вашего сайта -->

Основные кристаллические решетки металлов

Металлы — один из самых распространенных веществ в материальной культуре человека.

Тысячелетиями медь, железо, серебро и золото были основным материалом для производства оружия, инструментов, ответственных частей транспорта и механизмов, деталей домашней утвари и украшений.

В XIX веке, с освоением технологии получения чугуна, металлы пришли в строительство и станкостроение. XX век был веком металлов.

Основные кристаллические решетки металлов

Металлы

В нашу жизнь вошли алюминий, титан, бор и многие более редкие металлы. Используя их, человечество шагнуло в небо, космос и глубины океана. Металлы сделали возможным массовое производство домашней бытовой техники.

В конце XX века пластмассы и композитные вещества ощутимо потеснили металлы с лидирующих позиций.

Основные характеристики металлов — прочность, упругость и пластичность определяются их физико-химическими свойствами и атомным строением.

Основные группы металлов в промышленности

Индустрия делит металлы на большие группы:

  • Черные.
  • Цветные легкие.
  • Цветные тяжелые.
  • Благородные.
  • Редкоземельные и щелочные.

Черные металлы

В эту группу входят железо, марганец, хром и их сплавы. Группа также включает в себя стали, чугуны и ферросплавы. Эти вещества обладают хорошей электропроводностью и уникальными магнитными характеристиками.

Основные кристаллические решетки металлов

Черные металлы

Черные металлы покрывают до 90% мировой потребности в металлоизделиях.

Легкие цветные металлы

Отличаются низкой плотностью. Группа включает в себя алюминий, титан, магний. Эти реже встречаются, чем железо, и обходятся дороже в добыче руды и в производстве. Они используются там, где малый вес изделия или детали окупает ее большую стоимость – в самолетостроении, производстве электроники, в коммуникационной индустрии.

Основные кристаллические решетки металлов

Легкие цветные металлы

Титан не вызывает отторжения со стороны иммунной системы и применяется в протезировании костной ткани.

Тяжелые цветные металлы

Это элементы с большим удельным весом, такие, как медь, олово, свинец, цинк и никель. Обладают хорошей электропроводностью.

Основные кристаллические решетки металловМедь
Основные кристаллические решетки металловОлово
Основные кристаллические решетки металловЦинк
Основные кристаллические решетки металловСвинец
Основные кристаллические решетки металловЧистый никель

Они широко используются как катализаторы реакций, в изготовлении электроматериалов, в электронике, на транспорте – везде, где требуются достаточно прочные, упругие и коррозионностойкие материалы.

Благородные металлы

В эту группу входят золото, серебро, платина, а также редко встречающееся рутений, родий, палладий, осмий, иридий. Они обладают наибольшим удельным весом, высокой коррозионной устойчивостью и высокой электрической и тепловой проводимостью.

Основные кристаллические решетки металловЗолото и платина
Основные кристаллические решетки металловСеребро

На заре человечества золото, серебро и платина применялись как универсальный платежный инструмент и как средство накопления богатств. С развитием цифровой экономики и переходом платежей в виртуальность важнее стаи их уникальные физические свойства

Редкоземельные и щелочные

К редкоземельным относятся скандий, иттрий, лантан и еще 15 редких элементов. Эти элементы отличаются значительным удельным весом, высокой химической активностью и применяются в высокотехнологичных отраслях.

Иттрий
Сканидий
Лантан

К щелочным относятся литий, калий, натрий и другие. Все они отличаются малым удельным весом и исключительной химической активностью и при реакции с водой образуют щелочи, широко применяемы в быту и промышленности в составе мыла и других моющих средств.

Щелочные металлы

Классификация металлов по химическому составу

Химические свойства чистых элементов определяются строением атомов реальных металлов и прежде всего их атомным числом, характеризующим их способность реагировать с водородом, кислородом и другими элементами. Химические характеристики реально применяемых металлов могут сильно отличаться от параметров чистого вещества как в лучшую, так и в худшую сторону.

