Общая погрешность измерения микрометром находится в пределах

Общая погрешность измерения микрометром находится в пределах

  • ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
  • МИКРОМЕТРЫ
  • ТЕХНИЧЕСКИЕ УСЛОВИЯ
  • ГОСТ 6507-90 (СТ СЭВ 344-76÷СТ СЭВ 352-76, СТ СЭВ 4134-83)
  • ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
  • Москва
  • ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
  1. МИКРОМЕТРЫ
  2. Технические условия
  3. Micrometers . Specifications
  • ГОСТ 6507-90
  • ( СТ СЭВ 344-76÷
  • СТ СЭВ 352-76,
  • СТ СЭВ 4134-83)

Дата введения 01.01.91

Настоящий стандарт распространяется на микрометры с ценой деления 0,01 и 0, 001 мм.

Требования настоящего стандарта являются обязательными.

(Измененная редакция, Изм. №1).

1. типы. основные параметры и размеры

1.1. Микрометры должны быть изготовлены следующих типов:

  1. МК — гладкие для измерения наружных размеров изделий (черт. 1);
  2. МЛ — листовые с циферблатом для измерения толщины листов и лент (черт. 2);
  3. МТ — трубные для измерения толщины стенок труб (черт. 3);
  4. МЗ — зубомерные для измерения длины общей нормали зубчатых колес с модулем от 1 мм (черт. 4);
  5. МГ — микрометрические головки для измерения перемещения (черт. 5);

МП — микрометры для измерения толщины проволоки (черт. 6).

Примечание . Наименьший внутренний диаметр труб, измеряемых микрометром типа МТ, должен быть 8 или 12 мм.

Тип МК

Общая погрешность измерения микрометром находится в пределах

  • 1 — скоба; 2 — пятка; 3 — микрометрический винт; 4 — стопор; 5 — стебель; 6 — барабан; 7 — трещотка (фрикцион)
  • Черт 1
  • Тип МЛ

Общая погрешность измерения микрометром находится в пределах

  1. 1 — скоба; 2 — пятка; 3 — микрометрический винт; 4 — стопор; 5 — стебель; 6 — барабан; 7 — трещотка (фрикцион); 8 — циферблат; 9 — стрелка
  2. Черт. 2
  3. Тип МТ

Общая погрешность измерения микрометром находится в пределах

  • 1 — скоба; 2 — пятка; 3 — микрометрический винт; 4 — стопор; 5 — стебель; 6 — барабан; 7 — трещотка (фрикцион)
  • Черт. 3
  • Тип МЗ

Общая погрешность измерения микрометром находится в пределах

  1. 1 — скоба; 2 — пятка; 3 — измерительная губка; 4 — микрометрический винт; 5 — стопор; 6 — стебель; 7 — барабан; 8 — трещотка (фрикцион)
  2. Черт. 4
  3. Тип МГ

Общая погрешность измерения микрометром находится в пределах

  • 1 — микрометрический винт; 2 — стебель; 3 — барабан; 4 — трещотка (фрикцион)
  • Черт. 5
  • Тип МП

Общая погрешность измерения микрометром находится в пределах

1 — корпус; 2 — микрометрический винт; 3 — стебель; 4 — барабан; 5 — трещотка (фрикцион)

Черт. 6

1.2. Микрометры следует изготовлять:

— с ценой деления 0,01 мм — при отсчете показаний по шкалам стебля и барабана (черт. 1- 6);

— со значением отсчета по нониусу 0,001 мм — при отсчете показаний по шкалам стебля и барабана с нониусом (черт. 7 и 8);

— с шагом дискретности 0,001 мм — при отсчете показаний по электронному цифровому отсчетному устройству и шкалам стебля и барабана (черт. 9).

(Измененная редакция, Изм. №1).

Общая погрешность измерения микрометром находится в пределах

1 — стебель; 2 — нониус, 3 — барабан; 4 — цифровое отсчетное устройство

Черт. 7

Общая погрешность измерения микрометром находится в пределах

1 — стебель; 2 — нониус, 3 — барабан

Черт. 8

Общая погрешность измерения микрометром находится в пределах

1 — стебель; 2 — барабан; 3 — электронное цифровое отсчетное устройство

Черт. 9

Примечание. Черт. 1- 9 не определяют конструкции микрометров.

1.3. Основные параметры, размеры и классы точности микрометров должны соответствовать установленным в табл. 1.

