Перечислите механизмы и системы четырехтактных поршневых двигателей

Недавно наткнулся на прекрасный сайт (англ.), который по полочкам размусоливает и показывает строение большинства типов двигателей. Попытаюсь вольно и сжато пересказать самое на мой взгляд главное, совсем по пальцам и как для самых маленьких.

Конечно можно было бы позаимствовать точные определения из авторитетных источников, но такой любительский перевод обещает быть единственным в своем роде 🙂 А можете ли Вы сходу объяснить Вашей девушке, в чем отличие бензинового двигателя от дизельного? Четырёхтактного и двухтактного движков? Нет? Тогда приглашаю под кат.

Четырёхтактный двигатель

Работающий четырёхтактный двигатель впервые был представлен немецким инженером Николаусом Отто в 1876, с этих пор он также известен под названием цикл Отто. Но все же корректнее называть его четырёхтактным. Четырёхтактный двигатель является, наверное, одним из самых распространенных типов двигателей в наше время. Он используется почти во всех автомобилях и грузовиках.

Перечислите механизмы и системы четырехтактных поршневых двигателей

Под четырьма тактами подразумеваются: впуск, сжатие, рабочий ход, и выпуск. Каждый такт соответствует одному ходу поршня, вследствие этого рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала.

Впуск

Перечислите механизмы и системы четырехтактных поршневых двигателей Во время впуска поршень двигается вниз, втягивая свежую порцию воздушно-топливной смеси через впускной клапан. Отличительной особенностью рассматриваемого двигателя являтся то, что впускной клапан открывается за счет вакуума, образовавшегося в результате движения поршня вниз.

Сжатие

Перечислите механизмы и системы четырехтактных поршневых двигателей Крутящий момент подымает поршень, а тот в свою очередь сжимает воздушно-топливную смесь. Впускной клапан закрывается возрастающей силой давления, возникшей в результате поднятия поршня.

Рабочий ход

Перечислите механизмы и системы четырехтактных поршневых двигателей В верхней точке такта сжатия искра воспламеняет сжатое топливо. При сгорании топлива высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз.

Выпуск

Перечислите механизмы и системы четырехтактных поршневых двигателей Когда поршень достигает свою нижнюю точку, выпускной клапан открывается и выхлопные газы выгоняются из цилиндра движущимся наверх поршнем.

Двухтактный двигатель

Перечислите механизмы и системы четырехтактных поршневых двигателей В двухтактном двигателе рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки, с помощью вспомогательного агрегата — продувочного насоса. Wiki Так как в двухтактном двигателе на каждое движение коленчатого вала приходится один рабочий ход — двухтактные двигатели всегда мощнее четырехтактных (если брать двигатели одинакового объема). Важным фактором в пользу первых является их более простая и легкая конструкция. Эти двигатели получили распространение в бензо-пилах, лодочных моторах, снегоходах, легких мотоциклах и моделях самолетов. Бесспорными минусами данного типа двигателей являются их неэкономичность, так как значительная доля топлива не выгорает и выбрасывается вместе с выхлопными газами.

Впуск

Перечислите механизмы и системы четырехтактных поршневых двигателей Воздушно-топливная смесь всасывается в кривошипную камеру благодаря ваккууму, который создается во время движения поршня вверх.

Сжатие в камере сгорания

Перечислите механизмы и системы четырехтактных поршневых двигателей Во время сжатия впусковой клапан закрывается давлением в кривошипной камере. Топливная смесь сжимается на последней стадии такта.

Движение топливной смеси/выпуск

Перечислите механизмы и системы четырехтактных поршневых двигателей Ближе к концу такта, поршень заставляет сжатую воздушно-топливную смесь двигаться по впускному каналу из кривошипной камеры в главный цилиндр. Воздушно-топливная смесь вытесняет выхлопные газы, которые покидают главный цилиндр через выпускной клапан. К сожалению, цилиндр также покидает некоторое количество невыгоревшего топлива, из-за чего конструкция двухтактного двигателя считается менее экономичной.

Сжатие

Перечислите механизмы и системы четырехтактных поршневых двигателей После чего поршень подымается, движимый крутящим моментом, и сжимает топливную смесь. (В этот момент под поршнем происходит следующий такт впуска).

