Особенности строения и свойств термопластичных полимеров

Пластики – это искусственно произведенные материалы, изготавливаемые из нефтепродуктов, угля и природного газа.

В зависимости от структуры полимерных молекул и реакции на нагревание пластики разделяют на:

  • Термоплачстичные полимеры или термопласты, легко размягчающиеся под воздействием температуры
  • Реактопласты, состоящие из макромолекул с плотным сцеплением, остающиеся твердыми даже при нагреве. Характеризуется высокой твердостью, хрупкостью и устойчивостью к растворителям.
  • Эластомеры, с широким расположением молекул и повышенной упругостью.

Общие сведения о термопластах

Термопластами называют тип полимеров, которые при нагревании расплавляются до мягкого или жидкого состояния, а при остывании приобретают первоначальные свойства прочности.

Молекулы термопластичных полимеров имеет линейную или разветвленную структуру с беспорядочным расположением в большинстве случаев. Физические свойства термопластов имеют зависимость от связей между молекулами, а те в свою очередь очень чувствительны к температуре.

Таким образом, физические свойства термопластов напрямую зависят от температуры материала.

Классификация термопластов

Термопластичные полимеры можно разделить на такие группы:

  • Аморфные термопласты с неупорядоченной структурой молекул (PS, PVC, PMMA, PC ).
  • Термопласты с частичной кристаллизацией, в которых аморфные участки перемежаются с упорядоченными структурами (PE, PP, POM, PA)

Особенности строения и свойств термопластичных полимеров Особенности строения и свойств термопластичных полимеров

Аморфные термопластичные полимеры

Как следует из названия «аморфные», молекулы полимеров данной группы не имеют определенной структуры. Их внутреннее положение в пространстве схоже с комком ваты. Термопласты аморфного типа имеют высокую упругость, прочность, а при температуре 20⁰С еще и хрупкость.

Так как структура молекул аморфных термопластов ассиметрична и беспорядочна, они не подвержены кристаллизации, поэтому остаются полностью прозрачными без введения в них дополнительных модификаторов цвета. Полимерные материалы группы аморфных термопластов имеют низкую усадку при литье.

Для повышения качеств обрабатываемости обычно применяют различные модификаторы.

Температура стеклования (отсутствие движения макромолекул и сегментов) термопласта в большинстве случаев выше их применения в обычных условиях.

При стандартных температурах окружающей среды термопластичные пластики по физическим свойствам не отличаются от твердых материалов с упруго обратимой деформацией.

Когда же полимер из термопластов нагревают до величин температурных показателей выше температуры стеклования, термопласт становится мягким и эластичным. Находясь в высокоэластичном состоянии, полимер реагирует на физическую нагрузку энтропийной деформацией.

При дальнейшем нагреве термопласта до температуры текучести, пластик становится текучим и можно легко сместить цепи макромолекул при физическом воздействии на материал. Это обеспечивает необратимую деформацию течения полимера. Также следует помнить, что не все деформации, которые происходят в вязкотекучем состоянии с полимером, являются деформациями течения.

Термопластичные полимеры применяются для изготовления изделий методом экструзии, горячеканального литья под давлением, термоформованием, сваркой и прочими типами механической обработки с применением предварительного нагрева. Нагревательные элементы для всех типов оборудования, которые применяются для обработки термопластов вы можете найти в каталоге нагревателей.

Термопласты с частичной кристаллизацией

Данный тип полимерных материалов имеет в составе как участки с определенной структурой, так и неструктурированные.

Структурированные участки макромолекул имеют название кристаллитов и в них плотность молекулярной структуры больше, чем в аморфных частях, так же как и сила физического соединения. К примеру, такой симметричной и длинной молекулярной цепью обладает полиэтилен с высокой плотностью.

Чем больше будет кристаллизованных участков в полимере, тем менее прозрачным он будет.

Для частично кристаллизованных термопластов температура эксплуатации обычно выше, чем значение стеклования, но переход в расплавленное состояние происходит очень резко без стадии повышенной эластичности. При остывании материал так же быстро застывает, но при этом количество участков с кристаллизацией увеличивается, поэтому он сильно деформируется и усаживается.

Свойства термопластичных полимеров в значительной степени зависит от длины молуекулы, химической структуры сегментов, уровня кристаллизации и взаимодействия молекул.

Изменение свойств термопластов под влиянием нагрева

Для частично кристаллизованных термопластов применяют такие методы обработки, в зависимости от их состояния в температурных зонах:

  • Твердое. Резка, фрезеровка.
  • Эластичное. Формование, изгиб.
  • Термопластичное. Экструзия, литье, прессовка.