Таблица 1

мм

Тип микрометра Диапазон измерений микрометра с отсчетом показаний Шаг микрометрического винта Измерительное перемещение микровинта
по шкалам стебля и барабана классов точности по шкалам стебля и барабана с нониусом по электронному цифровому устройству классов точности
1 2 1 2
мк 0-25; 25-50; 50-75; 75-100 0,5 25
  1. 100-125; 125-150;
  2. 150-175; 175-200;
  3. 200-225; 225-250;
  4. 250-275; 275-300
  • 300-400;
  • 400-500;
  • 500-600
мл 0-5 1,0 5
0-10 10
0-25 25
МТ 0-25 0,5 25
МЗ 0-25; 25-50; 50-75; 75-100
МГ 0-15 15
0-25 25
0-50 50
МП 0-10 10

1.4. Диаметр гладкой части микрометрического винта должен быть 6 h 9, 6,5 h 9 или 8 h 9.

На концах микрометрического винта и пятки на длине до 4 мм допускается уменьшение диаметра, но не более чем на 0,1 мм.

1.5. Электрическое питание микрометров с электронным цифровым отсчетным устройством должно быть от встроенного источника питания.

  1. Электрическое питание микрометров, имеющих вывод результатов измерений на внешние устройства, — от встроенного источника питания и (или) от сети общего назначения через блок питания.
  2. Пример условного обозначения гладкого микрометра с диапазоном измерения 25-50 мм 1-го класса точности:
  3. Микрометр МК50-1 ГОСТ 6507-90
  4. То же, микрометрической головки с нониусом с диапазоном измерения 0-25 мм :
  5. Микрометр МГ Н25 ГОСТ 6507-90
  6. То же, гладкого микрометра с электронным цифровым отсчетным устройством с диапазоном измерения 50-75 мм :
  7. Микрометр МК Ц75 ГОСТ 6507-90

1.4, 1.5 . (Измененная редакция, Изм. №1).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Характеристики

2.1.1. Общие требования

2.1.1.1. Микрометры изготовляют в соответствии с требованиями настоящего стандарта по конструкторской документации, утвержденной в установленном порядке.

2.1.1.2. Измерительное усилие для микрометров типов МЛ , МТ и МЗ должно быть не менее 3 и не более 7 Н, а для микрометров остальных типов — не менее 5 и не более 10 Н.

Колебание измерительного усилия для микрометров всех типов не должно превышать 2 Н.

2.1.1.3. Предел допускаемой погрешности микрометра в любой точке диапазона измерений при нормируемом измерительном усилии и температуре, не превышающей значений, установленных в табл. 2 , а также допускаемое изменение показаний микрометра от изгиба скобы при усилии 10 Н, направленном по оси винта, должны соответствовать установленным в табл. 3 .

Таблица 2

Верхний предел измерений микрометра, мм Допускаемое отклонение температуры от 20 ºС, ºС
До 150 ±4
Св. 150 » 500 ±3
»500 » 600 ±2

2.1.1.4. Для микрометров, имеющих плоские измерительные поверхности (типы МК и МЗ), допуск параллельности измерительных поверхностей должен соответствовать установленному в табл. 4 .

На расстоянии до 0,5 мм от краев измерительных поверхностей допускаются завалы.

2.1.1.5. Допуск плоскостности плоских измерительных поверхностей микрометра должен соответствовать установленному в табл. 5.

Таблица 3

мкм

Тип микрометра Верхний предел измерений микрометра, мм Предел допускаемой погрешности микрометра с отсчетом показаний Допускаемое изменение показаний микрометра от изгиба скобы при усилии 10 Н
по шкалам стебля и барабана классов точности по шкалам стебля и барабана с нониусом по электронному цифровому устройству классов точности
1 2 1 2
мк 25 ±2,0 ±4,0 ±2,0 ±2,0 ±4,0 2,0
50 ±2,5
75 ±3,0 3,0
100 ±3,0
125; 150 ±3,0 ±5,0 4,0
175; 200 5,0
225; 250; 275; 300 ±4,0 ±6,0 ±4,0 6,0
400 ±5,0 ±8,0 8,0
500 10,0
600 ±6,0 ±10,0 12,0
мл 5; 10; 25 ±4,0 ±2,0 ±2,0 ±4,0 2,0
мт 25 ±2,0
мз 25 ±4,0 ±5,0 ±3,0 ±5,0
50 ±3,0
75 3,0
100
мг 15; 25 ±1,5 ±3,0 ±2,0 ±2,0 ±3,0
50 ±4,0
МП 10 ±2,0 ±2,0 ±2,0 ±4,0 2,0

Примечания:

1. Погрешность микрометров типов МК, МЛ, МТ и МП определяют по мерам с плоскими измерительными поверхностями.

2. Погрешность микрометра типа МЗ определяют по мерам с цилиндрическими измерительными поверхностями, установленными на расстоянии 2-3 мм от края измерительных поверхностей микрометра.