Нежелательные добавки называют примесями, а те, что вносятся преднамеренно для изменения параметров в нужную сторону — легирующими присадками.

Общепризнанной является классификация, основанная на указании главного компонента сплава.

Атомно — кристаллическое строение металлов

Внутреннее строение металлов и их характеристики определяют их физико-химические свойства. Электроны на внешних орбитах атомов слабо связаны с ядром и имеют отрицательный заряд. При наличии разницы потенциалов электроны мигрируют к положительному полюсу, создавая электрический ток. Это физическое явление обуславливает электропроводность.

Кристаллическое строение свойственно металлам и их сплавам в твердом фазовом состоянии. Атомы выстраиваются в определенную объемную структуру, называемую кристаллической решеткой.Число атомов в вершинах и на гранях этой структуры, а также дистанция между ними определяют такие физические свойства металла, как электро- и теплопроводность, вязкость, текучесть и т.д.

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция одинакова по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, и его физические параметры меняются в зависимости от направления.

Атомно-кристаллическое строение металлов

В реальном куске металлов, составленному из множества изолированных кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. В среднем свойства такого куска близки к изотропным.

При выстраивании кристаллической решетки некоторые атомы не попадают на свое место, смещаются или теряются. В этом случае говорят о дефектах кристаллического строения металлов.

Дефекты структуры отрицательно влияют на свойства изделия, особенно если оно должно быть монокристаллом, как, например, в электронике, лазерной технике и других отраслях высоких технологий.

Физические свойства металлов

Физические свойства определяются внутренним строением металлов.

Главное отличие металлов от других элементов — это их электропроводность и магнитные свойства.

И хотя ученые создали неметаллические материалы, обладающие другим строением, но такими же свойствами, как у металлов и сплавов, они еще слишком дороги для массового применения. Многие химически чистые металлы обладают недостаточной прочностью для практических применений, чтобы исправить ситуацию, в технике и строительстве используют их сплавы.

Физические свойства металлов

Добавление тех или иных присадок приводит к росту прочность получаемого вещества в десятки раз по отношению к исходному элементу.

Электронное строение металлов и их особенности

Внутреннее строение реальных металлов определяет их физико-химические параметры.

Кристаллическая решетка металлов

Все металлы в твердом фазовом состоянии имеют кристаллическое строение. Это пространственное образование из многократно повторяющихся первичных структур называют кристаллической решеткой.схема кристаллической решетки.

Кристаллическое строение металлов

Кристаллическое строение металлов и сплавов может быть двух типов:

  • Межатомная дистанция равна по всем направлениям. Это так называемое изотропное строение. При этом физические свойства кристалла также одинаковы по всем направлениям.
  • Межатомное расстояние по горизонтали и по вертикали разное. Такой кристалл называют анизотропным, его параметры зависят от направления.

В реальном куске металлов, который состоит из множества кристаллических фрагментов, атомно кристаллическое строение принадлежит к третьему типу — квазиизотропному. Усредненные параметры такого куска близки к изотропным.

Типы кристаллических решеток

Дистанцию соседними атомами называют параметром решетки, у разных металлов он составляет 2 — 6 ангстрем. Существуют три основных типа кристаллических решеток:

  • Кубическая: объемно-центрированная — включает в себя девять атомов. Свойственна железу, хрому, молибдену, и ванадию.
  • Кубическая гранецентрированная: включает в себя уже 14 атомов. Присуща меди, золоту, свинцу, алюминию.
  • Гексагональная: атомов уже 17 и размещены они наиболее плотно. Так кристаллизуются магний, цинк кадмий и другие.

Уникальная возможность железа заключается в том, что до 910°С оно имеет кубическую объемно-центрированную структуру, а при нагреве свыше этой температуры переходит к гранецентрированной.

Кристаллическое строение сплавов

Сплав это материал, состоящий из двух и более химических элементов. В его состав могут входить как металлы, так и неметаллы. Например, бронза — это сплав меди и олова, а чугун — сплав железа и углерода.