Рабочий ход

На вершине такта свеча зажигания воспламеняет топливную смесь. Возникшая энергия заставляет поршень двигаться вниз до завершения цикла. (В этот момент внизу цилиндра топливо сжимается в кривошипной камере).

Четырёхтактный дизельный двигатель

Особенностью дизельного двигателя является измененная система воспламенения топлива. Создав свой тип двигателя в 1897 Рудольф Дизель заявил, что его двигатель является самым эффективным из когда-либо созданных. До сих пор его детище стоит в ряду самых экономичных двигателей.

  • Впуск
  • Сжатие
  • Впрыск
  • Рабочий ход
  • Выпуск

Впускной клапан открывается и свежий воздух (без топлива), засасывается в цилиндр. Когда поршень подымается, воздух сжимается и температура в цилиндре возрастает.

В конце такта воздух раскаляется настолько, что температуры становится достаточно дря воспламенения топлива Возле вершины такта сжатия топливный инжектор впрыскивает топливо в цилиндр. При контакте с горячим воздухом топливо воспламеняется.

При сгорании топлива высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз. Выпускной клапан открывается, заставляя выхлопные газы покинуть цилиндр.

Роторно-поршневой двигатель внутреннего сгорания (двигатель Ванкеля)

Роторно-поршневой двигатель Ванкеля удивительное творение, предлагающее очень замысловатую перепланировку четырех тактов Отто-цикла. Был разработан Феликсом Ванкелем в 50-х годах прошлого века.

В двигателе Ванкеля трехгранный ротор с кольцевой шестернью вращается вокруг фиксированого зубчатого вала в продолговатой камере.

В наше время наибольшие усилия по разработке и популяризации данного типа двигателя прилагает Mazda, но все же четерыхтактный двигатель остается наиболее популярным. Также АвтоВАЗ использует данный тип двигателя в автожирах.

  • Преимущества перед обычными бензиновыми двигателями:
  • низкий уровень вибраций. Роторно-поршневой двигатель полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров
  • главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного поршневого двигателя внутреннего сгорания.
  • Высокая удельная мощность(л.с./кг), причины:
  • меньшие в 1,5-2 раза габаритные размеры.
  • меньшее на 35-40 % число деталей
  • Недостатки:
  • Быстрый износ
  • Склонности к перегреву
  • Сложность в производстве
  • Меньшая экономичность при низких оборотах
  1. Впуск
  2. Сжатие
  3. Рабочий ход
  4. Выпуск

Воздушно-топливная смесь попадает через впускной клапан на этом этапе вращения. Топливная смесь сжимается здесь. Рабочий ход, топливная смесь воспламеняется здесь, вращая ротор по кругу. Выхлопные газы выходят здесь

Двигатель на CO2

  • Впуск
  • Рабочий ход
  • Выпуск
  • Окончание

Этот типа двигателя может приводится в действие паром, но чаще его можно встретить в маленьких моделях самолетов, где он работает на сжатом воздухе или углекислом газу.

На этой анимации отображен резервуар с CO2.

Сжатый CO2 — это жидкость, которая освобождаясь переходит в газообразное состояние или же другими словами — при нормальных атмосферной температуре и давлении жидкий углекислый газ кипит, следовательно мы не ошибемся если скажем, что данный тип двигателя работает на пару CO2.

На вершине цикла поршневой палец давит на шариковый клапан впуская находящийся под большим давлением газ в цилиндр. Газ расширяется двигая поршень вниз Когда поршень открывается выпускной клапан, находящийся под давлением газ покидает цилиндр. Крутящий момент возвращается поршень наверх, чтобы завершить цикл.

Реактивные двигатели

Ракетные и турбореактивные двигатели, по словам автора, поразительны по своей конструкции, но анимация их работы по его мнению слишком скучна.

Ракетный двигатель

Ракетный двигатель — простейшие из своего семейства, поэтому начнем с него. Для того, что функционировать в открытом космосе ракетные двигатели для своей работы требуют запас кислорода, ровно как и топлива.

Кислородно-топливная смесь впрыскивается в камеру сгорания где она беспрерывно сгорает. Газ под большим давлением выходит через сопла, вызывая тягу в обратном направлении.