Таблица 4

Тип микрометра Верхний предел измерений микрометра, мм Допуск параллельности плоских измерительных поверхностей микрометра, мкм, классов точности
1 2
МК 25 1,5 2,0
50 2,0
75; 100 3,0 3,0
125; 150; 175; 200 4,0
225; 250 4,0 6,0
275; 300; 400 5,0 8,0
500 7,0 10,0
600 12,0
МЗ 25; 50 2,0 2,0
75; 100 3,0 3,0

Таблица 5

Тип микрометра Допуск плоскостности измерительных поверхностей микрометра, мкм, классов точности
1 2
МК, МЛ, МТ, МГ, МП 0,6 0,9
МЗ 0,9

Примечание к табл. 4 и 5. Для микрометров с нониусом допуски параллельности и плоскостности измерительных поверхностей должны соответствовать нормам класса точности 1.

2.1.1.6. Микрометр и микрометрическая головка с электронным цифровым отсчетным устройством должны обеспечивать:

  • 1) выдачу цифровой информации в прямом коде (с указанием знака и абсолютного значения);
  • 2) установку начала отсчета в абсолютной системе координат;
  • 3) запоминание результата измерения;
  • 4) гашение памяти с восстановлением текущего результата измерения.

2.1.1.7. Измерительные поверхности микрометров типов МК, МЛ, МТ, МГ и МП должны быть оснащены твердым сплавом по ГОСТ 3882.

Измерительные поверхности микрометра типа МЗ, а по требованию потребителя и микрометра типа МТ изготовляют закаленными. Твердость закаленных измерительных поверхностей из высоколегированной стали должна быть не ниже 51 HRC э , из углеродистой качественной конструкционной и инструментальной высококачественной сталей — не ниже 61 HRC э .

Читайте также:  Как обрезать защитное стекло на телефон

2.1.1.8. На измерительных поверхностях микрометра, оснащенного твердым сплавом, не допускается наличие пор более 120 мкм по ширине. Степень пористости не должна быть выше 0,4 % по ГОСТ 9391.

2.1.1.9. Параметр шероховатости измерительных поверхностей микрометра — Ra 0,08 мкм по ГОСТ 2789 .

2.1.1.10. Микрометр должен иметь трещотку (фрикцион) или другое устройство, обеспечивающее измерительное усилие в заданных пределах.

Микрометр – измерительный прибор с бескомпромиссной точностью

Общая погрешность измерения микрометром находится в пределах

Название микрометра пошло от единицы измерения, которая была взята за основу при проведении замеров этим прибором. В метрической системе мер значение микрона равно одной миллионной доли метра (толщина человеческого волоса равна примерно 40 микронам). В конце XX века эта единица измерения была отменена, и сегодня ею практически не пользуются, а название прибора осталось и оно говорит само за себя – микрометр измеряет с высокой точностью очень мелкие детали.

Где же может пригодиться такой измерительный инструмент? Везде, где требуется получить максимально точные измерения. Его используют в машиностроении, слесарном, токарном и авторемонтном деле.

С его помощью можно измерять толщину листов, проводов, проволоки, деталей, стенок цилиндрических элементов, длину уступов, глубину пазов и многое другое.

Уже более 100 лет он является незаменимым измерительным прибором на производстве и в частных мастерских.

Отличная альтернатива линейке

Способы линейных измерений всегда заботили людей. Когда более 4000 лет назад перед человеком встал вопрос проведения измерений изделий, подручным средством стала примитивная линейка. Долгие годы именно она использовалась при необходимости линейных измерений в мастерских и строительстве.

В 1570 году в устройстве пушечного механизма была использована микропара «винт-гайка», а в 1848 году это изобретение было взято за основу создания первого микрометра, который создал Жан Пальмер. Фамилия французского ученого легла в основу названия этого устройства – микрометр еще называют «пальмером».

В 1877 году американской фирмой «Браун и Шарп» устройство микрометра Пальмера было усовершенствовано и вскоре открылось серийное производство этих инструментов. Точность измерений до 0,01 мм – это большой прорыв для промышленности XIX века, который был возможен благодаря появлению микрометра.

В том виде, в котором выпускались эти измерительные приборы, они сохранились и до наших дней.

Общая погрешность измерения микрометром находится в пределах

Устройство состоит из D-образной скобы, с одной стороны которой находится пятка, а с другой – шпиндель и микрометрический винт с гайкой. Деталь помещается в пространство между пяткой и шпинделем, зажимается между ними при вращении винта и фиксируется гайкой.

Устройство имеет две шкалы делений: главная находится на «стебле» (как правило, цена деления микрометра на ней составляет 0,5 или 1 мм), а вторая – расположена в виде насечек по кругу барабана (50 или 100 насечек). Полные обороты винта отсчитывают по главной шкале, а доли оборота – по круговой.

Таким образом, удается определить значение толщины детали с точностью в 0,01 или 0,001 мм. Точность микрометра в 10 раз может превосходить точность измерений штангенциркуля и в 100 раз – обычной линейки.

