Полимеры таблица с примерами

Классифицируются полимеры по различным признакам: составу, форме макромолекул, полярности, отношению к нагреву и т.д.

1. По составу основной цепи

  • гомополимеры — полимеры, построенные из одинаковых мономеров:
  • – А–А–А–А–
  • (целлюлоза, состоящая из остатков β-D-глюкозы);
  • — сополимеры — полимеры, цепочки молекул которых состоят из двух или более различных структурных звеньев:
  • –А–А–Б–А–Б–
  • (нуклеиновая кислота, гиалуроновая кислота, белки);
  • — блок-сополимеры, состоящие из нескольких полимерных блоков:Полимеры таблица с примерами
  • Сополимеры получаются в результате реакций сополимеризации.

2. По строению главной цепи

  1. гомоцепные
  2. –СН2–СН2–СН2, –SiН2–SiН2
  3. гетероцепные
  4. –СН2–О–СН2–О–, –Si (СН3)2–О–

Гомоцепные полимеры имеют главную цепь, состоящую из одинаковых атомов. Если она состоит из атомов углерода, то такие полимеры называют карбоцепными (полиэтилен, полистироли др.).

Гетероцепными называют такие полимеры, главная цепь которых состоит из различных атомов. К гетероцепным полимерам относятся простые эфиры, например, полиэтиленгликоль.

3. По регулярности строения цепи

  • — регулярные (стереорегулярные и стереонерегулярные) (присоединение мономерных звеньев по схеме «голова к хвосту» («головой» называется часть звена без заместителя, а «хвостом», соответственно, часть звена с заместителем);
  • нерегулярные (беспорядочное чередование мономеров различного химического состава).
  • Однако в большинстве случаев присоединение звеньев идет по типу «голова к хвосту» и при таком строении полимерная цепь довольно регулярна.

4. По форме макромолекулы

  1. линейные;
  2. разветвленные;
  3. —  пространственные (сшитые)
  4. Линейные и разветвленные цепи полимеров можно превратить в пространственные структуры «сшиванием» с помощью света, радиации или под действием химических реагентов.

5. По химическому составу

По химическому составу полимеры подразделяются на органические, элементоорганические и неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Органические полимеры в главной цепи кроме атомов углерода, могут содержать также и другие элементы — кислород, азот, серу и т.д. Органическими полимерами являются смолы и каучуки.

Элементоорганические соединения в природе не встречаются. Этот класс материалов полностью создан искусственно.

Элементоорганические полимеры содержат в основной цепи неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу, прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. Представителями их являются кремнийорганические соединения.

Неорганические полимеры построены из атомов кремния, алюминия, германия, серы и др. и не содержат органические боковые радикалы. Неорганические полимеры являются основой керамики, стекол, ситаллов, слюдяных, асбестовых, углеграфитовых и других материалов.

6. По отношению к нагреванию

термопластические;

термореактивные

При нагревании термопластических полимеров их свойства постепенно изменяются и при достижении определенной температуры они переходят в вязкотекучее состояние. При охлаждении жидких термопластических полимеров наблюдаются обратные явления. Химическая природа полимера при этом не изменяется, процесс плавления и процесс отвердевания обратим.

К термопластическим полимерам относятся полиэтилен, полистирол, поливинилхлорид.

При нагревании термореактивных полимеров (реактопласты) они приобретают сетчатую структуру. Такие полимеры не восстанавливают свои свойства при нагревании и последующем охлаждении. Примером таких полимеров служат фенолформальдегидные смолы, мочевиноальдегидные, полиэфирные, эпоксидные и карбамидные смолы. Они содержат обычно различные наполнители.

Полимеры таблица с примерами

7. По развитию деформации (при комнатных температурах)

  • пластомеры;
  • — эластомеры
  • Полимеры, которые легко деформируются при комнатной температуре, называют эластомерами, трудно деформируемые – пластомерами (пластиками).