Чтобы опробовать этот принцип самому, надуйте игрушечный шарик и выпустите его из рук — ракетный двигатель работает почти так-же 😉

Турбореактивный двигатель

    Турбореактивный двигатель работает по тому-же принципу что и ракетный, с той лишь особенностью, что необходимый для горения кислород он берет из атмосферы. По своей конструкции он наиболее эффективен на больших высотах с разряженным воздухом.

    Момент схожести: топливо беспрерывно сгорает в камере сгорания как и в ракетном. Расширевшийся газ покидает камеру сгорания через сопла, образуя тягу в обратном направлении. Отличия: На своем пути из сопла некоторое количество давления газа ипользуется, чтобы раскрутить турбину. Турбина — это серия винтов, соединенныходним валом.

    Читайте также:  Микросхема omvk2p300 1242u bfs12ag1 и ее аналоги

    Между каждой парой винтов находится статор (направляющий аппарат компрессора). Этот аппарат помогает газу проходить через лопасти винтов более эффективно. Перед двигателем турбинный вал раскручивает компрессор. Компрессор работает схоже с турбиной, только в обратную сторону.

    Его функцией является повышение давления воздуха, попадающего в двигатель. Турбина выталкивает воздух, а компрессор засасывает.

    Турбовинтовой двигатель

    Турбовинтовой двигатель схож турбореактивным, с той лишь особенностью, что газ покидающий камеру сгорания вращает в большей степени турбину, которая в свою очередь вращает винт преед двигателем. Он и создает тягу. Эффективен на малых высотах.

    Турбовентиляторный двигатель

    Турбовентиляторный двигатель — это что вроде компромисса между турбореактивным и турбовинтовым. Он работает как турбореактивный, но есть одна особенность: турбинный вал вращает внешний вентялятор, который имеет больше лопастей и крутится быстрее пропеллера. Это помогает данному двигателю оставаться эффективным на больших высотах, где воздух рязряжен. Источники:

    www.animatedengines.com

    • Ultimate Visual Dictionary, DK Publishing Inc., 1999
    • Building the Atkinson Cycle Engine, Vincent Gingery, David J Gingery Publishing, 1996
    • The Stirling Engine Manual, James G. Rizzo, Camden Miniature Steam Services, 1995
    • Modern Locomotive Construction, J. G. A. Meyer, 1892, reprinted by Lindsay Publications Inc., 1994
    • Five Hundred and Seven Mechanical Movements, Henry T. Brown, 1896, reprinted by The Astragal Press, 1995
    • Model Machines/Replica Steam Models, Marlyn Hadley, Model Machine Co., 1999
    • Air Board Technical Notes, RAF Air Board, 1917, reprinted by Camden Miniature Steam Services, 1997
    • Internal Fire, Lyle Cummins, Carnot Press, 1976
    • Toyota Web site Prius specifications
    • Steam and Stirling Engines you can build, book 2, various authors, Village Press, 1994
    • Knight’s New American Mechanical Dictionary, Supplement Edward H. Knight, A.M., LL. D., Houghton, Mifflin and Company, 1884
    • Thomas Newcomen, The Prehistory of the Steam Engine L. T. C. Rolt, David and Charles Limited, 1963
    • An Introduction to Low Temperature Differential Stirling Engines James R. Senft, Moriya Press, 1996
    • An Introduction to Stirling Engines James R. Senft, Moriya Press, 1993

    UPD: Добавил двигатели Ванкеля и CO2, они мне показались наиболее интересными и практически полезными.

    UPD2: Добавил описание целого семейства реактивных двигателей: ракетный, турбореактивный, турбовинтовой, турбовентиляторный.

    Четырехтактный двигатель от А до Я: чем отличается от двухтактного, принцип работы, фазы газораспределения

    Четырехтактный двигатель – самая распространенная модель двигателя внутреннего сгорания для автомобилей и не только. Двухтактные ДВС сегодня применяются, но сфера их использования ограничена некоторыми видами мототехники, микро- и малолитражных автомобилей, снегоходов, катеров и т. п.