 Влияние температуры на термопласты частично кристаллизованной группы

Особенности строения и свойств термопластичных полимеров Особенности строения и свойств термопластичных полимеров

Для термопластичных аморфных полимеров методы обработки в зависимости от состояния:

  • Твердо-хрупкое. Не обрабатывается.
  • Упруго-твердое. Склеивание, поверхностная обработка.
  • Термоэластичное. Формование вытягиванием и растяжкой.
  • Термопластичное. Сваривание, экструзия, прессовка.

Влияние температуры на термопласты аморфной группы

Особенности строения и свойств термопластичных полимеров

Реакция на температуру полипропилена и полиэтилена

Полиэтилен

Особенности строения и свойств термопластичных полимеров

Полиэтилен – это термопластичный полимер группы с частичной кристаллизацией с простой структурой молекулы. Плотность полиэтилена зависит от уровня кристаллизации.

Полиэтилен характеризуется такими качествами:

  • большая прочность
  • низкий уровень плотности
  • температура использования: -50 °C..+90 °С
  • высокая электроизоляция
  • стойкость к хим. воздействию

Свойства полиэтилена зависят от плотности и молекулярной массы.

Особенности строения и свойств термопластичных полимеров Особенности строения и свойств термопластичных полимеров

Полипропилен

Особенности строения и свойств термопластичных полимеров

В молекуле полипропилена метиловая боковая группа молекулы может быть упорядочена в пространстве по-различному. Из-за этого полипропилен может изготавливаться с разными свойствами.

Отличительные свойства полипропилена от полиэтилена:

  • Меньше плотность
  • Больше прочность
  • Выше температура плавления
  • Становится хрупким при отрицательных температурах
  • Меньшая устойчивость к хим воздействию

Термопластичные полимеры

Термопластичными называют полимеры, способные многократно размягчаться при нагревании и отвердевать при охлаждении. Эти и многие другие свойства термопластичных полимеров объясняются линейным строением их макромолекул.

При нагревании взаимодействие между молекулами ослабевает и они могут сдвигаться одна относительно другой (как это происходит с частицами влажной глины), полимер размягчается, превращаясь при дальнейшем нагревании в вязкую жидкость.

Линейным строением молекул объясняется также способность термопластов не только набухать, но и хорошо растворяться в правильно подобранных растворителях. Тип растворителя зависит от химической природы полимера.

Растворы полимеров, даже очень небольшой концентрации (2…5%), отличаются довольно высокой вязкостью, причиной этого являются большие размеры полимерных молекул по сравнению с молекулами обычных низкомолекулярных веществ. После испарения растворителя полимер вновь переходит в твердое состояние.

На этом основано использование растворов термопластов в качестве лаков, красок, клеев и вяжущего компонента в мастиках и полимеррастворах.

К недостаткам термопластов относятся низкая теплостойкость (обычно не выше 80… 120 °С), низкая поверхностная твердость, хрупкость при пониженных температурах и текучесть при высоких, склонность к старению под действием солнечных лучей и кислорода воздуха.

В строительстве используется около 20…25 % производимых полимеров. Главнейшие термопластичные полимеры, применяемые в строительстве — поливинилхлорид, полистирол, полиэтилен и полипропилен, а также поливинилацетат, полиакрилаты, полиизобутилен и др.

Полиэтилен — продукт полимеризации этилена — самый распространенный в наше время полимер.

Полиэтилен роговидный, жирный на ощупь, просвечивающийся материал, легко режется ножом; при поджигании горит и одновременно плавится с характерным запахом горящего парафина.

При комнатной температуре полиэтилен практически не растворяется ни в одном из растворителей, но набухает в бензоле и хлорированных углеводородах; при температуре выше 70. ..80 °С он растворяется в указанных растворителях.

Полиэтилен обладает высокой химической стойкостью, биологически инертен. Под влиянием солнечного излучения (УФ его составляющей) полиэтилен стареет, теряя эксплуатационные свойства.

При нагреве до 50…60 °С полиэтилен снижает свои прочностные показатели, но при этом сохраняет эластичность до минус 60…70 °С. Полиэтилен хорошо сваривается и легко перерабатывается в изделия. Из него изготавливают пленки (прозрачные и непрозрачные), трубы, электроизоляцию. Вспененный полиэтилен в виде листов и труб используется для целей теплоизоляции и герметизирующих прокладок.

Недостатки полиэтилена — низкая теплостойкость и твердость, горючесть, быстрое старение под действием солнечного света. Защищают полиэтилен от старения, вводя в него наполнители (сажу, алюминиевую пудру) и/или специальные стабилизаторы.

Полипропилен — полимер, по составу близкий к полиэтилену. При синтезе полипропилена образуется несколько различных по строению полимеров: изотактический, атактический и синдиотактический.

