Плотность стали в мм3

Первые упоминания о стали содержатся в индийские источники, датируемые приблизительно 1 тысячелетием до н. э. Стальные мечи, изготовленные индийскими мастерами, были прочнее и острее бронзовых. Сталь обрабатывалась на Ближнем Востоке и в Древнем Риме. Именно стальные мечи и доспехи помогли римским легионам в их победоносном шествии по античному миру.

Второе рождение материала произошло в 19 веке, года был разработан мартеновский метод ее выплавки, позволяющий получать сплавы высокого и стабильного качества в больших количествах. В 20 веке сталь стала основным конструкционным материалом. Одной из важных характеристик любого материала, является его плотность — масса вещества в единице объема.

Плотность стали в мм3

Плотность стали

Плотность измеряется в граммах на кубический сантиметр или в тоннах на кубометр. Цифровое значение плотности для этих двух единиц измерения будет совпадать. Плотность одного и того же материала при разной температуре меняется вследствие явления теплового и объемного расширения. У большинства веществ, включая металлы, плотность с ростом температуры падает.

Плотность стали конструкционной легированной

Конструкционные легированные сплавы применяются в производстве высоконагруженных ответственных конструкций, в том числе работающих в агрессивных средах. Плотность марки 30ХГСА близка к стандартному значению в 7,85 т/м3плотность стали конструкционной низколегированной для сварных конструкций

Низколегированные сплавы обладают прекрасной свариваемостью и высокой стойкостью к коррозии, поэтому их широко применяют для ответственных конструкций в строительстве и кораблестроении. УВ стали этой группы колеблется в пределах 7,85-7,87 т/м3 и приведен в таблице:

Группа Марка Плотность
низколегированная конструкционная 09Г2С 7,85
высоко-углеродистая 70 (ВС и ОВС) 7,85
среднеуглеродистая 45 7,85
мало-углеродистая 10, 10А, 20, 20А  7,85
углеродистая конструкционная Ст3сп, Ст3пс 7,87

Плотность стали конструкционной повышенной обрабатываемости

Удельный вес стали 30ХГСА, применяемой для валов, осей, рычагов составляет 7,85 т/м3. При нагреве до 200 ºС он снижается до 7,8. Плотность стали конструкционной подшипниковой марки 35ХГ2 равна 7,8 т/м3.

Удельный вес стали 12Х2Н4А, применяемой для создания высоконагруженных шестерен, поршневых пальцев и т. п., составляет 7,84 т/м3 при 20 ºС и снижается до 7,63 при нагреве до 600 ºС

Плотность стали конструкционной рессорно – пружинной

Рессорно-пружинные сплавы обладают повышенной упругостью при сохранении высокой прочности и применяются для изготовления элементов упругости механизмов — рессор, пружин, амортизаторов. Плотность марки 65Г составляет 7,85 т/м3.

Плотность стали конструкционной углеродистой качественной

Сталь качественная конструкционная углеродистая марок 10, 20, 30, 40 имеет плотность 7,85 т/м3

Плотность нержавеющей стали

Плотность вещества вычисляется путем деления массы объекта на его объем. Такие вычисления для всех известных человеку веществ уже сделаны, и метрологические службы периодически повторяют и уточняют эти измерения. На практике перед людьми встает другая практическая задача: зная материал, из которого изготовлено изделие, определить его массу.

Плотность вещества также называют удельной массой (или, в быту, удельным весом) — т. е. массой сплошного физического тела изготовленного из данного вещества и имеющего единичный объем.

Плотность стали в мм3

Нержавеющая сталь

Следует отметить, что, используя термин «масса», в 99% случаев люди имеют дело с весом — силой притяжения физического тела к Земле.

Дело в том, что для определения массы тела в строгом физическом смысле требуется сложное оборудование, доступное лишь в крупнейших научных центрах.

Для практического применения в большинстве случаев достаточно обычных, более или менее точных весов, использующих гравитацию Земли и пружины, либо рычаги и стандартные гири, либо пьезоэлементы.

На практике, чтобы рассчитать вес погонного или квадратного метра металлопроката используют удельную массу, или плотность материала, из которого он изготовлен. В справочниках по сортаменту металлопроката среди основных характеристик каждого сорта обязательно указывается масса погонного или квадратного метра и значение плотности, использованное при вычислениях.

В большинстве случаев расчета по массе погонного или квадратного метра хватает для практических применений. Сырье и комплектующие закупаются с некоторым нормированным запасом, а перед отгрузкой потребителю изделие взвешивают на весах для точных взаиморасчетов между контрагентами.

Однако нужно понимать, что данные в справочнике рассчитываются на основании стандартной плотности стали, чаще всего это 7,85 т/м3. В то же время фактическая плотность стали конкретной марки зависит от состава и удельного количества присадок и может колебаться от 7,6 до 8,8 т/м3.