    Широко применяется как бензиновый (обычно карбюраторный), так и дизельный тип. Часто такой двигатель бывает двухцилиндровый, его тип обычно инжекторный.Перечислите механизмы и системы четырехтактных поршневых двигателей

    История четырехтактного двигателя

    Началом истории самого популярного ДВС считаются 70-е годы 19 века, тогда первую рабочую модель такого мотора представил немецкий инженер и предприниматель Николаус Отто. Его работы были основаны на трудах предшественников, пытавшихся найти альтернативу паровой машине.

    В начале 19 века французский изобретатель Филипп Лебон создал агрегат, в котором благодаря его же открытиям, горючая смесь загоралась в цилиндре двигателя, а не в топке.

    В середине века в Бельгии был создан двухтактный двигатель внутреннего сгорания, который затем усовершенствовал Отто.

    Его четырехтактный движок обладал более высоким КПД, был экономичней и не превосходил предшественника по размерам.

    Отто не оценил перспектив своего изобретения, и не прислушался к своему сотруднику – Готлибу Даймлеру, который предложил создать на основе четырехтактного двигателя автомобиль.

    Даймлер ушел из команды Отто и через несколько лет такой автомобиль все-таки создал. Попутно добавил в него несколько своих идей. Например – вставил в цилиндры трубки накаливания.

    Во второй половине 19 века был изобретен карбюратор, а конце века к нему добавили форсунку.

    С тех пор кардинально четырехтактный ДВС переделывать не пришлось. Основная сфера современных изобретений – газораспределительная система, конструктивные модификации – OHV, SV или OHC (аббревиатуры означают расположение клапанов и распредвала), а также варианты системы смазки («сухой» картер).

    Устройство четырехтактного ДВС

    Современный двигатель по сути не отличается от прототипов, поэтому проще всего его функционирование показать на примере одноцилиндрового ДВС.

    Конструктивно он состоит из:

    • Цилиндра.
    • Поршня.
    • Клапанов впуска и выпуска.
    • Свечи зажигания.
    • Коленчатого вала.
    • Шатуна.

    Принцип работы

    Перечислите механизмы и системы четырехтактных поршневых двигателей Схема работы четырехтактного двигателя; заполнить цилиндр горючей смесью (первый такт), сжать ее (второй), поджечь и расширить ее, толкнув поршень (третий), выпустить отработанный газ (четвертый).

    Фазы газораспределения в четырехтактном ДВС

    Фазы газораспределения – один из главных факторов эффективности мотора. Они напрямую влияют на его КПД. Основная проблема, связанная с ними, заключается в том, что при различных режимах смесь и выхлоп ведут себя по-разному.

    ВАЖНО!Для холостого хода подойдут малые фазы (позднее открытие и раннее перекрытие клапанов). На высоких оборотах, наоборот, выгодно раннее время открытия клапанов, благодаря чему можно обработать больший объем газов.

    В современной автомобильной промышленности эта проблема обычно решается с помощью специальной муфты, изменяющей угол распредвала при увеличении оборотов двигателя. Эта муфта называется фазовращателем, она управляется электронной системой и поворачивается гидравликой. Благодаря ей, при повышении оборотов обеспечивается раннее открытие клапанов, то есть – нужный темп наполняемости цилиндров.

    Способов изменения фаз множество. Например, кулачок с измененным профилем, начинающий работать вместо основного при достижении заданного показателя высоких оборотов. Это позволяет добиться повышенной мощности.

    Рабочий цикл

    Последовательность тактов выглядит так:

    • Такт впуска. За счет вращения коленвала поршень из самой верхней точки идет в самую нижнюю, кулачки распредвала открывают клапан на впуск. Через него всасывается смесь.
    • Такт сжатия. Коленвал толкает поршень вверх, впускной клапан закрывается, выпускной остается закрытым. Температура и давление в цилиндре растут.
    • Такт расширения. Перед завершением сжатия, свеча зажигания воспламеняет смесь. Топливо сгорает, смесь расширяется и двигает поршень. Связанный с поршнем шатун передает вращательный момент коленвалу. При расширении газы проделывают работу, поэтому ход коленвала называется рабочим. Угол «недоворота» коленвала, который еще не довел поршень до максимальной верхней точки называется углом опережения зажигания (фазой газораспределения). Это делается, чтобы смесь успевала сгореть к моменту достижения поршнем нижней точки. Для повышения эффективности ДВС надо регулировать угол при повышении оборотов. Эти углы регулируются электронной системой автомобиля.
    • Такт выпуска. При достижении поршнем самой нижней точки, сила давления вытесняет выхлопные газы из цилиндра через открывшийся выпускной клапан. После достижения поршнем верхней точки выпускной клапан вновь закрывается, рабочий цикл повторяется.