Это позволяет использовать его для получения размеров мелких деталей, которые используются в механизмах, автомобильных двигателях и других изделиях, где все элементы строго подгоняются под установленный размер.

Современные разновидности микрометров

Технический прогресс заставляет предприятия следовать все более жестким нормативам изготовления деталей, а значит и средства измерений тоже должны идти в ногу со временем. Поэтому сегодня классическое устройство микрометра дополняется и всячески усовершенствуется, чтобы этот инструмент соответствовал самым строгим требованиям и позволял проводить максимально точные измерения.

Общая погрешность измерения микрометром находится в пределах

В конструкции появился такой элемент, как трещотка. Она расположена на конце рукоятки и позволяет точно контролировать необходимое давление на винт при проведении измерений.

Ведь при соприкосновении детали со шпинделем возникает усилие и если оно будет слишком сильным, то это может сказаться на точности измерений. Трещотка позволяет избежать этого – ее вращают до тех пор, пока шпиндель не соприкоснется с деталью настолько, чтобы давление не превысило допустимое.

Характерные щелчки трещотки говорят о том, что достигнуто правильное положение измерительных плоскостей относительно шпинделя и пятки и вращение следует прекратить.

Трещотка присутствует практически во всех современных микрометрах, модификаций которых существует очень много, например, трубные, проволочные, листовые, призматические, канавочные и т.д. Мы же перечислим основные виды, которые наиболее широко применяются в различных отраслях производства.

Название Особенности
Общая погрешность измерения микрометром находится в пределах Этот инструмент максимально приближен к классическому устройству микрометра. В основе лежит винтовая пара, а измерительные поверхности пятки и шпинделя отполированы до зеркального блеска, что обеспечивает плотное соприкосновение с деталью и позволяет получить точные замеры. Результат измерений нужно смотреть на шкале насечек: с ценой деления в 0,5 или 1 мм на «стебле» микрометра и обычно в 0,01 мм – на барабане.
Общая погрешность измерения микрометром находится в пределах В отличие от обычного прибора, этот имеет подвижную пятку, которая при перемещении вдоль оси воздействует на рычаг. Это приводит в действие зубчатый механизм микрометра, и поступательное движение преобразуется во вращательное. В конструкции предусмотрено механическое табло со шкалой делений и стрелкой – при достаточном усилии зажима детали стрелка показывает результат измерений с точностью до 0,01 мм.
Общая погрешность измерения микрометром находится в пределах В отличие от предыдущих двух видов, такой микрометр оснащен электронным цифровым табло, на которое выводятся значения измерений. Благодаря кнопочному управлению, можно выставить значение на нуль одним нажатием, у некоторых моделей предусмотрен выбор единиц измерений между метрической и дюймовой системой мер. Измерения проводятся с точностью до 0,001 мм. Работают такие устройства на батарейках.

Механические и рычажные микрометры используются как при серийном, так и при штучном производстве, также они часто применяются в автослесарных и ремонтных мастерских. С их помощью можно провести точные замеры при замене износившихся деталей и элементов механизмов.

А вот на поточном производстве оборудования или электротехнических товаров, когда необходимо измерять не только толщину деталей, но и, например, сечение проводников, необходимы более точные измерения, поэтому там используют цифровые модели микрометров.

Чем еще руководствоваться при выборе, расскажем далее.

Знание основных параметров – залог правильного выбора

Чтобы убедиться в том, что микрометр действительно подходит под специфику Вашей деятельности и во время измерений не возникнет никаких сложностей, при выборе нужно учесть несколько важных характеристик.

Диапазон измерений. От этого параметра зависит то, какие по толщине детали Вы сможете поместить между шпинделем и пяткой и, следовательно, сделать замер. У разных моделей диапазон может быть, например, в пределах от 0 до 25 мм или от 100 до 125 мм. Выбор следует делать, исходя из того, с какими деталями Вам предстоит работать чаще всего.

Точность измерений зависит от шага резьбы у микрометрического винта. Шаг резьбы равен цене делений на «стебле».

Точность измерений (или как еще говорят — величина отсчета) будет равна значению, полученному при делении значения шага резьбы на количество делений шкалы барабана.

Например, если шаг резьбы составляет 0,5 мм, а количество насечек на круговой шкале равно 50, то с помощью такого микрометра можно получать данные с точностью до 0,01 мм. Более точными являются модели с показателем величины отсчета в 0,001 мм.

Важно знать. При работе в различных температурных условиях и при измерении деталей разной величины допустимы отклонения от указанного показателя.

Значение погрешности устанавливается на заводе производителем, когда осуществляется поверка микрометров (должен прилагаться подтверждающий документ).

У разных изделий значение отклонения может составлять от 0,002 до 0,03 мм (в зависимости от вида и модели). Если же погрешность микрометра превышает это значение, необходимо сделать калибровку.