Кроме основных, в состав могут входить и другие вещества, содержащиеся в небольших количествах. Если их добавляют специально и улучшают свойства материала, их называют легирующими присадками, если ухудшают — вредными примесями.

Кристаллическое строение сплавов сложнее, чем металлов.

Строение сплавов

Оно определяется взаимовлиянием компонентов при образовании кристалла, и принадлежит к трем подвидам:

  • Твердые растворы. Один элемент растворяется в другом. Ведущий элемент строит кристаллическую структуру, а атомы второстепенного элемента размещаются в объеме этой решетки.
  • Химическое соединение. Элементы химически реагируют друг с другом, образуя новое соединение. Из его молекул и составляется кристаллическая решетка.
  • Механическая смесь. Элементы сплава не реагируют друг с другом. Каждый строит свои кристаллические структуры, срастающиеся в независимые кристаллы. Сплав будет представлять собой затвердевшую смесь из множества кристалликов двух разных типов. Такое вещество будет иметь собственную температуру перехода в жидкую фазу.
Читайте также:  Сгорело зарядное устройство для шуруповерта

Физические свойства сплавов могут заметно меняться при изменении процентного соотношения составляющих.

Кристаллизация сплавов

Первичная кристаллизация — это затвердевание расплава с образованием кристаллических решеток. Пространственные атомные и молекулярные структуры, возникающие в ходе такого процесса, оказывают решающее влияние на свойства получаемого сплава.

Сначала в остывающем расплаве возникают центры кристаллизации, вокруг них в ходе процесса и нарастают кристаллы, многократно повторяя структуру центра. В качестве центров кристаллизации могут выступать:

  • Первые образовавшиеся кристаллы в зонах локального охлаждения, чаще всего у стенок литейной формы.
  • Частички неметаллических примесей.
  • Тугоплавкие примеси, уже находящиеся в твердой форме.

Процесс кристаллизации металлов и сплавов

Кристаллы обычно растут в направлении роста градиента температуры. Если рост решеток не встречает физических препятствий, образуются ветвящиеся кристаллические структуры, напоминающие кораллы — дендриты. Если они растут из разных центров и встречаются в расплаве, то препятствуют росту друг друга и искажают свою форму.

Такие искаженные кристаллы – это кристаллиты, или зерна. Совокупность отдельных зерен срастается в поликристаллическое тело.Отдельные кристаллиты достигают размеров от одного до 10 000 микрон и по-разному развернуты в пространстве. На стыках отдельных кристаллитов образуется граничный слой, в котором кристаллические решетки разорваны.

Такие слои обладают измененными химическими и физическими свойствами.

Решетки кристаллитов могут обладать разными дефектами структуры:

  • точечные;
  • линейные;
  • поверхностные;

Дефекты кристаллического строения металлов

Дефекты определяются отсутствием атома или группы атомов в вершинах или гранях кристаллической решетки, смещением этих атомов со своих мест или замещением атома или их группы атомами или молекулами примесей.

Кристаллическая решетка — что это? Типы и свойства

Как известно, все вещества состоят из частиц — атомов, которые могут располагаться хаотично или в определенном порядке.

У аморфных веществ частицы расположены беспорядочно, а у кристаллических они образуют определенную структуру. Эта структура называется кристаллической решеткой.

Она определяет такие характеристики вещества, как твердость, хрупкость, температура кипения и/или плавления, пластичность, растворимость, электропроводность и т. д.

Основные кристаллические решетки металлов

Кристаллическая решетка — это внутренняя структура кристалла, порядок взаимного расположения атомов, ионов или молекул. Точки, в которых находятся эти частицы, называются узлами решетки.

Частицы удерживаются на своих местах благодаря химическим связям между ними. В зависимости от того, какой вид связи удерживает атомы или ионы данного вещества, в химии выделяют основные типы кристаллических решеток:

  • атомная (ковалентные связи),
  • молекулярная (ковалентные связи и притяжение между молекулами),
  • металлическая (металлические связи),
  • ионная (ионные связи).