8. По природе (происхождению)

  1. — природные;
  2. — искусственные;
  3. — синтетические

Полимеры, встречающиеся в природе – органические вещества растительного (хлопок, шелк, натуральный каучук, целлюлоза и др.) и животного (кожа, шерсть и др.) происхождения, а также минеральные вещества (слюда, асбест, естественный графит, природный алмаз, кварц и др.).

Искусственные полимеры получают из природных полимеров путем их химической модификации. Одним из наиболее распространенных природных полимеров, который непрерывно регенерируется в процессе фотосинтеза, является целлюлоза.

Нитроцеллюлоза и ацетатцеллюлоза – продукты химической модификации целлюлозы – искусственные полимеры. Они растворимы в ацетоне, хлороформе и др. растворителях.

Эфиры целлюлозы используют для получения фотопленки и волокон.

Вискозная нить получается растворением природной целлюлозы в сероуглероде со щелочью с последующим ее выделением. Вискозная нить и целлюлоза природная имеют различную кристаллическую структуру, пластмасса целлулоид получается обработкой нитроцеллюлозы камфарой в присутствии спирта.

Синтетические полимеры получают из простых веществ путем химического синтеза.

Основным преимуществом синтетических полимеров перед природными являются неограниченные запасы исходного сырья и широкие возможности синтеза полимеров с заранее заданными свойствами.

Исходным сырьем для получения синтетических полимеров являются продукты химической переработки нефти, природного газа и каменного угля.

Полимеры таблица с примерами

9. По полярности

  • полярные;
  • неполярные
  • Полярные содержат полярные группы -OH, -COOH, -CN, -Cl, -CONH2 — ПВС (поливиниловый спирт), ПВХ (поливинилхлорид).
  • Неполярные не содержат полярных групп атомов — ПЭ (полиэтилен), ПП (полипропилен) и др.
  • Высокомолекулярные соединения (ВМС)

Полимеры их классификация

  • Полимеры таблица с примерамиТермин «полимер» был предложен шведским химиком и минералогом И. Берцелиусом еще в 19-м веке для определения веществ, которые при одинаковом химическом составе обладали разной молекулярной массой, например, для кислорода и озона. Сейчас этот термин применяется немного в другом значении. Истинные полимеры были открыты примерно в тоже самое время — в середине 19-го века (полистирол, поливинилденхлорид, целлулоид).

    Наука о полимерах

    По-настоящему заниматься исследованиями структуры полимеров начали только в 20-м веке. Первоначально считалось, что природные полимеры типа крахмала и целлюлозы состоят из особых, но обычных по длине молекул, которые обладают способностью образовывать коллоидные растворы. Автором принципиально другой точки зрения, высказавшим предположении об необычно длинных макромолекулах, был немецкий химик Герман Штаудингер.Необходимость найти замену натуральному каучуку для бурно развивающейся автомобильной промышленности стимулировала развитие науки о полимерах, которая окончательно сформировалась после Второй мировой войны.

    Основные характеристики полимеров

    Полимеры таблица с примерами— Стереорегулярность (отражает однородность составляющих молекулу стереоизомеров или их равномерное чередование)

Классификация полимеров

В зависимости от молекулярной массы (ММ), полимеры делятся на:

— мономеры (с небольшой ММ);— олигомеры (с ММ менее 540);— полимеры (высокомолекулярные, с ММ от пяти тысяч до пятисот тысяч);

— сверхвысокомолекулярные полимеры с ММ более полумиллиона.

По степени разветвленности молекул:

— линейные (молекула состоит из цепочки мономеров), к ним относится натуральный каучук, эластомеры и другие полимеры высокой эластичности;— разветвленные (цепочка из звеньев имеет боковые ответвления), например, амилопектин;

— сетчатые или сшитые (между соседними макромолекулами существуют поперечные связи), нерастворимые и неэластичные полимеры, например, эпоксидные смолы в стадии отверждения.

По составу мономеров:

— гомополимеры, состоящие из одного вида звеньев, например, ПВХ, целлюлоза;— сополимеры, состоящие из звеньев разного строения (многие полимеры с улучшенными свойствами).