Будьте уверены, этот прибор поможет сэкономить время, силы и материальные затраты. Ведь он позволяет легко получить точные измерения, что исключает риск выпуска бракованных деталей и изделий.

А купить микрометр, подходящий для Ваших работ, Вы можете прямо сейчас в нашем интернет-магазине.

В ассортименте представлены модели таких производителей как Legioner, MATRIX, Энкор, Вы можете выбрать как механический, так и цифровой прибор. Не откладывайте покупку – работайте с качественным измерительным инструментом!

Читайте также:  Отверстие под резьбу м27

Прогрешность при измерении микрометром

Суммарная погрешность измерения с помощью микрометра состоит из следующих составляющих:

  • погрешностей микрометрической головки;
  • отклонения от плоскостности и от параллельности плоских измерительных поверхностей винта и пятки (при различных углах поворота микрометрического винта и при его стопорении). При эксплуатации микрометров отклонения от параллельности измерительных поверхностей винта и пятки приводят к различной погрешности для разных форм измеряемых деталей (плоских, цилиндрических, сферических). Также различными будут деформации этих деталей под действием измерительного усилия;
  • деформации скобы микрометра под действием измерительного усилия;
  • погрешности установочных мер;
  • существенной составляющей погрешности измерения микрометрами (особенно микрометрами больших размеров) является температурная погрешность, вызываемая как разностью температур измеряемой детали и микрометра, так и нагревом микрометра, а иногда и контролируемой детали, теплом рук контролера (для уменьшения последней погрешности в микрометрах для измерения размеров свыше 50 мм предусмотрены теплозащитные накладки);
  • погрешность, возникающая у электронных микрометров из-за ошибок емкостного преобразователя.

Пределы допускаемой погрешности микрометров приведены в Таблице 1. Указанные значения погрешностей установлены в зависимости от диапазона измерений.

Предел допускаемой погрешности микрометрической головки (при выпуске ее в качестве отдельного изделия) оговорен ГОСТ 6507-78 «Микрометры с ценой деления 0,01 мм. Технические условия» в виде предельной погрешности δ = ±4 мкм.

Правильно было бы нормировать погрешность расстояний между двумя любыми точками — амплитудную погрешность, как это предусмотрено рекомендациями ИСО 3611-1978, так как механизм головки при установке барабана на нуль может занимать различные положения и при этом значение погрешности в каждой отдельной точке будет зависеть от положения нулевой точки.

Предельно допустимая погрешность G микрометра в любой точке диапазона измерений (25 мм) указана в Таблице 1.

Таблица 1

Диапазон измерения,мм Предельно допустимая погрешность G,мкм Отклонение от параллельности и плоскостности винта и пятки,мкм
0 – 50 4 2
50 – 100 5 2
100 – 150 6 3
150 – 200 7 4
200 – 250 8 4
250 – 300 9 5
300 – 350 10 5
350 – 400 11 6
400 – 450 12 6
450 – 500 13 7

Указанная в таблице предельно допустимая погрешность G включает в себя погрешность микрометрической головки, погрешность от прогиба скобы микрометра и погрешность от неровностей и непараллельности измерительных поверхностей.

Проверка и калибровка микрометров

Калибровку и поверку микрометров осуществляют с помощью концевых мер длины в нескольких точках в диапазоне измерений согласно ISO 3611:2010, DIN 863 и ГОСТ 6207-90. Концевые меры подбирают таким образом, чтобы была возможность предельную погрешность измерения G микрометра во всех точках диапазона измерения.

Например, рекомендуемые размеры концевых мер длины для проверки микрометров – 3,1; 6,5; 9,7; 12,5; 15,8; 19,0; 21,9 и 25 мм.

Для проверки отклонений плоскостности и непараллельности измерительных поверхностей микрометра (торца винта и пятки) необходимо три или четыре плоскопараллельных оптических стеклянных пластины с градацией по высоте в 1/4 или 1/3 шага микровинта (0,5 мм).

Это обеспечивает проверку с трех или четырех положениях при полном повороте микровинта. Для проверки пластину устанавливают между пяткой и торцом винта. Аккуратно перемещая пластину между измеряемыми поверхностями, определяют наименьшее количество интерференционных колец или полос на одной измерительной поверхности.

К этому числу прибавляют количество колец или полос на другой измерительной поверхности.

  • При длине волны света примерно 640 нм ширина одной интерференционной полосы составляет 320 нм(0,32 мкм).
  • ***
  • Микрометрический глубиномер

Микрометрический глубиномер состоит из базирующей опоры, в которой закреплен микровинт с диапазоном измерения 25 мм, и сменных измерительных вставок разной длины. Общий предел измерения глубиномера до 300 мм. Глубиномеры также как и микрометры выпускаются с механической шкалой и с электронным цифровым отсчетом.