Это может дать погрешность до 10% в большую или в меньшую сторону для изделия, сделанного из очень легкого или, наоборот, очень тяжелого сплаваю. Для малого количества металла разница будет мала, и ею можно будет пренебречь. Однако для сложных изделий, использующих большие объемы металла, потребуются более точные расчеты.

Масса понадобится при формировании заявки на закупку металла. На основе плотности данного сплава делают корректировку справочных значений массы одного погонного или квадратного метра, и далее в расчетах используют уже уточненное значение.

Как рассчитать P или выполнить корректировку массы 1 метра?

Практический способ определения плотности достаточно прост и известен нам из школьного курса физики. В мерную емкость, заполненную водой до определенной отметки, опускают образец материала. Уровень воды поднимается на определенную высоту. Объем вытесненной воды равен объему образца. Массу образца определяют взвешиванием на точных весах. Плотность будет равна отношению массы и объема.

Чтобы выполнить корректировку массы погонного или квадратного метра, нужно значение из справочника разделить на плотность из справочника и результат умножить на измеренную плотность материала образца. Получится откорректированная величина.

Если предвидится повторение подобных вычислений, то удобнее будет вычислить корректировочный коэффициент, равный отношению стандартной плотности и плотности образца, и далее применять его в расчетах.

Плотность 12Х18Н10Т и некоторых нержавеющих сталей

Марка 12×18Н10Т является одной из самых широко применяемых нержавеющих сталей. Плотность для нее и нескольких популярных в производстве марок приведена в таблице, марки расположены по мере возрастания плотности. В третьей колонке показан коэффициент корректировки плотности относительно стандартного значения в 7,85:

Марка стали Плотность т/м3 Корректировочный коэффициент
08Х22Н6Т15Х28 7,60 0,97
08Х1312Х17 7,70 0,98
04Х18Н1008Х18Н12Б12Х18Н10Т17Х18Н9 7,90 1,01
08Х18Н12Т10Х23Н18 7,95 1,01
06ХН28МДТ08ХН28МДТ 7,96 1,01
10Х17Н13М2Т 8,00 1,02
08Х17Н15М3Т 8,10 1,03

Плотность других сталей и сплавов

Удельный вес стали других групп приведен в таблице:

Тип стали Марка Плотность
криогенная нержавеющая конструкционная 12Х18Н10Т 7,9
жаропрочная нержавеющая коррозионно-стойкая 08Х18Н10Т 7,9
штамповая инструментальная Х12МФ 7,7
штамповая инструментальная 5ХНМ 7,8
мало-углеродистая электро-техническая (Армко) А и Э; ЭА; ЭАА 7,8
хромистая 15ХА 7,74
хромоалюминиевомолибденовая азотируемая 38ХМЮА 7,71
хромомарганцовокремнистая 25ХГСА 7,85
хромованадиевая 30ХГСА; 20ХН3А 7,85

Сталь — понятие и ее характеристики

Сталь– является самым распространенным материалом для изготовления конструкций, деталей, механизмов и инструмента.

К сталям относятся все сплавы железа и углерода, причем доля железа должна быть не менее 45 %, а доля углерода — менее 2,14 процента.

Углерод, выстраиваясь в молекулярные структуры железа, повышает прочность и твердость, но делает сплав менее пластичным и ковким. Кроме углерода, в состав сплава входят металлы и неметаллы.

К наиболее важным характеристикам сплава относятся:

  • модуль сдвига;
  • модуль упругости;
  • плотность;
  • коэффициент линейного расширения.

Разные сферы применения материалов требуют от них отличающихся друг от друга  физических и химических свойств. Так, например, стальные сплавы с высоким модулем упругости применяют для производства пружин и амортизаторов рессорного типа. Эти свойства целенаправленно меняются в результате добавления различных присадок.

Плотность стали в мм3

Плавление стали

Плотность стали, или УВ стали — одна из важнейших характеристик сплава. Исходя из нее, конструктор подсчитывает вес детали и общий вес изделия, логистика организует закупку и доставку сырья, заготовок и готовых изделий, экономисты определяют себестоимость.Вес стали определяется как произведение плотности на объем.

Классификация стали

В зависимости от доли неметаллических примесей, определяемой методом выплавки данной марки, стальные сплавы разделяют на:

  • особо высококачественные;
  • высококачественные;
  • обыкновенного качества.

По химическому составу сплавы также разделяют на легированные и углеродистые.