В основном применяется изотактический полипропилен. Он отличается от полиэтилена большей твердостью, прочностью и теплостойкостью (температура размягчения около 170 °С), но переход в хрупкое состояние происходит уже при минус 10…20 ºС.

  • Максимальная температура эксплуатации для изделий из полипропилена 120…140 °С, но изделия, находящиеся в нагруженном состоянии, например трубы горячего водоснабжения, не рекомендуется использовать при температуре выше 75 °С.
  • Применяют полипропилен практически для тех же целей, что и полиэтилен, но изделия из него более жесткие и формоустойчивые.
  • Атактический полипропилен (АПП) получается при синтезе полипропилена как неизбежная примесь, но легко отделяется от изотактического полипропилена экстракцией (растворением в углеводородных растворителях).
  • Полиизобутилен — каучукоподобный термопластичный полимер.
Читайте также:  Мастерок - Мастер на все руки

Полистирол (поливинилбензол) — прозрачный полимер плотностью 1050…1080 кг/м; при комнатной температуре жесткий и хрупкий, а при нагревании до 80… 100 °С размягчающийся.

Прочность при растяжении (при 20 °С) 35…50 МПа.

Полистирол хорошо растворяется в ароматических углеводородах (влияние бензольного кольца, входящего в состав молекул полистирола), сложных эфирах и хлорированных углеводородах. Полистирол горюч и хрупок.

Особенности строения и свойств термопластичных полимеров

В строительстве полистирол применяют для изготовления теплоизоляционного материала — пенополистирола (плотностью 15…50 кг/м), облицовочных плиток и мелкой фурнитуры. Раствор полистирола в органических растворителях — хороший клей.

Поливинилацетат — прозрачный бесцветный жесткий при комнатной температуре полимер плотностью 1190 кг/м.

Поливинилацетат растворим в кетонах (ацетоне), сложных эфирах, хлорированных и ароматических углеводородах, набухает в воде; в алифатических и терпеновых углеводородах не растворяется.

Поливинилацетат не стоек к действию кислот и щелочей; при нагреве выше 130… 150 °С он разлагается с выделением уксусной кислоты. Положительное свойство поливинилацетата — высокая адгезия к каменным материалам, стеклу, древесине.

В строительстве поливинилацетат применяют в виде поливинилацетатной дисперсии (ПВАД) — сметанообразной массы белого или светло-кремового цвета, хорошо смешивающейся с водой. Поливинилацетатную дисперсию получают полимеризацией жидкого винилацетата, эмульсированного в виде мельчайших частиц (до 5 мкм) в воде.

Поливинилацетат широко применяют в строительстве. На его основе делают клеи, вододисперсионные краски, моющиеся обои. ПВАД применяют для устройства наливных мастичных полов и для модификации цементных растворов. Дисперсией, разбавленной до 5…10 -ной концентрации, грунтуют бетонные поверхности перед приклеиванием облицовки на полимерных мастиках и перед нанесением полимерцементных растворов.

Недостаток материалов на основе дисперсий поливинилацетата — чувствительность к воде: материалы набухают, и на них могут появиться высолы.

Поливинилхлорид — самый распространенный в строительстве полимер — представляет собой твердый материал без запаха и вкуса, бесцветный или желтоватый (при переработке в результате термодеструкции может приобрести светло-коричневый цвет).Температура текучести поливинилхлорида 180…200 °С, но уже при нагревании выше 160 °С.

Поливинилхлорид хорошо совмещается с пластификаторами. Это облегчает переработку и позволяет получать пластмассы с самыми разнообразными свойствами: жесткие листы и трубы, эластичные погонажные изделия, мягкие пленки.

Поливинилхлорид хорошо сваривается; склеивается он только некоторыми видами клеев, например перхлорвиниловым. Положительное качество поливинилхлорида — высокие химическая стойкость, диэлектрические показатели и низкая горючесть.

В строительстве поливинилхлорид применяют для изготовления материалов для полов (различные виды линолеума, плитки), труб, погонажных изделий (поручни, плинтусы сайдинг и т. п.) и отделочных декоративных пленок и пенопластов.

Перхлорвинил — продукт хлорирования поливинилхлорида, содержащий 60…70 (по массе) хлора, вместо 56 % в поливинилхлориде. Плотность перхлорвинила около 1500 кг/м.

Он характеризуется очень высокой химической стойкостью (к кислотам, щелочам, окислителям); трудносгораем.

В отличие от поливинилхлорида перхлорвинил легко растворяется в хлорированных углеводородах, ацетоне, этилацетате, толуоле, ксилоле и других растворителях.