    Масло для четырехтактного двигателя

    Масла делятся на два типа – для двигателей с воздушным и водяным охлаждением. Температура поршней в моторах с воздушным охлаждением гораздо выше, чем в случае с водяным, поэтому первые более требовательны к маслу.

    Хотя в зимний период техника с воздушным охлаждением четырехтактного двигателя используется реже (в основном садовая и сельскохозяйственная техника, мотоциклы, моторные лодки и т.д используются летом), вопрос для ее владельцев стоит достаточно остро.

    Зимой актуально масло для квадроциклов, снегоходов и т.д.Перечислите механизмы и системы четырехтактных поршневых двигателей

    Главное, и летом и зимой – это характеристики, позволяющие маслу сразу после запуска двигателя создать защитную пленку на механизмах. Это важно, даже если двигатель новый или бывший в употреблении, но в идеальном состоянии. Сравнительный анализ разных марок показывает, что масло может быть минеральным или синтетическим.

    Разница между летними и зимними маслами определяется степенью вязкости и шириной диапазона температур, при которых конкретные марки масла можно применять.

    Число перед литерой W указывает на предел температуры, при которой масло густеет. Число после означает предельную температуру эффективного использования этого масла. Бывают всесезонные масла, например, 10w30.

    Аббревиатура SAE обозначает международный стандарт, по которому классифицируются моторные масла.

    ВАЖНО! Зимние масла обладают самой низкой вязкостью, это SAE 0W, SAE 15W и другие. Летние более вязкие: SAE 20, SAE 30, SAE 50. Применяемое масло должно соответствовать показателям, указанным в спецификации к технике.

    Читайте также:  Как переделать конский плуг под мотоблок видео

    Высоковязкие масла, например, Sae 30 или Sae 40 ориентированы на летний период, а низковязкие (5W30 или близкие к нему) на зимний. Зимние масла летом будут ускоренно испаряться и не обеспечат смазку. Летние масла будут быстро густеть при низких температурах, осложняя работу мотора.

    Понижающие редукторы для четырехтактных двигателей

    Понижающий редуктор – устройство, которое должно понижать скорость с высокой с низким крутящим моментом до низкой с высоким крутящим моментом. Особенно они актуальны для сельскохозяйственной и садовой техники.

    Среди самых популярных брендов, которые производят такие двигатели, обычно мощностью порядка 15лс – японская «Хонда» и китайский «Лифан» (есть модели с вариатором, автоматическим сцеплением).

    Также популярен американский производитель Briggs & Stratton, его двигатели используются в газонокосилках (бензотриммерах).

    Среди популярных двигателей с редукторами – «Чемпион» и его аналог, «Патриот Гарден».

    ВАЖНО! Редукторы делятся на два типа: разборные и неразборные. Их действие одинаково. Второй вариант дешевле, но если возникнет неисправность, потребуется его замена. Разборный дороже, но в случае необходимости надо заменять только поломавшуюся запчасть. Обычно он ставится на сопоставимую по стоимости технику.

    Чем отличается двухтактный двигатель от четырехтактного

    Характеристика Четырехтактный двигатель Двухтактный двигатель
    Мощность Меньшая мощность из-за большего количества тактов. Наддув дает дополнительную мощность. При одинаковых оборотах, диаметре цилиндра и хода поршня мощность (теоретически) в 2 раза больше. На практике, из-за механических потерь – примерно в 1,5 раза.
    Эксплуатационные качества Больший эксплуатационный ресурс. Процесс ремонта может протекать сложнее, должен осуществляться с использованием сложного оборудования. Простота конструкции, ремонта. Отсутствие сложных устройств: карбюратора, клапанов. Преимущество по показателю равномерности вращения коленвала. Меньший эксплуатационный ресурс из-за более высокой температурной нагрузки на поршневой механизм.
    Экономичность Низкий, по сравнению с двухтактным расход топлива и масла. Более высокие затраты на ремонт. Высокие затраты мощности на продувочный насос, недостаточная очистка цилиндра от выхлопных газов. Минус – высокий расход топлива и масла, которое приходится заливать в топливо.
    Вес Больше двухтактного. Меньший вес за счет отсутствия крупногабаритных сложных деталей.
    Размер Больше двухтактного. Меньший размер за счет отсутствия крупногабаритных сложных деталей.
    Цена Выше двухтактного. Ниже четырехтактного.
    Сфера применения Двигатели средней и большой мощности, в том числе стационарные. Используются как двигатель под инверторный генератор. Популярна их установка на снегоходы «Рысь» и «Тайга», мотороллеры «Муравей». Плавсредства, сельскохозяйственная и мототехника, малолитражные автомобили.