Читайте также:  Устройство для нанесения штукатурки своими руками

Углеродистые стали

Используются преимущественно для производства сварных конструкций и содержит от 0,25 до 2,14 процента углерода. Внутри группы они далее разделяются на подгруппы, и также по процентной доле углерода:

  • высокоуглеродистые (0,6-2,14);
  • среднеуглеродистые (0,3-0,55);
  • низкоуглеродистые (ниже 0,25).

В качестве присадок в них также входят кремний и марганец.Кроме полезных, вводимых целенаправленно присадок в сплаве могут содержаться и вредные примеси, отрицательно влияющие на ее физико- химические свойства:

  • фосфор снижает пластичность при нагреве и повышает хрупкость при охлаждении;
  • сера приводит к образованию микротрещин.

Плотность стали в мм3

Низкоуглеродистая сталь

В состав сплава могут попадать и другие примеси.

Легированная сталь

Для обретения сплавом требуемых свойств при плавке в него добавляют полезные присадки, или легирующие элементы, чаще всего металлы, такие, как алюминий, молибден, хром, марганец, никель, ванадий и другие.

Свойства сплава меняются при этом весьма существенно: сплав приобретает стойкость к коррозии, особую прочность, высокую ковкость, повышенную или пониженную электропроводность и т.д.Сплав с такими добавками называют легированной сталью.

По процентному содержанию легирующих присадок они делятся на три группы:

  • высоколегированные – свыше 11;
  • среднелегированные – от 4 до 11;
  • низколегированные – менее 4.

По области применения стальные сплавы делятся на:

  • инструментальные — высокопрочные сплавы применяются для изготовления инструментов, штампов, фрез, сверл и резцов;
  • конструкционные – применяются для производства корпусов и узлов транспортных средств, станков, строительных конструкций;
  • специальные. В эту группу включают сплавы с повышенной стойкостью к кислотной и щелочной среде, радиации, нержавеющие сплавы, электроматериалы и др.

Плотность стали в мм3

Легированая сталь

Некоторые присадки и виды обработки повышают плотность материала, а другие – снижают, например:

Метод обработки или присадка Изменение плотности
углерод снижается
хром, алюминий, марганец снижается
кобальт, вольфрам, медь растет
волочение растет в пределах трех процентов

Таблица плотности стали кг м3 и др. веществ — О бумаге .нет

В мировой практике встречается различные системы маркировки сталей. Единых стандартов для продукции нет из-за большого количества организаций, осуществляющих контроль и маркировку металлопродукции. В Европе действует документ EN10027, имеющий схожий с российским подход к наименованию сталей.

По действующему российскому стандарту легирующие элементы обозначаются буквами кириллицы, а число указывает на количество элемента в процентах. Отсутствие цифрового значения за буквой означает, что содержание легирующей добавки от 0,8 % до 1,5%, за исключением молибдена и ванадия массовой доли которых меньше.

Название элемента Химический символ Обозначение в марке Примеры
Углерод C не указывается
Хром Cr Х 40Х; 40Х13
Кремний Si С 65СГ; 30ХГСА
Никель Ni Н 45ХН; 12Х18Н10Т-Ш
Марганец Mn Г 65СГ; 30ХГС
Вольфрам W В ХВГ; Х6ВФ
Молибден Mo М 12ХМ; 15Н2М
Кобальт Co К Р10Ф5К5; Р6М5К5
Титан Ti Т 15ХГН2Т; 5ХНТ
Ванадий V Ф 12ХМФ; 12Х8ВФ
Алюминий Al Ю 38ХМНЮА; 36НХТЮА

Плотность стали в мм3Хром в количестве от 1% до 4% улучшает прокаливаемость сплава, повышает его прочность и жаростойкость. Из хромистых изготавливаются различные детали механизмов работающих в условиях высоких нагрузок. В больших массовых долях хром находятся в нержавеющих и жаростойких образцах.

Кремний в количестве от 1% до 1,5% повышает упругие свойства материала и используется для изготовления пружин и рессор. Кремний часто входит в состав инструментальной группы.

Никель в малых соотношениях благотворно влияет на ударную вязкость и прочность, а в больших количествах, как правило в сочетании с хромом, придает жаропрочные свойства и высокую коррозионную стойкость.

Содержание марганца от 1% до 1,5% увеличивает ударную вязкость, то есть ее способность противостоять ударным нагрузкам при низких температурах, когда материал становятся хрупкими.

Вольфрам резко повышает красностойкость и износостойкость, что является необходимым свойством режущих материалов, в которых он и находит наибольшее применение. Молибден, как и вольфрам увеличивает износостойкость и красностойкость, повышая сопротивление к окислению при высоких температурах.

Кобальт, находясь в составе стали и неметаллических режущих материалов, придает им сопротивляемость ударным нагрузкам при повышенных температурах. Наличие титана способствует мелкой зернистости в незакаленном состоянии, а также улучшает сопротивление окислению.