Положительное качество перхлорвинила — высокая адгезия к металлу, бетону, древесине, коже и поливинилхлориду. Сочетание высокой адгезии и хорошей растворимости позволяет использовать перхлорвинил в клеях и окрасочных составах. Перхлорвиниловые краски благодаря высокой стойкости этого полимера используют для отделки фасадов зданий.

Поликарбонаты— сравнительно новая для строительства группа полимеров — сложных эфиров угольной кислоты.

Они отличаются высокими физико-механическими показателями, мало изменяющимися в интервале температур от — 100 до + 150 ºС.

Плотность поликарбонатов 1200 кг/м3; прочность при растяжении 65 ± 10 МПа при относительном удлинении 50…100 %; у них высокая ударопрочность и твердость (НВ 15…16 МПа).

Перерабатывают поликарбонат в изделия экструзией, литьем под давлением горячим прессованием и др. Он легко обрабатывается механическими методами, сваривается горячим воздухом и склеивается с помощью растворителей.

Поликарбонаты оптически прозрачны, устойчивы к атмосферным воздействиям, в том числе и к УФ-облучению. Их широко применяют для электротехнических изделий (розеток, вилок, телефонных аппаратов и т.п.).

В строительстве листовой поликарбонат и пустотелые (сотовые) панели используют для светопрозрачных ограждений.

Кумароноинденовые полимеры — полимеры, получаемые полимеризацией смеси кумарона и индена, содержащихся в каменноугольной смоле и продуктах пиролиза нефти.

Кумароноинденовый полимер имеет небольшую молекулярную массу (менее 3000) и в зависимости от ее значения может быть каучукоподобным или твердым хрупким материалом. Снизить хрупкость кумароноинденовых полимеров можно совмещая их с каучуками, фенолформальдегидными смолами и другими полимерами. Эти полимеры хорошо растворяются в бензоле, скипидаре, ацетоне, растительных и минеральных маслах.

Кумароноинденовые полимеры в расплавленном или растворенном виде хорошо смачивают другие материалы, а после затвердевания сохраняют адгезию к материалу, на который были нанесены. Из них изготовляют плитки для полов, лакокрасочные материалы и приклеивающие мастики.

Тпмк билеты ответы. особенности термопластичных и термореактивных полимеров

Подборка по базе: орг вне ауд ответы.docx, все билеты по истории.docx, Ответы на билеты — История и методология юридической науки.docx, Ответы на билеты — Финансовый учет.doc, практическая работа 3 ОТВЕТЫ.doc, Конституционное право Ответы на вопросы для семира 1.docx, экзамен математика. ответы.docx, Экз. билеты 2ч -2021_печать.

pdf, Особенности содержания обновлённых ФГОС НООО ФГОС ООО. Ответы на

  1. Особенности термопластичных и термореактивных полимеров.

Термопласты — сравнительно мягкие материалы. Большинство линейных гибкоцепных полимеров и полимеров с относительно небольшим содержанием боковых ветвей принадлежат к классу термопластов.

Если говорить о молекулярном уровне, то это означает, что с повышением температуры вторичные связи разрушаются благодаря интенсивным молекулярным движениям. При этом становится возможным относительное перемещение соседних цепей при приложении напряжений.

Если же расплавленный термопласт нагреть до слишком высокой температуры, то при литье под давлением начинает ся необратимая термодеструкция (разрушение он перегрева полимера).

Производство изделий из таких материалов происходит при одновременном воздействии повышенных температур и давления. Примеры обычных распространенных термопластов это полиэтилен, полистирол, полиэтилентерефталат и поливинилхлорид.Термореактивные полимеры — это материалы с сетчатой структурой.

Они становятся твердыми непосредственно в процессе их изготовления, остаются в таком состоянии и не размягчаются при нагревании.В сетчатых полимерах существует сетка ковалентных связей между соседними  молекулярными цепями. При нагревании эти связи сохраняются и препятствуют вибрационным или ротационным движениям молекул.

Поэтому они остаются твердыми при повышении температуры.

Сетка поперечных сшивок — довольно плотная:

  • От 10 до 50% повторяющихся единиц в цепи связаны поперечными связями
  • Лишь нагревание до очень высоких температур приводит к разрушению этих связей, и, как следствие, полимер деструктирует
  • Как правило, реактопласты более жесткие и более прочные материалы по сравнению с термопластами, так что изделия из них лучше сохраняют приданную им форму.

Большинство сшитых и сетчатых полимеров, включая и вулканизованные каучуки, а также эпоксидные и фенольные смолы, а также полиэфиры, относятся к классу реактопластов.

2.Назовите основные признаки, по которым классифицируются композиционные материалы.

Классифицируют КМ последующим основным признакам:

  • • материалы матрицы и армирующих элементов;
  • • геометрия компонентов;
  • • структура и расположение компонентов;
  • • метод получения.