Не путайте эти два понятия — кристаллическая решетка и химическая связь. Тип решетки говорит о том, как расположены атомы/ионы в молекуле вещества, а тип связи — по какому принципу они между собой взаимодействуют.

Основные кристаллические решетки металлов

Атомная кристаллическая решетка

Согласно своему названию, атомная кристаллическая решетка — это структура, в узлах которой расположены атомы. Они взаимодействуют с помощью ковалентных связей, то есть один атом отдает другому свободный электрон или же электроны из разных атомов образуют общую пару. В кристаллах с атомной решеткой частицы прочно связаны, что обуславливает ряд физических характеристик.

Свойства веществ с атомной решеткой:

  • прочность,
  • твердость,
  • неспособность к растворению в воде,
  • высокая температура кипения и плавления.

К примеру, атомную кристаллическую решетку имеет алмаз — самый твердый минерал в мире.

Другие примеры: германий Ge, кремний Si, нитрид бора BN, карборунд SiC.

Если нужно рассказать о свойствах веществ с атомной кристаллической решеткой, достаточно вспомнить песок и перечислить его характеристики. Основные кристаллические решетки металлов

Молекулярная кристаллическая решетка

Как и в предыдущей группе, в этой находятся вещества с ковалентными связями между атомами. Но физические характеристики этих веществ совершенно иные — они легко плавятся, превращаются в жидкость, растворяются в воде. Почему так происходит? Все дело в том, что здесь кристаллы строятся не из атомов, а из молекул.

Молекулярная кристаллическая решетка — это структура, в узлах которой находятся не атомы, а молекулы.

Внутри молекул атомы имеют прочные ковалентные связи, но сами молекулы связаны между собой слабо. Поэтому кристаллы таких веществ непрочные и легко распадаются.

Молекулярная кристаллическая решетка характерна для воды. При комнатной температуре это жидкость, но стоит нагреть ее до температуры кипения (которая сравнительно низка), как она тут же начинает превращаться в пар, т. е. переходит в газообразное состояние.

Некоторые молекулярные вещества — например, сухой лед CO2, способны преобразоваться в газ сразу из твердого состояния, минуя жидкое (данный процесс называется возгонкой).

Основные кристаллические решетки металлов

Свойства молекулярных веществ:

  • небольшая твердость;
  • низкая прочность;
  • легкоплавкость;
  • летучесть;
  • у некоторых — наличие запаха.

Помимо воды к веществам с молекулярной кристаллической решеткой относятся аммиак NH3, гелий He, радон Rn, йод I, азот N2 и другие. Все благородные газы — молекулярные вещества. Также к этой группе принадлежит и большинство органических соединений (например, сахар).

Основные кристаллические решетки металлов

Ионная кристаллическая решетка

Как известно, при ионной химической связи один атом отдает другому ионы и приобретает положительный заряд, в то время как принимающий атом заряжается отрицательно. В итоге появляются разноименно заряженные ионы, из которых и состоит структура кристалла.

Ионная решетка — это кристаллическая структура, в узловых точках которой находятся ионы, связанные взаимным притяжением.

Ионную кристаллическую решетку имеют практически все соли, типичным представителем можно считать поваренную соль NaCl. О ней стоит вспомнить, если нужно перечислить физические характеристики этой группы. Также ионную решетку имеют щелочи и оксиды активных металлов.

Свойства веществ с ионной структурой:

  • твердость;
  • хрупкость;
  • тугоплавкость;
  • нелетучесть;
  • электропроводность;
  • способность растворяться в воде.

Примеры веществ с ионной кристаллической решеткой: оксид кальция CaO, оксид магния MgO, хлорид аммония NH4Cl, хлорид магния MgCl2, оксид лития Li2O и другие.

Основные кристаллические решетки металлов

Металлическая кристаллическая решетка

Для начала вспомним, как проходит металлическая химическая связь. В молекуле металла свободные отрицательно заряженные электроны перемещаются от одного иона к другому и соединяются с некоторыми из них, а после отрываются и мигрируют дальше. В результате получается кристалл, в котором ионы превращаются в атомы и наоборот.