Ванадий, обычно в сочетании с хромом, повышает прочностные характеристики и увеличивает стойкость к окислению при высоких температурах. Алюминий повышает жаростойкость и окалиностойкость, кроме этого, как и титан, воздействуя на извлечение зернистости.

Как расшифровать маркировку

В зависимости от суммарного количества нежелательных примесей стали подразделяются по качеству на обычные, качественные, высококачественные и особо высококачественные. В их марке доля углерода указывается одной цифрой (ст.2, ст.3, ст.4) в десятых долях процента.

Из вредных примесей 0,07 % приходится на фосфор и 0,06% на серу. Марки качественных конструкционных и инструментальных подгрупп отличаются тем, что в них количество углерода указывается двумя цифрами (ст.20, ст.40, ст. 45) и уже в сотых долях процента.

В таких сплавах по 0,035% нежелательных компонентов. На высокое качество указывает буква «А» в конце маркировки, например ст.45А У8А. Содержание серы и фосфора в них по 0,025%. У особовысококачественной стали в конце названия через тире указывается буква «Ш».

Марка Углерод, % Сера ≤ Фосфор ≤
Ст0 ≤0,23 0,07 0,055
Ст1 0,06-0,12 0,045 –//–
Ст2 0,09-0,15 –//– –//–
Ст3 0,14-0,22 –//– –//–
Ст4 0,18-0,27 –//– –//–
Ст5 0,28-0,37 –//– –//–
Ст6 0,38-0,49 –//– –//–
Ст7 0,50-0,62 –//– –//–

Местонахождение буквы «А» в обозначение металлов имеет свое значение. Стоящая вначале она обозначает автоматные стали, с повышенным содержанием фосфора и серы. В середине – указывает на повышенное значение легирующего азота. Буквы «ШХ» указывают на принадлежность данной марки к подшипниковым, а рядом стоящее число означает количество хрома в десятых долях процента.

Спокойные стали маркируются без индекса, полуспокойные и кипящие – с индексом «пс» и «кп» соответственно. Кипящие виды производят марок 05кп, 08кп, 15кп, 20кп, полуспокойные – 08пс, 10пс, 15пс, 20пс.

Буква «Г» указывает на повышенное содержание марганца, например, 14Г, 18Г и т.д. Качественные сплавы с повышенными свойствами, используемые для производства котлов и сосудов высокого давления, обозначают по ГОСТ 5520-79 добавлением буквы «К» в конце наименования: 15К, 18К, 22К.

Для конструкционных марок первые две цифры показывают содержание углерода в сотых долях процента. Если легирующего элемента около 1%, то после буквы указывается его среднее значение в целых процентах. Если меньше 1 %, то цифра после буквы не ставится.

В инструментальных видах в начале обозначения указывается цифра, показывающая количество углерода в десятых долях процента. Ее опускают если углерода менее 1%. Например, марка 3Х2В8Ф состоит из 0,3% углерода, 2% хрома, 8% вольфрама, 1 % ванадия.

Иногда в обозначении марок в начале ставятся буквы, указывающие на область применения. Например, А11, А30, А40Е – автоматные стали, содержащие соответственно 0,11%, 0,3% и 0,4% углерода. АС38ХГМ – автоматная свинцесодержащая сталь с 0,38% углерода и около 1% хрома, марганца, молибдена.

Быстрорежущие инструментальные образцы обозначаются буквой «Р», которая ставится в начале марки. Далее указывается процентное значение легирующего компонента. Например, Р9, Р18, Р6М5К5 и т.д.

Марка популярных видов стали с разъяснениями состава приведена в нижеследующей таблице.

Марка С Cr Cu Mn Mo Ni P Si S W V Ti
100Х13М 0,9-1,05 12,5-14,5

Стали по ГОСТ, классификация, свойства

Классификация стали

Сталь – деформируемый (ковкий) сплав железа с углеродом (до 2%) и другими элементами. Это важнейший материал, который применяется в большинстве отраслей промышленности.

Существует большое число марок сталей, различающихся по структуре, химическому составу, механическим и физическим свойствам.

Посмотреть основные виды продукции металлопроката и ознакомиться с ценами можно здесь.

Основные характеристики стали:

  • плотность
  • модуль упругости и модуль сдвига
  • коэффициент линейного расширения
  • и другие

По химическому составу стали делятся на углеродистые и легированные. Углеродистая сталь наряду с железом и углеродом содержит марганец (0,1-1,0%), кремний (до 0,4%).

Сталь содержит также вредные примеси (фосфор, серу, газы — несвязанный азот и кислород). Фосфор при низких температурах придает ей хрупкость (хладноломкость), а при нагревании уменьшает пластичность. Сера приводит к образованию мелких трещин при высоких температурах (красноломкость).