Иногда КМ разделяют по назначению, но так как одни и те же КМ могут иметь различное назначение, то этот принцип классификации используют редко. Полная характеристика КМ должна содержать все указанные признаки, на практике же обычно ограничиваются одним- двумя из них.

По материалам матрицы композиты можно разделить следующим образом:

  • • полимерные;
  • • металлические;
  • • керамические.

По структуре композиты делятся на несколько основных классов:

  • • волокнистые;
  • • слоистые;
  • • дисперсноупрочненные (ДКМ);
  • • упрочненные частицами;
  • • нанокомпозиты.
Читайте также:  Ретро кабель своими руками

По расположению компонентов КМ разделяются на следующие группы:

  • • с каркасной структурой;
  • • с матричной структурой;
  • • со слоистой структурой;
  • • с комбинированной структурой.

В группу КМ с каркасной структурой входят, например, псевдосплавы, полученные методом пропитки; с матричной — ДКМ и армированные материалы; со слоистой — композиции из набора фольг или листов материалов различной природы или состава; с комбинированной — материалы, содержащие комбинации первых трех групп (например, псевдосплавы, каркас которых упрочнен дисперсными включениями, относятся к материалам, содержащим каркасную и матричную структуры).

3.Приведите основные структуры распределения наполнителя в композиционном материале.

Наполнители используют для улучшения эксплуатационных свойств КМ (прочности, жесткости, теплостойкости), придания им различных специфических свойств и снижения стоимости. При изготовлении КМ конструкционного назначения основной целью наполнения является получение усиленного полимерного материала, т.е. материала с улучшенным комплексом физико‐механических свойств.

Достигается это как введением волокнистых армирующих наполнителей, так и тонкодисперсных наполнителей, рубленого стекловолокна, аэросила и др. При создании КМ со специальными свойствами наполнители, как правило, вводятся для того, чтобы придать материалу не механиче- ские, а другие, например, электрофизические свойства.

4.

Охарактеризуйте типы волокнистых наполнителей полимерных композиционных материалов.

Волокнистые наполнители занимают второе место после дисперсных по объему использования. Они применяются в виде нитей, жгутов, ровингов, при создании конструкционных, высокопрочных и высокомодульных КМ.

Волокнистые наполнители получают из металлов (сталь, железо, вольфрам, молибден, титан), кварца, базальта, керамики, полимеров. Наиболее распространенные стеклянные, углеродные, базальтовые, борные, полимерные волокна  диаметром 5-100 мкм, круглого и профильного сечений.

Особый интерес представляют монокристаллические волокна (нитевидные кристаллы или «усы»), полученные из металлов, их окислов, карбидов, нитридов. Они отличаются исключительно высоким модулем упругости и прочностью при растяжении.

По структуре волокнистые наполнители классифицируются на 4 группы: однонаправленные непрерывные, тканевые, объемного плетения и нетканые.

5.Особенности угленаполненных полимерных композиционных материалов.

6.Чем обусловлена анизотропия свойств в композиционном материале?

Анизотропия (от др. uреч. ἄνισος — неравный и τρόπος — направление) — зависимость свойств материала (например, механических: предела прочности, относительного удлинения, твердости, износостойкости и др.) от направления внутри этого материала.

Композиционные материалы представляют собой искусственные анизотропные материалы, созданные, как правило, из двух и более материалов, часто различной природы. Композиционный материал состоит из армирующего прочного материала (как правило анизотропного) и связующего изотропного вещества с более низкими свойствами.

Часто в качестве армирующего элемента используются высокопрочные волокна – графитовое или борное волокно, стекловолокно и т.д. (рис.6 а). Понятно, что в продольном сечении материал можно рассматривать как анизотропный (рис. 6 б), в поперечном сечении – как изотропный, т.к. сечение волокна сферическое (рис. 6в).

Из элементарных соображений понятно, что свойства композиционного материала вдоль волокна будут существенно отличаться от свойств в поперечном направлении. Этот случай анизотропии представляет собой частный случай анизотропии под названием ортотропия (от др. греч.

ὀρθός — прямой и τρόπος — направление) —различие свойств материала по взаимно перпендикулярным направлениям.

7.Назовите основные дисперсные наполнители, применяемые для получения полимерных композиционных материалов.

К дисперсным наполнителям, используемым для придания материалу специальных электрофизических свойств, относятся сажа, графит, порошки металлов, рубленые волокна для электропроводящих, порошки металлов и ферриты для магнитных КМ, порошки сегнетоэлектриков (например, титанат бария) для сегнетоэлектрических КМ. Ещё одной группой дисперсных наполнителей, которые всё чаще используются в настоящее время, являются полиме- ры в форме дисперсных частиц.