Металлическая кристаллическая решетка — это структура, которая состоит из ионов и атомов металла, а между ними свободно передвигаются электроны. Как несложно догадаться, она характерна лишь для металлов и сплавов.

Свободные электроны, мигрирующие между узлами решетки, образуют электронное облако, которое под воздействием электротока приходит в направленное движение. Это объясняет такое свойство металлов, как электрическая проводимость.

В химии типичным примером вещества, которое имеет металлическую кристаллическую решетку, считается медь. Она очень ковкая, пластичная, имеет высокую тепло- и электропроводность. Впрочем, все металлы ярко демонстрируют эти характеристики, поэтому назвать физические свойства данной группы несложно.

Основные кристаллические решетки металлов

Свойства веществ с металлической кристаллической решеткой:

  • характерный блеск;
  • хорошая ковкость;
  • высокая теплопроводность;
  • электропроводность.

При этом температура плавления веществ может существенно различаться. Например, у ртути это −38,9°С, а у бериллия целых +1287°С.

Подведем итог: о характеристиках разных типов кристаллических решеток расскажет таблица.

Основные кристаллические решетки металлов — Мастерок

Наиболее часто металлы имеют кристаллические решетки следующих типов: Кубическая объемно-центрированная или сокращенно ОЦК (свинец, вольфрам) 9 атомов; Кубическая гранецентрированная (ГЦК) (серебро, золото) 14 атомов; гексагональная плотно-упакованная (ГПУ) (магний, цинк). Решетки ГЦК и ГПУ более компактны, чем ОЦК.

Все металлы являются кристаллическими телами, имею­щими определенный тип кристаллической решетки, состоящей из малоподвижных положительно заряженных ионов, между которыми движутся свободные электроны (так называемый электронный газ). Такой тип структуры называется металлической связью.

Читайте также:  Чем отличается винтик от болтика

Тип ре­шетки определяется формой элементарного геометриче­ского тела, многократное повторение которого по трем пространственным осям образует решетку данного кристал­лического тела.

Металлы имеют относительно сложные типы кубических ре­шеток – объемно центрированная (ОЦК) и гранецентриро­ванная (ГЦК) кубические решетки.

Основу ОЦК-решетки составляет элементарная кубиче­ская ячейка (рис. 1.2,б), в которой положительно заряжен­ные ионы металла находятся в вершинах куба, и еще один атом в центре его объема, т. е. на пересечении его диагоналей. Такой тип решетки в определенных диапазонах температур имеют железо, хром, ванадий, вольфрам, молибден и др. металлы.

У ГЦК-решетки (рис. 1.2, в) элементарной ячейкой слу­жит куб с центрированными гранями. Подобную решетку имеют железо, алюминий, медь, никель, свинец и др. металлы.

Третьей распространенной разновидностью плотноупако­ванных решеток является гексагональная плотноупакованная (ГПУ, рис. 1.2, г). ГПУ-ячейка состоит из отстоя­щих друг от друга на параметр с параллельных центриро­ванных гексагональных оснований. Три иона (атома) нахо­дятся на средней плоскости между основаниями.

У гексагональных решеток отношение параметра с/а всегда больше единицы. Такую решетку имеют маг­ний, цинк, кадмий, берилий, титан и др.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8588 – | 7405 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)очень нужно

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным – железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

Основные кристаллические решетки металлов

«Химия. 9 класс» – это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Читать также:  Блок питания 30в 2а на мс34063

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое число электронов на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Основные кристаллические решетки металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность – способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность – одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Основные кристаллические решетки металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов.

Они располагаются в нем не хаотично, а очень правильно и последовательно.

Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку.

Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки.

Химия, физика и металловедение – это науки, которые занимаются изучением особенностей строения таких структур.

Основные кристаллические решетки металлов

Сама элементарная ячейка – это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц.

Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом.