В зависимости от того, как полимеры реагирует на нагревание, их разделяют на:

Полимеры таблица с примерами

По структуре полимеры разделяют на:

— кристаллические, содержащие более 2/3 кристаллических структур (полиэтилен низкого давления, полипропилен, тефлон);— аморфные, содержащие не более нескольких процентов кристаллических структур (акриловое стекло, полистирол и все сетчатые полимеры);

— аморфно-кристаллические, содержащие от 25 до 70% кристаллических структур (полиэтилен высокого давления).

По происхождению:

— природные (белки, коллоидная сера, натуральный каучук, целлюлоза, крахмал);— синтетические (фенолформальдегидные смолы, полистирол).

По химическому составу:

— органические;— неорганические, не содержащие органических звеньев ни в главной цепи, ни в ответвлениях макромолекулы (пластическая сера, кристаллы кварца);

— элементоорганические, макромолекулы которых состоят из углеводородных групп и неорганических звеньев (кремний-, боро-, фосфорорганические полимеры и др.).

Органические полимеры

Полимеры таблица с примерами

Полимеры бывают:

  • синтетическими,
  • искусственными,
  • органическими. 

Природные органические полимеры

Органические полимеры в природе образуются в животных и растительных организмах. Самые важные из них – это белки, полисахариды, нуклеиновые кислоты, каучук и другие природные соединения.

Человек давно и широко применяет органические полимеры в своей повседневной жизни. Кожа, шерсть, хлопок, шелк, меха – все это  используется для производства одежды. Известь, цемент, глина, органическое стекло (плексиглас) – в строительстве.

Органические полимеры присутствуют и в самом человеке. Например, нуклеиновые кислоты (их называют еще ДНК), а также рибонуклеиновые кислоты (РНК).

Свойства органических полимеров

У всех органических полимеров есть особые механические свойства:

  •  малая хрупкость кристаллических и стеклообразных полимеров  (органическое стекло, пластмассы);
  •  эластичность, то есть высокая обратимая деформация при небольших нагрузках (каучук);
  •  ориентирование макромолекул под действием механического направленного поля (производство пленок и волокон);
  •  при малой концентрации большая вязкость растворов  (полимеры вначале набухают, а потом растворяются);
  •  под действием небольшого количества реагента способны быстро изменить свои физико-механические характеристики (например, дубление кожи, вулканизация каучука).

Таблица 1. Характеристики горения некоторых полимеров

ПолимерыПоведение материала при внесении в пламя и горючестьХарактер пламениЗапах
Полиэтилен (ПЭ) Плавится течет по каплям, горит хорошо, продолжает гореть при удалении из пламени. Светящееся, вначале голубоватое, потом желтое Горящего парафина
Полипропилен (ПП) То же То же То же
Поликарбонат (ПК) То же Коптящее
Полиамид (ПА) Горит, течет нитью Синеватое снизу, с желтыми краями Паленых волос илигорелых растений
Полиуретан (ПУ) Горит, течет по каплям Желтое, синеватое снизу, светящееся, серый дым Резкий, неприятный
Полистирол (ПС) Самовоспламеняется, плавится Ярко-желтое, светящееся, коптящее Сладковатый цветочный,с оттенком запаха стирола
Полиэтилентерефталат(ПЭТФ) Горит, капает Желто-оранжевое, коптящее Сладкий, ароматный
Эпоксидная смола (ЭД) Горит хорошо, продолжает гореть при удалении из пламени Желтое коптящее Специфический свежий(в самом начале нагревания)
Полиэфирная смола (ПН) Горит, обугливается Светящееся, коптящее, желтое Сладковатый
Поливинилхлорид жесткий (ПВХ) Горит с трудом и разбрасыванием, при удалении из пламени гаснет, размягчается Ярко-зеленое Резкий, хлористого водорода
ПВХ пластифицированный Горит с трудом и при удалении из пламени, с разбрасыванием Ярко-зеленое Резкий, хлористого водорода
Фенолоформальдегидная смола (ФФС) Загорается с трудом, горит плохо, сохраняет форму Желтое Фенола, формальдегида