8. Дайте определение понятию «нанокомпозиционный материал».

Нанокомпозиты (наполнитель – частицы с размером менее 100 нм) являются уникальными материалами. Основные отличия их от макро- и микрокомпозитов заключаются в огромной удельной поверхности раздела наполнитель – матрица, в большой объёмной доле межфазной границы и малых средних расстояниях между частицами наполнителя.

9. Перечислите методы получения нанокомпозитов

Высокая поверхностная энергия и малый размер наночастиц требуют модификации традиционных способов смешения и разработки новых, специально приспособленных для преодоления указанных ограничений. Так, смешение в растворе обеспечивает эффективное дезагрегирование нанотрубок. Однако этот метод неприменим для нерастворимых полимеров.

Смешение в расплаве неэффективно в плане разрушения агрегатов наночастиц, но наиболее применимо для крупномасштабного производства. Полимеризация in situ обеспечивает сильное взаимодействие наполнителя и матрицы, что требуется в ряде случаев. Использование термореактивных матриц аналогично смешению в растворе.

Электроформование позволяет получать нити и волокна. В ряде случаев модификация и интенсификация традиционных способов смешения позволяет достичь желаемого результата. Так, например, использование сверхкритических жидкостей (СО2) в экструдере позволяет снизить вязкость расплава и эффективно диспергировать нанонаполнитель.

Аналогичного результата можно достичь, используя ультразвуковую интенсификацию экструзионного процесса.Среди новых способов формования нанокомпозитов следует отметить метод послойного формованияМетод набухания используется для введения нанотрубок в тонкий поверхностный слой полимера для придания антистатических свойств и повышения трещиностойкости.

10. Назовите основные методы получения полимерных композиционных материалов.

Метод формования – один из основных при получении углепластиков, он имеет разнообразные технологические оформления. Другой способ получения некоторых видов изделий из армированных пластиков (например, труб) – непрерывная намотка изделий. Для них используются нити, ровница и пряди. Сматываясь с бобин, они проходят через ванну, где пропитываются связующим компонентом и наматываются на вращающийся металлический сердечник. Таким образом, можно сказать, что технологические способы изготовления армированных КМ зависят от формы изделия, типа наполнителя и связующего. Кроме указанных выше методов применяют также контактновакуумное, центробежное, ручное формование и др. Последующая стадия – отверждение, условия которого определяются типом выбранного связующего (холодное и радиационно-химическое отверждение, высокочастотный нагрев и др.). Одним из перспективных новых методов получения КМ является метод полимеризационного наполнения, при котором полимер синтезируется из мономера в присутствии частиц наполнителя, на поверхность которого предварительно был нанесён катализатор. В этом случае процесс полимеризации начинается непосредственно на поверхности частиц наполнителя. КМ, полученный таким образом, характеризуется тесным контактом между матрицей и наполнителем и более равномерным распределением наполнителя в матрице, чем при смешении в расплаве или растворе полимера. Другим перспективным методом является наполнение полимеров металлами, при котором частицы наполнителя формируются в присутствии полимера. Этот способ заключается в восстановлении металлов из их солей методом противоточной диффузии соли и восстанови- теля непосредственно в полимерной матрице. В качестве матрицы берется либо водонабухающий полимер (ПВС и т.п.), либо пористый полимер, пористая структура которого сформирована, например, по механизму крейзинга. Последний представляет собой холодную вытяжку полимера в присутствии физически активных жидких сред (например, н-бутанола), при которой в полимере образуются особые зоны пластически деформированного полимера – крейзы, т.е. микропоры, разделённые фибриллами ориентированных макромолекул. Структура и количество микропор зависят от режима деформирования, температуры и т.д.Новый метод позволяет регулировать количество наполнителя в матрице, характер распределения частиц наполнителя и их размеры.

Филинова И. | Пластмассы. Их строение, свойства, применение. Термопластичные и термореактивные полимеры | Журнал «Химия» № 11/2006