Читайте также:  Все химические свойства алюминия

Чтобы придать стали какие-либо специальные свойста (коррозионной устойчивости, электрические, механические, , магнитные, и т.д.), в нее вводят легирующие элементы. Обычно это металлы: алюминий, никель, хром, молибден, и др. Такие стали называют легированными.

Свойства стали можно изменять путем применения различных видов обработки: термической (закалка, отжиг), химико-термической (цементизация, азотирование), термо-механической (прокатка, ковка).

При обработке для получения необходимой структуры используют свойство полиморфизма, присущее стали так же, как и их основе – железу. Полиморфизм – способность кристаллической решетки менять свое строение при нагреве и охлаждении.

Взаимодействие углерода с двумя модификациями (видоизменениями) железа — α и γ – приводит к образованию твердых растворов. Избыточный углерод, не растворяющийся в α-железе, образует с ним химическое соединение — цементит Fe3C.

При закалке стали образуется метастабильная фаза — мартенсит – пересыщенный твердый раствор углерода в α-железе. Сталь при этом теряет пластичность и приобретает высокую твердость. Сочетая закалку с последующим нагревом (отпуском), можно добиться оптимального сочетания твердости и пластичности.

По назначению стали делятся на конструкционные, инструментальные и стали с особыми свойствами.

Конструкционные стали применяют для изготовления строительных конструкций, деталей машин и механизмов, судовых и вагонных корпусов, паровых котлов. Инструментальные стали служат для изготовления резцов, штампов и других режущих, ударно-штамповых и измерительных инструментов. К сталям с особыми свойствами относятся электротехнические, нержавеющие, кислотостойкие и др.

По способу изготовления сталь бывает мартеновской и кислородно-конверторной (кипящей, спокойной и полуспокойной). Кипящую сталь сразу разливают из ковша в изложницы, она содержит значительное количество растворенных газов.

Спокойная сталь — это сталь, выдержанная некоторое время в ковшах вместе с раскислителями (кремний, марганец, алюминий), которые соединяясь с растворенным кислородом, превращаются в оксиды и выплывают на поверхность массы стали.

Такая сталь имеет лучший состав и более однородную структуру, но дороже кипящей на 10-15%. Полуспокойная сталь занимает промежуточное положение между спокойной и кипящей.

В современной металлургии сталь выплавляют в основном из чугуна и стального лома. Основные виды агрегатов для ее выплавки: мартеновская печь, кислородный конвертер, электропечи. Наиболее прогрессивным в наши дни считается кислородно-конвертерный способ производства стали.

В то же время развиваются новые, перспективные способы ее получения: прямое восстановление стали из руды, электролиз, электрошлаковый переплав и т.д. При выплавке стали в сталеплавильную печь загружают чугун, добавляя к нему металлические отходы и железный лом, содержащий оксиды железа, которые служат источником кислорода.

Выплавку ведут при возможно более высоких температурах, чтобы ускорить расплавление твердых исходных материалов. При этом железо, содержащееся в чугуне, частично окисляется:

  • 2Fe + O2 = 2FeO + Q
  • Образующийся оксид железа (II) FeO, перемешиваясь с расплавом, окисляет, кремний, марганец, фосфор и углерод, входящие в состав чугуна:
  • Si +2FeO = SiO2 + 2 Fe + Q
  • Mn + FeO = MnO + Fe + Q
  • 2P + 5FeO = P2O5 + 5Fe + Q
  • C + FeO = CO + Fe – Q
  • Чтобы довести до конца окислительные реакции в расплаве, добавляют так называемые раскислители – ферромарганец, ферросилиций, алюминий.
  • Марки стали
  • Марки стали углеродистой
  • Углеродистая сталь обыкновенного качества в зависимости от назначения подразделяется на три группы:
  • группа А — поставляемая по механическим свойствам;
  • группа Б — поставляемая по химическому составу;
  • группа В — поставляемая по механическим свойствам и химическому составу.

В зависимости от нормируемых показателей стали группы А подразделяются на три категории: А1, А2, А3; стали группы Б на две категории: Б1 и Б2; стали группы В на шесть категорий: В1, В2, В3, В4, В5, В6.

Для стали группы А установлены марки Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6. Для стали группы Б марки БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6. Сталь группы В изготовляется мартеновским и конвертерным способом.

Для нее установлены марки ВСт2, ВСт3, ВСт4, ВСт5.

Буквы Ст обозначают сталь, цифры от 0 до 6 — условный номер марки стали в зависимости от химического состава и механических свойств. С повышением номера стали возрастают пределы прочности (σв) и текучести (σт) и уменьшается относительное удлинение (δ5).