    Таким образом, четырехтактные двигатели дороже сопоставимых по объему двухтактных и сложнее в эксплуатации. В тоже время они имеют больший срок эксплуатации и более экономичны. Четырехцилиндровый 4 тактный двигатель часто ставится на автомобили и тракторы, на инвертор-генераторы.

    ВАЖНО! При выборе двигателя стоит рассчитать планируемый срок его эксплуатации. Если это техника для сельскохозяйственных работ, хорошо будет сделать расчет – за какой срок вложения могут окупиться.

    Индикаторная диаграмма 4 х тактного дизельного двигателя

    Перечислите механизмы и системы четырехтактных поршневых двигателей

    Перечислите механизмы и системы четырехтактных поршневых двигателей

    Вам также может понравиться

    Двигатель. Классификация, механизмы и системы ДВС

    На современных тракторах и автомобилях в основном применяют поршневые двигатели внутреннего сгорания. Внутри этих двигателей сгорает горючая смесь (смесь топлива с воздухом в определенных соотношениях и количествах). Часть выделяющейся при этом теплоты преобразуется в механическую работу.

    Классификация двигателей

    Поршневые двигатели классифицируют по следующим признакам:

    • по способу воспламенения горючей смеси — от сжатия (дизели) и от электрической искры
    • по способу смесеобразования — с внешним (карбюраторные и газовые) и внутренним (дизели) смесеобразованием
    • по способу осуществления рабочего цикла — четырех- и двухтактные;
    • по виду применяемого топлива — работающие на жидком (бензин или дизельное топливо), газообразном (сжатый или сжиженный газ) топливе и мно­готопливные
    • по числу цилиндров — одно- и многоцилиндровые (двух-, трех-, четырех-, шестицилиндровые и т.д.)
    • по расположению цилиндров — однорядные, или линейные (цилиндры расположены в один ряд), и двухрядные, или V-образные (один ряд цилиндров размещен под углом к другому)

    На тракторах и автомобилях большой грузоподъемности применяют четырехтактные многоцилиндровые дизели, на автомобилях легковых, малой и средней грузоподъемности — четырехтактные многоцилиндровые карбюра­торные и дизельные двигатели, а также двигатели, работающие на сжатом и сжиженном газе.

    Основные механизмы и системы двигателя

    Поршневой двигатель внутреннего сгорания состоит из:

    • корпусных деталей
    • кривошипно-шатунного механизма
    • газораспределительного механизма
    • системы питания
    • системы охлаждения
    • смазочной системы
    • системы зажигания и пуска
    • регулятора частоты вращения

    Устройство четырехтактного одноцилиндрового карбюраторного двигателя показано на рисунке:

    Перечислите механизмы и системы четырехтактных поршневых двигателей

    Рисунок.

    Устройство одноцилиндрового четырехтактного карбюра­торного двигателя:
    1 — шестерни приводи распределительного вала; 2 — распределительный вал; 3 — толкатель; 4 — пружина; 5 — выпускная труба; 6 — впускная труба; 7 — карбюратор; 8 — выпускной кла­пан; 9 — провод к свече; 10 — искровая зажигательная свеча; 11 — впускной клапан; 12 — го­ловка цилиндра; 13 — цилиндр: 14 — водяная рубашка; 15 — поршень; 16 — поршневой палец; 17 — шатун; 18 — маховик; 19 — коленчатый вал; 20 — резервуар для масла (поддон картера).

    Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение ко­ленчатого вала и наоборот.