Пластмассы

Цели. Продолжить знакомство с высокомолекулярными соединениями на примере пластмасс. Иметь представление о пластмассах, их составе и свойствах, особенностях термореактивных и термопластичных полимеров, способах их получения и областях применения. Научить учащихся доказывать некоторые свойства пластмасс в ходе выполнения химического эксперимента. Способствовать дальнейшему развитию интеллектуальных умений и навыков. Пропагандировать здоровый образ жизни, убеждать в необходимости охраны окружающей среды. Развивать логическое мышление учащихся, умение анализировать, сравнивать, делать выводы. Форма проведения урока – урок-исследование (2 ч). Оборудование и реактивы. Карточки с заданиями и теоретическим материалом, магнитофон, кассета с записью инструментальной музыки, спиртовка, спички, штатив для пробирок, пробиркодержатель, пробирки, химические стаканы, тигельные щипцы; образцы пластмасс (раздаточный материал), изделия из пластмасс, изготовленные по разным технологиям и с разной маркировкой (куски линолеума, кожзаменителя, полиэтиленовые пакеты, пластмассовая посуда, предметы бытовой химии, косметика, парфюмерия, лекарства в пластмассовых упаковках, пластиковые бутылки из-под растительного масла и газированной воды, шприцы), вода, серная кислота, щелочь. План «Мягкая посадка». Ода пластмассам. Пластмассы и их значение. Составные части пластмасс. Немного истории… Классификация пластмасс. Термопластичные и термореактивные полимеры. Самостоятельное изучение теоретического материала (работа в группах). Выступления учащихся, проведение исследований, выполнение химического эксперимента. Тест. Рефлексия.Заключительное слово учителя.

ХОД УРОКА

Сообщение учителем темы, цели и задач урока. Фронтальный опрос по домашнему заданию, в ходе которого учащиеся, правильно ответившие на вопрос учителя, получают оценки и садятся на свое место.

  • Мягкая посадка ожидает вас, Сядет тот за парту, кто покажет класс, Грамотно ответив на вопрос любой,
  • Останетесь довольны оценкой и собой.

1. Какие вещества относятся к высокомолекулярным соединениям (ВМС)?

(ВМС – это соединения, молекулы которых состоят из большого числа

повторяющихся звеньев.)

2. Приведите примеры природных ВМС.

(Органические соединения – целлюлоза, белки, крахмал, натуральный каучук;

неорганические – графит, силикаты.)

3. Что представляют собой искусственные и синтетические ВМС?

  1. (Искусственные ВМС получают из природных ВМС, используя химические методы, которые не изменяют главную цепь. Синтетические ВМС получают при помощи реакций полимеризации и поликонденсации
  2. низкомолекулярных веществ.)

4. Приведите примеры искусственных и синтетических полимеров.

(Искусственные органические полимеры – ацетил-целлюлоза, нитроцеллюлоза, резина; синтетические органические полимеры – полиэтилен, полистирол, поливинилхлорид, капрон, лавсан, каучуки; синтетические неорганические полимеры – стекловолокно,

керамические волокна.)

5. Как с греческого языка переводятся слова «полимер» и «мономер»?

(«Поли» – много, «моно» – один, «мерос» – часть. Полимеры – это высокомолекулярные соединения. Мономеры – это низкомолекулярные вещества,

из которых получают полимеры.)

6. Что такое «степень полимеризации»?

(Степенью полимеризации (поликонденсации) называют среднее число структурных звеньев

в молекуле полимера.)

7. Что такое «структурное звено»?

(Повторяющийся участок структуры молекулы полимера называют структурным звеном.)

8. Какие полимеры называют полимерами стереорегулярного строения?

(Полимеры стереорегулярного строения имеют регулярно расположенные радикалы

по одну или по обе стороны главной цепи.)

9. Чем отличаются реакции полимеризации от реакций поликонденсации?

(В ходе реакций полимеризации образуются только полимеры; при реакциях поликонденсации образуется полимер

и в качестве побочных продуктов – низкомолекулярные вещества.)

10. В чем особенность понятия «молекулярная масса полимера»?

(Указываемая для полимера относительная молекулярная масса является его средней относительной молекулярной массой,

т.к. степень полимеризации не является величиной постоянной.)

  • Ода пластмассам
  • Воспеть в стихах решила я Не шум осеннего дождя, Не ураган сверх всякой меры – Пластмассы, в общем, полимеры. И оду скромную свою
  • Я им сегодня ниспошлю.

Не знает нынче лишь невежда: Для книг обложки и одежда, Линолеум, пенал, портфель, Игрушек ярких карусель, Клеенки, куклы, изоленты, Обои, трубы и брезенты, Компьютер, телефон, часы,

И что-то просто для красы,

Кожзаменитель и тефлон, В диванах, креслах – поролон, В машинах разные детали, В квартирах окна ими стали, На стенах и на потолках Панели, плитка – просто ах! И упаковкой людям служат,

Имея их, врачи не тужат.

Там, где и легкость, и прочность нужна, И оптимальной должна быть цена, Чтоб вещь не билась и не ломалась, В кислотах и щелочах не растворялась, Здесь вам на помощь приходит пластмасса – Вот материал наивысшего класса! Могу я оду завершить –

Нам без пластмассы не прожить!