Марку стали Ст0 присваивают стали, отбракованной по каким-либо признакам. Эту сталь используют в неответственных конструкциях.

  1. В ответственных конструкциях применяют сталь Ст3сп.
  2. Буквы Б и В указывают на группу стали, группа А в обозначении не указывается.
  3. Если сталь относится к кипящей, ставится индекс «кп», если к полустойкой — «пс», к спокойной — «сп».

Качественные углеродистые конструкционные стали применяют для изготовления ответственных сварных конструкций. Качественные стали по ГОСТ 1050-74 маркируются двузначными цифрами, обзначающими среднее содержание углерода в сотых долях процента. Например, марки 10, 15, 20 и т.д. означают, что сталь содержит в среднем 0,10%, 0,15%, 0,2% углерода.

Сталь по ГОСТ 1050-74 изготовляют двух групп: группа I — с нормальным содержанием марганца (0,25-0,8%), группа II — с повышенным содержанием марганца (0,7-1,2%). При повышенном содержании марганца в обозначение дополнительно вводится буква Г, указывающая, что сталь имеет повышенное содержание марганца.

Марки стали легированной

Легированные стали кроме обычных примесей содержат элементы, специально вводимые в определенных количествах для обеспечения требуемых свойств. Эти элементы называются лигирующими. Лигированные стали подразделяются в зависимости от содержания лигирующих элементов на низколегированные (2,5% легирующих элементов), среднелегированные (от 2,5 до 10% и высоколегированные (свыше 10%).

Лигирующие добавки повышают прочность, коррозийную стойкость стали, снижают опасность хрупкого разрушения. В качестве легирующих добавок применяют хром, никель, медь, азот (в химически связанном состоянии), ванадий и др.

Легированные стали маркируются цифрами и буквами, указывающими примерный состав стали.

Буква показывает, какой легирующий элемент входит в состав стали (Г — марганец, С — кремний, Х -хром, Н — никель, Д — медь, А — азот, Ф — ванадий), а стоящие за ней цифры — среднее содержание элемента в процентах.

Если элемента содержится менее 1%, то цифры за буквой не ставятся. Первые две цифры указывают среднее содержание углерода в сотых долях процента.

Нержавеющая сталь. Свойства. Химический состав

Нержавеющая сталь — легированная сталь, устойчивая к коррозии на воздухе, в воде, а также в некоторых агрессивных средах. Наиболее распространены хромоникелевая (18% Cr b 9%Ni) и хромистая (13-27% Cr) нержавеющая сталь, часто с добавлением Mn, Ti и других элементов.

Добавка хрома повышает стойкость стали к окислению и коррозии. Такая сталь сохраняет прочность при высоких температурах. Хром входит также в состав износостойких сталей, из которых делают инструменты, шарикоподшипники, пружины.

Примерный химический состав нержавеющей стали ( в %)

Наименование стали C Si Mn P S
Хромистая сталь (нержавеющая и кислотостойкая) Не более0,35-0,45 Не более0,60 Не более0,60 Не более0,03 Не более0,035
Хромоникелевая сталь (нержавеющая и кислотостойкая) 0,06 0,50-1,0 1,0-2,0 0,030 0,020
Хромоникелевая сталь (окалиностойкая и жаропрочная) 0,20 1,50 2,00 0,035 0,030

Дамасская и булатная сталь.

Дамасская сталь — первоначально то же, что и булат; позднее — сталь, полученная кузнечной сваркой сплетенных в жгут стальных полос или проволоки с различным содержанием углерода. Название получила от города Дамасск (Сирия), где производство этой стали было развито в средние века и, отчасти, в новое время.

Булатная сталь (булат) — литая углеродистая сталь со своеобразной структурой и узорчатой проверхностью, обладающая высокой твердостью и упругостью. Из булатной стали изготовляли холодное оружие исключительной стойкости и остроты. Булатная сталь упоминается еще Аристотелем.

Секрет изготовления булатной стали, утерянный в средние века, раскрыл в XIX веке П.П.Аносов. Опираясь на науку, он определил роль углерода как элемента, влияющего на качество стали, а также изучил значение ряда других элементов.

Выяснив важнейшие условия образования лучшего сорта углеродистой стали — булата, Аносов разработал технологию его выплавки и обработки (Аносов П.П. О булатах. Горный журнал, 1841, № 2, с.157-318).