    Механизм газораспределения (ГРМ) предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и вы­пуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

    Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (в карбюраторном и газовом двигателях) или наполнения ци­линдра воздухом и подачи в него топлива под высоким давлением (в дизеле). Кроме того, эта система отводит наружу выхлопные газы.

    Система охлаждения необходима для поддержания оптимального теп­лового режима двигателя. Вещество, отводящее от деталей двигателя избы­ток теплоты, — теплоноситель может быть жидкостью или воздухом.

    • Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлажде­ния, защиты от коррозии и вымывания продуктов изнашивания.
    • Система зажигания служит для своевременного зажигания рабочей смеси электрической искрой в цилиндрах карбюраторного и газового двига­телей.
    • Система пуска — это комплекс взаимодействующих механизмов и сис­тем, обеспечивающих устойчивое начало протекания рабочего цикла в ци­линдрах двигателя.
    • Регулятор частоты вращения — это автоматически действующий меха­низм, предназначенный для изменения подачи топлива или горючей смеси в зависимости от нагрузки двигателя.
    • У дизеля в отличие от карбюраторного и газового двигателей нет сис­темы зажигания и в системе питания вместо карбюратора или смесителя ус­тановлена топливная аппаратура (топливный насос высокого давления, топ­ливопроводы высокого давления и форсунки).

    (1

    Четырехтактный двигатель, устройство и принцип работы

    Рабочим циклом двигателя внутреннего сгорания называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом рабочем цилиндре.

    Главная задача рабочего процесса заключается в превращение тепловой энергии от сгорания рабочего тела в механическую работу, в частности во вращательное движение коленчатого вала.

    Автомобильные двигатели чаще всего работают по четырёхтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска.

    В карбюраторном четырёхтактном двигателе рабочий цикл происходит следующим образом.

    Рабочий цикл карбюраторного двигателя:

    — Такт впуска

    В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). В это время кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.

    Перечислите механизмы и системы четырехтактных поршневых двигателей— Такт сжатия

    Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степенью сжатия.

    Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с большим октановым числом, которое дороже.

    Такт расширения, или рабочий ход

    Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время движения поршня из ВМТ в НМТ топливо сгорает и под действием тепла сгоревшего топлива рабочая смесь расширяется толкая поршень.

    Читайте также:  Как сделать освещение под навесом

    При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют «рабочим ходом».

    Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно, поэтому при последующем впуске свежей горючей смеси она перемещается с остаточными отработавшими газами и называется «рабочей смесью».

    Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы сгорание топлива успело, полностью закончится к моменту достижения поршнем НМТ, то есть для наиболее эффективной работы двигателя.

    Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством (центробежным и вакуумным регулятором, воздействующим на прерыватель). В современных двигателях для регулировки угла опережения зажигания используют электронику.

    Смотрите анимацию, она наглядно демонстрирует процесс работы четырехтактного двигателя.

    — Такт выпуска

    После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет выхлопные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается, и цикл начинается сначала.

    Как диагностировать состояние двигателя по цвету выхлопных газов читайте в соответствующей статье.

    Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06-0,12.

    По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

    Рабочий цикл дизельного двигателя

    Рабочие циклы четырёхтактного дизеля и карбюраторного двигателя существенно различаются по способу смесеобразования и воспламенения рабочей смеси.

    Основное отличие состоит в том, что в цилиндр дизеля при такте впуска поступает не горючая смесь, а воздух, который из за большой степени сжатия нагревается до высокой температуры, а затем в него впрыскивается мелкораспыленное дизельное топливо, которое под действием высокой температуры воздуха — самовоспламеняется.

    В четырёхтактном дизеле рабочие процессы происходят следующим образом

    — Такт впуска

    При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан поступает атмосферный воздух.

    — Такт сжатия

    Поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива.

    — Такт расширения, или рабочий ход

    При подходе поршня к ВМТ в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом высокого давления (ТНВД).

    Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления.

    Под действием давления газов поршень перемещается от ВМТ к НМТ. Происходит рабочий ход.

    — Такт выпуска

    Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

    Тепловой и динамический расчет 4-х тактных ДВС изучайте и читайте в этой бесплатной программе

    На этом видео показана работа реального двигателя. Камера встроена в цилиндр блока.