Цена деления глубиномера – 0,01 мм. Отклонение от плоскостности базирующей опоры – 2 мкм. Допуск длины измерительных вставок ±(2 + L/75), где L – длина вставки.

Погрешность измерения с самой маленькой вставкой – 5 мкм.

Дата добавления: 2018-02-28; просмотров: 880; Мы поможем в написании вашей работы!

Общая погрешность измерения микрометром находится в пределах Мы поможем в написании ваших работ!

Микрометры: разновидности, назначение, технические характеристики

Микрометром называют универсальный прибор, который предназначен для измерения линейных размеров деталей и узлов контактным (относительным или абсолютным) методом.

Он характеризуется малой областью исследуемых диапазонов и низкой погрешностью в пределах 2–50 мкм, которая зависит от класса точности и исследуемых диапазонов.

Преобразовательным механизмом инструмента выступают микропара винт и гайка.

Виды микрометров и их назначение

Механические приборы этого типа изготавливаются по стандарту ГОСТ 6507-90. Микрометры разделены на несколько видов в зависимости от назначения:

  • гладкий. Серия МК. Самый распространенный класс, используемый для измерения охватываемых размеров деталей и изделий;
  • листовой. Серия МЛ. Он оснащен циферблатом и используется для замеров толщины металлических лент и листов;
  • трубный. Серия МТ. Имеет зауженную внешнюю часть. Используется для замеров толщины стенок труб;
  • проволочный. Серия МКД (МП). Прибор предназначен для измерения толщины проволоки, диаметра шариков, к примеру, подшипников;
  • зубомерный. Серия МЗ. Он применяется для определения длины общей нормали зубчатых колес с модулем > 1 мм;
  • микрометрическая головка. Серия МГ. Служат для измерения перемещения.

Приборами, описанными в ГОСТ, список не ограничивается, существуют, например, рычажные инструменты серии МР и МРИ, призматические виды серий МСИ, МПИ и МТИ, канавочные, резьбомерные, универсальные и прочие. Кроме того, по типу исполнения бывают ручные и настольные микрометры. Последние иногда комплектуются часовым отсчетным устройством и часто используются для измерения деталей с габаритами до 20 мм.

Как использовать микрометр

  Что можно сделать из болгарки: 5 крутых самоделок для дома

На рисунке выше представлено наименование основных узлов ручного микрометра.

Также существуют инструменты с приборной круговой и электронной шкалой, но что касается правил замера то они идентичны, а процесс определения результата там гораздо проще, чем на ручном микрометре, достаточно лишь зафиксировать результаты приборов.

Конструкцию и процесс применения микрометра вы можете изучить по представленному ниже видео.

Сама схема замера достаточно простая, но необходимо точно соблюдать последовательность чтобы не исказить конечный результат:

  • Установите замеряемую деталь между пяткой и микрометрическим винтом. Учтите, что максимальный ход винта составляет 25 мм. Поэтому размер детали не должен быть более чем на 25 мм меньше максимального расстояния между пяткой и винтом. Соответственно для микрометра М50 замеряемый размер должен быть не менее 25 мм.
  • Держите инструмент за изолированную часть дуги. Иначе возможен нагрев корпуса и искажение результата.
  • Понемногу вращайте барабан, пока винт не приблизится к поверхности замеряемой детали.
  • Далее вращаем трещотку до упора по часовой стрелке, держась за нарезку. Винт окончательно считается зафиксированным при характерном звуке проворачиваемой трещотки.
  • Фиксируем показатели верхней и нижней шкал на линейке, и круговой шкалы на барабане. Это необходимо для дальнейшего определения размера.

Основные технические характеристики микрометров

При выборе прибора нужно обращать внимание не только на тип назначения, но и на ряд важных параметров:

  • диапазон измерений. Это важнейший параметр прибора. Из-за конструктивных особенностей для каждого небольшого диапазона измерений используется отдельный инструмент. Максимальное значение этого показателя — 3000 мм, минимальное — 0 мм;
  • класс точности. Он прямо влияет на предел возможной погрешности. Выделяют инструменты первого и второго класса;
  • масса и габариты. Для ручных инструментов эти параметры влияют на мобильность и удобство эксплуатации;

допуск плоскостности и параллельности измеряемых поверхностей, измерительное усилие, допускаемое отклонение от изгиба скобы при предельном измерительном усилии и т. д.

Цена прибора зависит от его назначения и исполнения, комплектации, наличия поверки, класса точности и диапазона измерений.

Методика измерений микрометром гладким

Для получения точного размера измеряемое изделие необходимо разместить и неподвижно зафиксировать с помощью трещотки между пяткой и винтом.