  • Плотность стали, удельный вес стали и другие характеристики стали
  • Плотность стали — (7,7-7,9)*103 кг/м3;
  • Удельный вес стали — (7,7-7,9) г/cм3;
  • Удельная теплоемкость стали при 20°C — 0,11 кал/град;
  • Температура плавления стали — 1300-1400°C ;
  • Удельная теплоемкость плавления стали — 49 кал/град;
  • Коэффициент теплопроводности стали — 39ккал/м*час*град;
  • Коэффициент линейного расширения стали
  • (при температуре около 20°C) :
  •     сталь 3 (марка 20) — 11,9 (1/град);
  •     сталь нержавеющая — 11,0 (1/град).
  • Предел прочности стали при растяжении :
  •     сталь для конструкций — 38-42 (кГ/мм2);
  •     сталь кремнехромомарганцовистая — 155 (кГ/мм2);
  •     сталь машиноподелочная (углеродистая) — 32-80 (кГ/мм2);
  •     сталь рельсовая — 70-80 (кГ/мм2);
  • Плотность стали, удельный вес стали
  • Плотность стали — (7,7-7,9)*103 кг/м3 (приблизительно 7,8*103 кг/м3);
  • Плотность вещества (в нашем случае стали) есть отношение массы тела к его объему (другими словами плотность равна массе единицы объема данного вещества):
  • d=m/V, где m и V — масса и объем тела.
  • За единицу плотности принимают плотность такого вещества, единица объема которого имеет массу, равную единице:в системе СИ это 1 кг/м3, в системе СГС — 1 г/см3, в системе МКСС — 1 тем/м3. Эти единицы связаны между собой соотношением:
  • 1 кг/м3=0,001 г/см3=0,102 тем/м3.
  • Удельный вес стали — (7,7-7,9) г/cм3 (приблизительно 7,8 г/cм3);
  • Удельный вес вещества (в нашем случае стали) есть отношение силы тяжести Р однородного тела из данного вещества (в нашем случае стали) к объему тела. Если обозначить удельный вес буквой γ , то:
  • γ=P/V .
  • С другой стороны, удельный вес можно рассматривать, как силу тяжести единицы объема данного вещества (в нашем случае стали). Удельный вес и плотность связаны таким же соотношением, как вес и масса тела:
  • γ/d=P/m=g.
  • За единицу удельного веса принимают: в системе СИ — 1 н/м3, в системе СГС — 1 дн/см3, в системе МКСС — 1 кГ/м3. Эти единицы связаны между собой соотношением:
  • 1 н/м3=0,0001 дн/см3=0,102 кГ/м3.
  • Иногда используют внесистемную единицу 1 Г/см3.
  • Так как масса вещества, выраженная в г, равна его весу, выраженному в Г, то удельный вес вещества (в нашем случае стали), выраженный в этих единицах, численно равен плотности этого вещества, выраженной в системе СГС.
  • Аналогичное численное равенство существует и между плотностью в системе СИ и удельным весом в системе МКСС. Плотность стали
Читайте также:  Формовочная смесь для литья бронзы
Наименование Плотность
СИ, кг/м3 СГС, г/см3 МКСС, тем/м3
Сталь 7800 7,8 796

Модули упругости стали и коэффициент Пуассона

Наименование стали Модуль Юнга, кГ/мм2 Модуль сдвига, кГ/мм2 Коэффициент Пуассона
Стали легированныеСтали углеродистые 2100020000-21000 81008100 0,25-0,300,24-0,28

Величины допускаемых напряжений стали (кГ/мм2)

Наименование стали Допускаемое напряжение
на растяжение на сжатие
Сталь легированная конструкционная в машиностроении 10-40 и выше 10-40 и выше
Сталь (ст. 3) 14 14
Сталь углеродистая конструкционная в машиностроении 16-25 16-25

Свойства некоторых электротехнических сталей

Марка стали Начальная магнитная проницаемость, гс/эрсm Максимальная магнитная проницаемость, гс/эрсm Коэрцитивная сила, эрсm Индукция при 25 эрсm , гс Удельное электрическое сопротивление, ом*мм2/м
Э 31Э 41Э 42Э 45Э 310 2503004006001000 5500600075001000030000 0,550,450,40,250,12 1520014900149001460017800 0,520,60,60,620,5

Нормируемый химический состав углеродистых сталей обыкновенного качества по ГОСТ 380-71

Марка стали Содержание элементов, %
C Mn Si P S
не более
Ст0 Не более 0,23 0,07 0,06
Ст2псСт2сп 0,09…0,15 0,25…0,50 0,05…0,070,12…0,30 0,04 0,05
Ст3кпСт3псСт3спСт3Гпс 0,14…0,22 0,30…0,600,40…0,650,40…0,650,80…1,10 не более 0,070,05…0,170,12…0,30не более 0,15 0,04 0,05
Ст4кпСт4псСт4сп 0,18…0,27 0,40…0,70 не более 0,070,05…0,170,12…0,30 0,04 0,05
Ст5псСт5сп 0,28…0,37 0,50…0,80 0,05…0,170,12…0,35 0,04 0,05
Ст5Гпс 0,22…0,30 0,80…1,20 не более 0,15 0,04 0,05

Нормируемые показатели механических свойств углеродистых сталей обыкновенного качества по ГОСТ 380-71

Марка стали Предел прочности(временное сопротивление)σв, МПа Предел текучести σт, МПа Относительное удлинение коротких образцов δ5, % Изгиб на 180° при диаметре оправки d
толщина образца s, мм
до 20

Плотность стали, значение и примеры

Он в зависимости от своего химического состава и области применения разделяются на несколько групп. Так, по химическому составу стали делятся на углеродистые и легированные.

