий 4,99 1,92 0,300 4,16
Медь 12,98 4,833 0,343 13,76
Никель 20,4 7,9 0,280 16,1
Платина 16,8 6,1 0,377 22,8
Свинец 1,62 0,562 0,441 4,6
Серебро 8,27 3,03 0,367 10,4
Титан 11,6 4,38 0,32 10,7
Цинк 9,0 3,6 0,25 6,0
Сталь (1% С) 1) 21,0 8,10 0,293 16,88
(мягкая) 21,0 8,12 0,291 16,78
Константан 2) 16,3 6,11 0,327 15,7
Манганин 12,4 4,65 0,334 12,4
1) Для стали, содержащий около 1% С, упругие константы, как известно , меняются при термообработке. 2) 60% Cu, 40% Ni.

Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам. 

Вещество Модуль Юнга E, 1011 дин/см2. Модуль сдвига G, 1011 дин/см2. Коэффициент Пуассона µ Модуль объемной упругости К, 1011 дин/см2.
Бронза (66% Cu) -9,7-10,2 3,3-3,7 0,34-0,40 11,2
Медь 10,5-13,0 3,5-4,9 0,34 13,8
Нейзильбер1) 11,6 4,3-4,7 0,37
Стекло 5,1-7,1 3,1 0,17-0,32 3,75
Стекло иенское крон 6,5-7,8 2,6-3,2 0,20-0,27 4,0-5,9
Стекло иенское флинт 5,0-6,0 2,0-2,5 0,22-0,26 3,6-3,8
Железо сварочное 19-20 7,7-8,3 0,29 16,9
Чугун 10-13 3,5-5,3 0,23-0,31 9,6
Магний 4,25 1,63 0,30
Бронза фосфористая2) 12,0 4,36 0,38
Платиноид3) 13,6 3,6 0,37
Кварцевые нити (плав.) 7,3 3,1 0,17 3,7
Резина мягкая вулканизированная 0,00015-0,0005 0,00005-0,00015 0,46-0,49
Сталь 20-21 7,9-8,9 0,25-0,33 16,8
Цинк 8,7 3,8 0,21
  1. 1) 60% Cu, 15% Ni, 25% Zn
  2. 2) 92,5% Cu, 7% Sn, 0,5% P
  3. 3) Нейзильбер с небольшим количеством вольфрама.
Вещество Модуль Юнга E, 1011 дин/см2. Вещество Модуль Юнга E, 1011 дин/см2.
Цинк (чистый) 9,0 Дуб 1,3
Иридий 52,0 Сосна 0,9
Родий 29,0 Красное дерево 0,88
Тантал 18,6 Цирконий 7,4
Инвар 17,6 Титан 10,5-11,0
Сплав 90% Pt, 10% Ir 21,0 Кальций 2,0-2,5
Дюралюминий 7,1 Свинец 0,7-1,6
Шелковые нити1 0,65 Тиковое дерево 1,66
Паутина2 0,3 Серебро 7,1-8,3
Кетгут 0,32 Пластмассы:
Лед (-20С) 0,28 Термопластичные 0,14-0,28
Кварц 7,3 Термореактивные 0,35-1,1
Мрамор 3,0-4,0 Вольфрам 41,1
1) Быстро уменьшается с увеличением нагрузки 2) Обнаруживает заметную упругую усталость
Читайте также:  Бессемеровский процесс производства стали
Температурный коэффициент (при 150С) Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15)) Сжимаемость k, бар-1 (при 7-110С)
ɑ, для Е ɑ, для G
Алюминий 4,8*10-4 5,2*10-4 Алюминий 1,36*10-6
Латунь 3,7*10-4 4,6*10-4 Медь 0,73*10-6
Золото 4,8*10-4 3,3*10-4 Золото 0,61*10-6
Железо 2,3*10-4 2,8*10-4 Свинец 2,1*10-6
Сталь 2,4*10-4 2,6*10-4 Магний 2,8*10-6
Платина 0,98*10-4 1,0*10-4 Платина 0,36*10-6
Серебро 7,5*10-4 4,5*10-4 Стекло флинт 3,0*10-6
Олово 5,9*10-4 Стекло немецкое 2,57*10-6
Медь 3,0*10-4 3,1*10-4 Сталь 0,59*10-6
Нейзильбер 6,5*10-4
Фосфористая бронза 3,0*10-4
Кварцевые нити -1,5*10-4 -1,1*10-4

Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица). Таблица модуль упругости материалов таблица

Модуль упругости для стали, а также для других материалов

Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.

Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу — стали. Также будут рассмотрены эти показатели у других материалов, ради примера.

Модуль упругости — что это?

Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

  • Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
  • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
  • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
  • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя.

Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему.

Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.

После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.

Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:

  • Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
  • Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
  • Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
  • Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
  • Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
  • Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
  • И напоследок коэффициент Пуассона для стали равен значению 0,3

Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

Сталь и несколько разных её марок

Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному.

Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов.

Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.

Кстати, если не выражать все значения числовыми отношениями, а взять сразу и посчитать полностью, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.

Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.

Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения.

Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода.

Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]