В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Читать также:  Почему резак стреляет при резке

Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность – в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря электронной микроскопии, когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

Основные кристаллические решетки металлов

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название «объемно-центрированная».

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей – высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

Основные отличительные свойства – блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

Основные кристаллические решетки металлов

Гексагональная решетка

Кристаллическое строение металлов, обладающих данным типом решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

Основные свойства – высокая степень прочности, сильный серебристый блеск.

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Читайте также:  Сделать штробу в бетоне без пыли

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

Основные кристаллические решетки металлов

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия.

9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав – строение – свойства – применение.

Читать также:  Пылесос для циркулярной пилы

Сведения о кристаллическом строении металлов очень четко иллюстрирует эту зависимость и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

Кристаллическое строение металлов

Основные кристаллические решетки металлов Основные кристаллические решетки металлов

Средняя оценка: 4.5

Всего получено оценок: 210.

Средняя оценка: 4.5

Всего получено оценок: 210.

Металлы – особая группа элементов в периодической таблице Менделеева. В отличие от неметаллов элементы этой группы являются исключительно восстановителями с положительной степенью окисления, а также обладают пластичностью, твёрдостью, упругостью, что обусловлено кристаллическим строением металлов.

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Единица кристаллической решётки – элементарная кристаллическая ячейка, в условных узлах и на гранях которой находятся положительно заряженные ионы.

Их удерживают вместе металлические связи, возникающие за счёт беспорядочного движения отделившихся от атомов электронов (благодаря чему атомы превратились в ионы).

Отрицательно заряженные электроны держат на равном расстоянии положительно заряженные электроны, предавая кристаллической решётке правильную геометрическую форму.

Рис. 1. Схема металлической связи.

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

Элементарные кристаллические ячейки могут иметь различную конфигурацию. В связи с этим выделяют три типа кристаллических решёток:

  • объемно-центрированная (ОЦК) кубическая – состоит из 9 ионов;
  • гранецентрированная (ГЦК) кубическая – включает 14 ионов;
  • гексагональная плотноупакованная (ГПУ) – состоит из 17 ионов.

ОЦК представляет собой куб, в узлах которого находится по атому. В центре куба, на пересечении диагоналей располагается девятый ион. Этот тип характерен для железа, молибдена, хрома, вольфрама, ванадия.

Элементарной кристаллической ячейкой типа ГЦК является куб с ионами в узлах и в середине каждой грани – на пересечении диагоналей. Такое строение имеют медь, серебро, алюминий, свинец, никель.

Третий тип имеет вид гексагональной призмы, в узлах которой находится по шесть ионов с каждой стороны. Посередине между шестью узлами располагается по одному иону. В середине призмы между шестиугольными гранями находится равносторонний треугольник, который составляют три иона.

Основные кристаллические решетки металловРис. 2. Типы решёток.

Металл может содержать большое количество дефектов атомного строения. Дефекты влияют на свойства металла.

Кристаллические решётки характеризуются компактностью или степенью наполненности. Компактность определяют показатели:

  • параметр решётки – расстояние между атомами;
  • число атомов;
  • координационное число – количество соседних ячеек;
  • плотность упаковки – отношение объёма, занимаемого атомами, к полному объёму решётки.

При подсчёте количества атомов следует помнить, что атомы в узлах и на гранях входят в состав соседних ячеек.

Основные кристаллические решетки металловРис. 3. Кристаллические ячейки составляют решётку.

Узнали кратко об атомно-кристаллическом строении металлов. Металлы – твёрдые кристаллические вещества. Единицей решётки является элементарная кристаллическая ячейка. Благодаря металлическим связям ионы в узлах ячеек удерживаются на одинаковом расстоянии. Различают три типа кристаллических решёток – ОЦК, ГЦК и ГПУ, отличающихся количеством атомов и геометрической формой.

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Средняя оценка: 4.5

Всего получено оценок: 210.

А какая ваша оценка?