Но… в завершении стиха Вопрос возник: «В них нет греха?» Я предлагаю вам собраться, Во всем детально разобраться. Мы все исследуем, сравним, Рекомендации дадим. Вот цель урока – все узнать,

  1. Чтоб в своей жизни применять.
  2. Пластмассы и их значение
  3. Пластмассы (пластические массы, пластики) – это большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия.

Эти вещества состоят в основном из углерода С, водорода Н, кислорода О и азота N. Все полимеры имеют высокую относительную молекулярную массу – от 10 000 до 500 000 и более (для сравнения – кислород О2 имеет относительную молекулярную массу, равную 32). Таким образом, одна молекула полимера содержит очень большое число атомов.

Некоторые органические пластические материалы встречаются в природе, например асфальт, битум, шеллак, смола хвойных деревьев и копал (твердая ископаемая природная смола). Обычно такие природные органические формуемые вещества называют смолами. В ряде случаев в качестве сырья применяют природные полимеры – целлюлозу, каучук или канифоль.

Чтобы достичь желаемой эластичности, их подвергают различным химическим реакциям.

Например, целлюлозу посредством разнообразных реакций можно превратить в бумагу, моющие средства и другие ценные материалы; из каучука получают резину и изолирующие материалы, используемые как покрытия; канифоль после химической модификации становится более прочной и устойчивой к действию растворителей.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство используемых пластмасс являются синтетическими.

Органическое вещество с небольшой молекулярной массой (мономер) сначала превращают в полимер, который затем прядут, отливают, прессуют или формуют в готовое изделие.

Сырьем обычно являются простые, легкодоступные побочные продукты угольной и нефтяной отраслей промышленности или производства удобрений.

Составные части пластмасс

К составным частям пластмасс относятся: полимер (смола), наполнители, пластификаторы (эфиры), стабилизаторы, красители.

Например, термореактивные смолы по своей природе хрупкие и, за исключением фенольных, редко используются без волокнистых наполнителей. Чаще всего в качестве наполнителей применяют древесные опилки, хлопковые очесы, целлюлозные волокна и ткани, асбест и стекловолокно. Последнее позволяет получать слоистые структуры со значительно большей прочностью, чем целлюлозные или органические волокна.

Немного истории…

Первыми пластическими массами были эбонит (1843), целлулоид (1872) и галалит (1897), созданные на основе химически модифицированных природных полимеров – натурального каучука, нитроцеллюлозы и белковых веществ. Получение первых синтетических смол и пластмасс относится к началу ХХ столетия.

В начале столетия был освоен выпуск фенопластов (первые синтетические ВМС – бакелит и карболит представляют собой фенолформальдегидные смолы, полученные поликонденсацией фенола с формальдегидом), а после первой мировой войны – аминопластов. В 1930-х гг.

начался промышленный выпуск полистирола, поливинилхлорида, полиметилметакрилата и др.

Классификация пластмасс. Термопластичные и термореактивные полимеры

Термопластами называют все линейные или слегка разветвленные полимеры. Термопластичность – это свойство пластмасс многократно размягчаться при нагревании и затвердевать при охлаждении. При этом физическом процессе, похожем на повторяющиеся плавление и кристаллизацию, химических изменений не происходит.

Реактопласты (термореактивные, или термоотверждающиеся, пластмассы). Если процесс полимеризации протекает более чем в двух направлениях, то возникают молекулы, образующие не линейные цепи, а трехмерную сетку, реактопласты.

Эти полимеры можно размягчить нагреванием, но при охлаждении они превращаются в твердые неплавящиеся тела, которые невозможно снова размягчить без химического разложения.

Необратимое затвердевание вызывается химической реакцией сшивки цепей.

Важным процессом этого типа является присоединительная полимеризация дивинилбензола:

где R и R' – арилалкильные радикалы нелинейной полимеризации.

В дивинилбензоле две двойные винильные связи. В ходе полимеризации они образуют трехмерную сетчатую структуру. При нагревании полученный полимер медленно разлагается.

Хорошо известный реактопласт – фенолоформальдегидную смолу – получают поликонденсацией фенола с формальдегидом. Гидроксильная группа повышает активность атомов водорода бензольного кольца в положениях 2, 4 и 6, что позволяет образовывать связи в нескольких направлениях:

2,4,6-Тригидроксиметилфенол, реагируя с фенолом, отщепляет воду и образует трехмерную сетчатую структуру. Начальная стадия выглядит следующим образом:

Из вышесказанного следует простой и логичный вывод: все линейные полимеры термопластичны, а все сшитые сетчатые полимеры реактопластичны (термореактивны). Очевидно, структура мономерных единиц и их функциональных групп позволяет предсказать тип пластмассы, получаемой при полимеризации.

Печатается с продолжением

И.П.Филинова, учитель химии и экологии школы № 172

(пос. Архара, Амурская обл.)

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]