Плотность стали равна:

СИ, кг/м3 СГС, г/см3 МКСС, тем/м3
Сталь 7800 7,8 796

Однако в углеродистой стали промышленного производства всегда имеются примеси многих элементов.

Присутствие одних примесей обусловлено особенностями производства стали: например, при раскислении в сталь вводят небольшие количества марганца или кремния, которые частично переходят в шлак в виде оксидов, а частично остаются в стали.

Присутствие других примесей обусловлено тем, что они содержатся в исходной руде и в малых количествах переходят в чугун, а затем и в сталь. Полностью избавиться от них трудно. Вследствие этого, например, углеродистые стали обычно содержат 0,05 – 0,1% фосфора и серы.

Механические свойства медленно охлажденной углеродистой стали сильно зависят от содержания в ней углерода. Медленно охлажденная сталь состоит из феррита и цементита, причем количество цементита пропорционально содержанию углерода.

Твердость цементита намного выше твердости феррита. Поэтому при увеличении содержания углерода в стали её твердость повышается. Кроме того, частицы цементита затрудняют движение дислокаций в основной фазе – в феррите.

По этой причине увеличение количества углерода снижает пластичность стали.

Углеродистая сталь имеет широкое применение. В зависимости от назначения применяется сталь с малым или более высоким содержание углерода, без термической обработки (в «сыром» виде – после проката) или с закалкой и отпуском.

Элементы, специально вводимые в сталь в определенных концентрациях для изменения её свойства, называются легирующими элементами, а сталь, содержащая такие элементы, называется легированной сталью. К важнейшим легирующим элементам относятся хром, никель, марганец, кремний, ванадий, молибден.

Различные легирующие элементы по-разному изменяют структуру и свойства стали. Так, некоторые элементы образуют твердые растворы в g-железе, устойчивые в широкой области температур.

Например, твердые растворы марганца или никеля в g-железе при значительном содержании этих элементов стабильны от комнатной температуры до температуры плавления.

Сплавы железа с подобными металлами называются аустенитными сталями или аустенитными сплавами.

Влияние легирующих элементов на свойства стали обусловлено также тем, что некоторые из них образуют с углеродом карбиды, которые могут быть простыми, напримерMn3C, Cr7C3, а также сложными (двойными), например (Fe, Cr)3C. Присутствие карбидов, особенно в виде дисперсных включений в структуре стали, в ряде случаев оказывает сильное влияние на её механические и физико-химические свойства.

Назначения и плотность стали

По своему назначению стали делятся на конструкционные, инструментальные и на стали с особыми свойствами. Конструкционные стали применяются для изготовления деталей машин, конструкций и сооружений.

В качестве конструкционных могут использоваться как углеродистые, так и легированные стали. Конструкционные стали обладают высокой прочностью и пластичностью. В то же время они должны хорошо поддаваться обработке давлением, резанием, хорошо свариваться.

Основными легирующие компоненты конструкционных сталей – это хром (около 1%), никель (1-4%) и марганец (1-1,5%).

Их применяют для изготовления режущих и измерительных инструментов, штампов. Необходимую твердость обеспечивается содержащийся в этих сталях углерод (в количество от 0,8 до 1,3%).

Основной легирующий элемент инструментальных сталей – хром; иногда в них вводят также вольфрам и ванадий.

Особую группу инструментальных сталей составляет быстрорежущая сталь, сохраняющая режущие свойства при больших скоростях резания, когда температура рабочей части резца повышается до 600-700oС. Основные легирующие элементы этой стали – хром и вольфрам.

К группе сталей с особыми свойствами относятся нержавеющие, жаростойкие, жаропрочные, магнитные и некоторые другие стали. Нержавеющие стали устойчивы против коррозии в атмосфере, влаге и в растворах кислот, жаростойкие – в коррозионно-активных средах при высоких температурах.

Жаропрочные стали сохраняют высокие механические свойства при нагревании до значительных температур, что важно при изготовлении лопаток газовых турбин, деталей реактивных двигателей и ракетных установок.

Важнейшие легирующие элементы жаропрочных сталей – это хром (15-20%), никель (8-15%), вольфрам.

Примеры решения задач

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]