Гость завершил

Тест «Горе от ума»с результатом 13/15

Гость завершил

Тест «Маленький принц»с результатом 14/14

Гость завершил

Тест «Алые паруса»с результатом 7/12

Гость завершил

Тест «Толстый и тонкий»с результатом 7/8

Гость завершил

Тест «После бала»с результатом 6/10

Гость завершил

Тест «Пиковая дама»с результатом 13/14

Гость завершил

Тест Творчество Тургеневас результатом 10/10

Гость завершил

Тест «Биография Куприна»с результатом 9/14

Гость завершил

Тест «Дубровский»с результатом 13/16

Не подошло? Напиши в х, чего не хватает!

Основные типы кристаллических решёток металлов

Чтобы поделиться, нажимайте

Основные типы кристаллических решёток металлов

Физические свойства металлов определяются их электронным строением и природой кристаллической решётки.

Поскольку металлическая связь ненасыщаема и ненаправлена, для металлов характерны кристаллические структуры с высокими координационными числами (количество атомов, которое окружает один атом). Как правило, металлы кристаллизуются в одном из трёх типов решёток, для двух из них координационное число равно 12, а для третьей – 8.

Строение первых двух кристаллических решёток можно представить следующим образом. Мысленно положим шарообразные атомы металлов на стол и плотно придвинем их друг к другу. Мы заметим, что каждый шар окажется в окружении шести соседних шаров (на рисунке ниже – а).

Основные кристаллические решетки металлов

Затем положим сверху на первый слой шаров (А) второй слой (В) так, чтобы шары второго слоя попали в углубления между шарами первого слоя (на рисунке выше – б). Проделаем то же самое, укладывая сверху шары третьего слоя. Укладка шаров третьего слоя возможна двумя различными способами. Однако это не влияет на координационное число, но в результате образуются две неодинаковые структуры.

Первый способ приводит к расположению шаров третьего слоя в точности над шарами первого слоя (на рисунке выше –в). Такая структура называется гексагональной плотнейшей упаковкой (ГПУ) и состоит из чередующихся слоёв атомов металла АВАВ. Слово «гексагональный» означает шестиугольный и указывает, что каждый шар в своём слое окружён шестиугольником ближайших соседей.

Второй способ отличается от первого тем, что расположение шаров третьего слоя С повернуто на 60 градусов вокруг вертикальной оси по отношению к первому слою (на рисунке выше – г). При этом шары третьего слоя оказываются над углублениями между шарами первого слоя.

В таком случае только следующий, четвёртый, слой шаров в точности повторяет структуру шаров первого слоя.

Такая структура называется кубической плотнейшей упаковкой (КПУ) или гранецентрированной кубической упаковкой (ГЦК) и состоит из чередующихся слоёв атомов металлов АВСАВС.

Третья кристаллическая структура (координационное число равно 8) может рассматриваться как цент куба, в вершинах которого находятся восемь его ближайших соседей. Такая структура называется объёмно-центрированной кубической упаковкой (ОЦУ).

Элементарные ячейки для всех типов кристаллических решёток металлов показаны на рисунке ниже.

Основные кристаллические решетки металлов

Описанные кристаллические структуры отличаются степенью заполнение пространства: наиболее плотноупакованными (степень заполнения пространства составляет 74%) являются кристаллические решётки ГПУ и КПУ, менее плотноупакована (на 68%) – решётка типа ОЦУ. Пустоты играют важную роль в определении структуры металлических соединений и их сплавов.

Кристаллические решётки некоторых металлов

Тип решётки Металл
ГПУ Mg, Zn, Be, Cd, Os, Ru
КПУ (ГЦК) Cu, Ag, Al, Ca, Ni, Au, Pb, Pd, Pt, Co, Sr
ОЦУ Li, Na, K, Rb, Cs, V, Cr, Mo, W, Fe, Ba

Также важно знать, что ряд металлов в зависимости от температуры может кристаллизоваться в разных типах кристаллических решёток (явление полиморфизма), например белое и серое олово.

Ссылка на основную публикацию