При этом нельзя измерять грубо обработанные поверхности покрытые слоем ржавчины, металлической пыли или окалины. Не следует работать и с нагретыми деталями, из-за температурного расширения вы не получите точный результат.

Читайте также:  Назначение максимальной токовой защиты

Трещотку барабана необходимо вращать медленно и аккуратно. Показание с микрометра снимаются в следующем порядке:

  • шкала стебля с точностью 1 мм,
  • шкала с точностью 0,5 мм;
  • шкала барабана.

Три полученных результата складываются и получается точное значение.

Особенности электронных микрометров

Этот класс приборов называется так из-за наличия цифрового отсчетного устройства. Электронные микрометры обладают рядом достоинств:

  • выставление на ноль за одно нажатие кнопки;
  • переключение между метрической и дюймовой системами исчисления;
  • доступны относительные измерения за счет установки нуля в любой точке стандартного измерительного диапазона;
  • во многих моделях возможно подключение к ПК и передача результатов измерительных работ на персональный компьютер, например, через заданный интервал времени или по нажатию кнопки.

Электронные инструменты проще в освоении и эксплуатации.

Проверка точности микрометра и особенности измерений

Можно проверить настройки инструмента, закрутив барабан и трещотку до упора, до соприкосновения с пяткой или с установочной мерой для других приборов. На нулевом положении 0-е значение круговой шкалы должно совпадать с центральной меткой на стебле.

Для прибора М25 с пределом измерений 0 до 25 мм винт должен упереться в пятку. Для других приборов используются установочные меры равные минимальному значению показаний. Так, для М50 с пределом 25-50 используется установочная мера равная 25 мм. При неточном совпадении шкалы с меткой стебель можно подкрутить специальным ключом.

Поверка

осуществляется по документу МП 017-2017 «Микрометры МК, МК Ц, МЗ, МЛ, МТ, МГ. Методика поверки», утверждённому ФБУ «Кировский ЦСМ» 28 сентября 2021 г.

Основные средства поверки:

Меры длины концевые плоскопараллельные до 100 мм; 1-Н21, 2-Н21, 1-Н3, 1-Н4; регистрационный № 38376-13;

Меры длины концевые плоскопараллельные. Наборы № 8, 9, 22, 23, 24 классов точности 1, 2, 3 с номинальным значением длины до 1000 мм; 1-Н8; регистрационный № 21163-11.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) эксплуатационную документацию.

Микрометричный глубиномер

Этот прибор состоит из базовой основы, в ней зафиксирован микроболт с измерительными границами в 25 мм, также есть заменяемые измерительные вставки различной длины. Предельный показатель замеров – 300 мм.

Такие приборы так же, как МК, являются механическими, цифровыми устройствами.

Неточность замеров с минимальной вставкой – 5 мм.

Погрешность включает в себя:

  1. Неточность измерительного узла.
  2. Неточности плоскостности, параллельности винта с пяткой. Они возникают при поворотных углах, стопорении. Такой вид неточности бывает разным в разнообразных формах (круглых, плоских). Также есть неточности объектов при усилии во время замера.
  3. Изменение скобы вследствие усилия.
  4. Неправильность мер установки.
  5. Неточность вследствие действия температуры, она характерна для больших приборов.
  6. В электронных приборах может возникнуть неисправность электродеталей.

Погрешность допускается для головки, в случае если она выступает отдельным устройством, в пределах установленных ГОСТом 6507-90. Есть специальные системы с границами погрешностей для приборов, Они имеют показатели, зависящие от границ замеров. Сетка неточностей указывает на допускаемую ошибку G прибора в пункте границ замеров.

Эти граничные показатели состоят из неточности микрометрического узла, неточности от деформации скоб прибора, от бугристости, непараллельности замеряемых плоскостей.

Калибрование, настройку (поверку) микрометра выполняют, используя показатели концевых мер в нескольких пунктах границ замеров, соответственно, ISO 3611:2010, DIN 863, ГОСТ 6207-90.

Они берутся, чтобы узнать значение G, то есть предельную неточность устройства во всех пунктах диапазона замеров.

Вот стандартные, желательные параметры под концевые меры замеров, под настройку устройства: 3,1; 6,5; 9,7; 12,5; 15,8; 19,0; 21,9; 25 мм.

Технические требования

2.1. Характеристики

2.1.1. Общие требования

2.1.1.1. Микрометры изготовляют в соответствии с требованиями настоящего стандарта по конструкторской документации, утвержденной в установленном порядке.

  Конструирование зубчатых и червячных колес

2.1.1.2. Измерительное усилие для микрометров типов МЛ, МТ и МЗ должно быть не менее 3 и не более 7 Н, а для микрометров остальных типов — не менее 5 и не более 10 Н.

Колебание измерительного усилия для микрометров всех типов не должно превышать 2 Н.