    Недостатки четырёхтактных двигателей:

    Все холостые ходы (впуск, сжатие, выпуск) совершаются за счёт кинетической энергии, запасённой кривошипно-шатунным механизмом и связанными с ним деталями во время рабочего хода, в процессе которого химическая энергия топлива превращается в механическую энергию движущихся частей двигателя.

    Поскольку сгорание происходит в доли секунд, то оно сопровождается быстрым увеличением нагрузки на крышку (головку) цилиндра, поршень и другие детали двигателя внутреннего сгорания.

    Наличие такой нагрузки неизбежно приводит к необходимости увеличить массу движущихся деталей (для повышения прочности), что в свою очередь сопровождается ростом инерционных нагрузок на движущиеся детали.

    К недостаткам можно отнести и необходимость регулировки теплового зазора клапанов, большее количество деталей и, соответственно, каждую из них потребуется когда-то поменять на исправную.

    Четырехтактные ДВС имеют большие размеры, их детали более объёмны и сложны.

    Для осуществления ремонта таких двигателей, необходимо использовать тяжелое гаражное оборудование: стенды-кантователи, стенды для ремонта ДВС, кран-манипулятор и т.д.

    Преимущества четырёхтактных двигателей:

    1. Экономичность расхода топлива за счет меньшего количества рабочих ходов в единицу времени;
    2. Надежность обусловлена тепловым режимом, который у 4-х тактных ДВС более мягкий;
    3. Двигатель работает значительно тише чем свой двухтактный собрат.

    В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению смазочного материала в топливо, — коленвал четырехтактного двигателя смазывается принудительно давлением. На зеркале поршня и стенках глушителя и выхлопной системе образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс топливной смеси в выхлопную трубу и влияет на экологию. С экологией у отдельная проблема. 😉

    Основные механизмы и системы двс. Их назначение

    • Двигатели внутреннего сгорания, используемые на легковых автомобилях, состоят из двух механизмов: кривошипно-шатунного и газораспределительного, а также следующих пяти систем:
    • — системы питания;
    • — системы зажигания;
    • — системы охлаждения;
    • — системы смазки;
    • — системы выпуска отработавших газов.

    Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания.

    Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания.

    Смазочная система служит для подачи масла к взаимодействующим деталям с целью уменьшения силы трения и частичного их охлаждения, наряду с этим циркуляция масла приводит к смыванию нагара и удалению продуктов изнашивания.

    Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод теплоты от сильно нагревающихся при сгорании рабочей смеси деталей цилиндров поршневой группы и клапанного механизма.

    Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя.

    Итак, четырехтактный поршневой двигатель состоит из цилиндра и картера, который снизу закрыт поддоном. Внутри цилиндра перемещается поршень с компрессионными (уплотнительными) кольцами, имеющий форму стакана с днищем в верхней части.

    Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек, щек и шатунной шейки.

    Цилиндр, поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм.

    Сверху цилиндр накрыт головкой с клапанами и, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а следовательно, и с перемещением поршня.

    Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю. Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее его положение — нижняя мертвая точка (НМТ).

    Безостановочное движение поршня через мертвые точки обеспечивается маховиком, имеющим форму диска с массивным ободом.

    Расстояние, проходимое поршнем от ВМТ до НМТ, называется ходом поршня S, который равен удвоенному радиусу R кривошипа: S = 2R.

    Пространство над днищем поршня при нахождении его в ВМТ называется камерой сгорания; ее объем обозначается через Vс; пространство цилиндра между двумя мертвыми точками (НМТ и ВМТ) называется его рабочим объемом и обозначается Vh.

    Сумма объема камеры сгорания Vс и рабочего объема Vh составляет полный объем цилиндра Vа: Vа = Vс + Vh.

    Рабочий объем цилиндра (его измеряют в кубических сантиметрах или метрах): Vh = пД ^ 3 * S/4, где Д — диаметр цилиндра.

    Сумму всех рабочих объемов цилиндров многоцилиндрового двигателя называют рабочим объемом двигателя, его определяют по формуле: Vр = (пД ^ 2 * S)/4 * i, где i — число цилиндров.

    Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия: E = (Vc + Vh)Vc = Va/Vc = Vh/Vc + 1. Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность.

    Ссылка на основную публикацию
    Для любых предложений по сайту: [email protected]