2.1.1.3. Предел допускаемой погрешности микрометра в любой точке диапазона измерений при нормируемом измерительном усилии и температуре, не превышающей значений, установленных в табл.2, а также допускаемое изменение показаний микрометра от изгиба скобы при усилии 10 Н, направленном по оси винта, должны соответствовать установленным в табл.3.

Таблица 2

Верхний предел измерений микрометра, мм Допускаемое отклонение температуры от 20 °С, °С
До 150
Св. 150 » 500
» 500 » 600

±4

Таблица 3мкм

Тип микрометра Верхний предел измерений микрометра, мм Предел допускаемой погрешности микрометра с отсчетом показаний Допускаемое изменение показаний микрометра от изгиба скобы при усилии 10 Н
по шкалам стебля и барабана классов точности по шкалам стебля и барабана с нониусом по электронному цифровому устройству классов точности
1 2 1 2
МК 25 ±2,0 ±4,0 ±2,0 ±2,0 ±4,0 2,0
50 ±2,5
75 ±3,0 3,0
100 ±3,0
125; 150 ±3,0 ±5,0 4,0
175; 200 5,0
225; 250;275; 300 ±4,0 ±6,0 ±4,0 6,0
400 ±5,0 ±8,0 8,0
500 10,0
600 ±6,0 ±10,0 12,0
МЛ 5; 10; 25 ±4,0 ±2,0 ±2,0 ±4,0 2,0
МТ 25 ±2,0
МЗ 25 ±4,0 ±5,0 ±3,0 ±5,0
50 ±3,0
75 3,0
100
МГ 15; 25 ±1,5 ±3,0 ±2,0 ±2,0 ±3,0
50 ±4,0
МП 10 ±2,0 ±2,0 ±2,0 ±4,0 2,0

Примечания:

1. Погрешность микрометров типов МК, МЛ, МТ и МП определяют по мерам с плоскими измерительными поверхностями.

2. Погрешность микрометра типа МЗ определяют по мерам с цилиндрическими измерительными поверхностями, установленными на расстоянии 2-3 мм от края измерительных поверхностей микрометра.

2.1.1.4. Для микрометров, имеющих плоские измерительные поверхности (типы МК и МЗ), допуск параллельности измерительных поверхностей должен соответствовать установленному в табл.4.

Таблица 4

Тип микрометра Верхний предел измерений микрометра, мм Допуск параллельности плоских измерительных поверхностей микрометра, мкм, классов точности
1 2
МК 25 1,5 2,0
50 2,0
75; 100 3,0 3,0
125; 150; 175; 200 4,0
225; 250 4,0 6,0
275; 300; 400 5,0 8,0
500 7,0 10,0
600 12,0
МЗ 25; 50 2,0 2,0
75; 100 3,0 3,0

На расстоянии до 0,5 мм от краев измерительных поверхностей допускаются завалы.

2.1.1.5. Допуск плоскостности плоских измерительных поверхностей микрометра должен соответствовать установленному в табл.5.

Таблица 5

Тип микрометра Допуск плоскостности измерительных поверхностей микрометра, мкм, классов точности
1 2
МК, МЛ, МТ, МГ, МП 0,6 0,9
МЗ 0,9

Примечание к табл.4 и 5. Для микрометров с нониусом допуски параллельности и плоскостности измерительных поверхностей должны соответствовать нормам класса точности 1.

2.1.1.6. Микрометр и микрометрическая головка с электронным цифровым отсчетным устройством должны обеспечивать:

  • 1) выдачу цифровой информации в прямом коде (с указанием знака и абсолютного значения);
  • 2) установку начала отсчета в абсолютной системе координат;
  • 3) запоминание результата измерения;
  • 4) гашение памяти с восстановлением текущего результата измерения.

2.1.1.7. Измерительные поверхности микрометров типов МК, МЛ, МТ, МГ и МП должны быть оснащены твердым сплавом по ГОСТ 3882-74.

Измерительные поверхности микрометра типа МЗ, а по требованию потребителя и микрометра типа МТ изготовляют закаленными. Твердость закаленных измерительных поверхностей из высоколегированной стали должна быть не ниже 49,7 HRC, из углеродистой качественной конструкционной и инструментальной высококачественной сталей — не ниже 60 HRC.

2.1.1.8. На измерительных поверхностях микрометра, оснащенного твердым сплавом, не допускается наличие пор более 120 мкм по ширине. Степень пористости не должна быть выше 0,4% по ГОСТ 9391-80.

2.1.1.9. Параметр шероховатости измерительных поверхностей микрометра — Ra ≤ 0,08 мкм по ГОСТ 2789-73.

2.1.1.10. Микрометр должен иметь трещотку (фрикцион) или другое устройство, обеспечивающее измерительное усилие в заданных пределах.

Ссылка на основную публикацию
Adblock
detector