Таблица 2. Растворимость полимерных материалов

ПолимерыРастворителибензинацетонэтиловый спиртводауксусная кислотасоляная кислота (конц.)
Фенолоформальдегидная смола (ФФС) НР Р Р НР НР
Эпоксидная смола (ЭД) НР Р Р НР
Полиэфирная смола (ПН) НР Р Р НР НР НР
Полиамид (ПА) НР НР НР НР Р НР
Поливинилхлорид (ПВХ) НР НР НР НР НР НР
Полистирол (ПС) НР НБ НР НР НР НР
Полиэтилен (ПЭ) НР НР НР НР НР

Таблица 3. Окраска полимеров по реакции Либермана – Шторха – Моравского

ОкраскаПолимеры
Слабо-розовая Феноло-формальдегидные, феноло-фурфурольные
Розовая, переходящая в красную Эпоксидные смолы
Медленно синеет, затем зеленеет Поливинилхлорид
Отсутствует, иногда коричневая Полиэфирные смолы
Отсутствует Полиэтилен, полипропилен, поликарбонат, полиамид, полистирол, полиметилметакрилат, мочевино- и меламино-формальдегидные смолы, акрило-бутадиен-стирольные пластики

Полимеры таблица с примерами — Мастерок

По составу полимеры делятся на:

  • Органические (полиэтилен и др.);
  • Элементорганические (полидиметилсилоксан и др.);
  • Неорганические полимерные (олово, селен, теллур, аморфная сера, черный фосфор, кварц, корунд, алюмосиликаты, полифосфаты).

Классификация по химическому составу

По составу полимеры делятся на:

  • Гомоцепные (главная цепь состоит из атомов одной природы, например: полиэтилен, поливинилхлорид и др.);
  • Гетероцепные (встречаются несколько атомов различной природы, н-р: полиэтиленоксид и др.);
  • Гомополимеры (макромолекулы содержат одинаковые структурные звенья -[-А-]-n);
  • Гетерополимеры (состоят из разных остатков мономеров). Такие полимеры называют также сополимеры. Различают сополимеры статистические (беспорядочно чередующиеся звенья), привитые (главная цепь – из одного мономера, а боковые цепи – длинные цепочки из другого мономера) и блоксополимеры (состоят из блоков макроцепей).

Классификация по структуре макромолекулы

По структуре макромолекулы полимеры делятся на:

    Линейные (высокоэластичные) В макромолекулах линейных полимеров структурные звенья последовательно соединены друг с другом в длинные цепи. Цепи изгибаются в различных направлениях или сворачиваются клубком. Именно эта особенность строения придает эластичность полимерам. Из природных полимеров линейное строение имеют целлюлоза, амилоза (составная часть крахмала) натуральный каучук, а из синтетических – полиэтилен низкого давления, капрон, найлон и многие другие полимеры.

Разветвленные Макромолекулы разветвленных полимеров – это длинные цепи с короткими боковыми ответвлениями. Такое строение имеют, например полиэтилен высокого давления, амилопектин (компонент крахмала).

Сетчатые (низкоэластичные) Макромолекулы сетчатых полимеров представляют собой длинные цепи, связанные (сшитые) поперечными связями. Такая макромолекула имеет три измерения в пространстве. Высокомолекулярными соединениями с пространственной структурой являются: шерсть, фенолформальдегидные полимеры, резина.

Классификация по пространственному строению

По пространственному строению полимеры делятся на:

    Стереорегулярные (или изотактические). Изотактический полимер – полимер, в котором заместители расположены в пространстве по одну сторону от основной полимерной цепи. Стереорегулярность полимера определяет высокие прочностные свойства;

Синдиотактические. Синдиотактический полимер – полимер, в котором заместители расположены по одну и другую сторону от основной полимерной цепи периодически;

Нестереорегулярные (или атактические). Атактический полимер – полимер, в котором заместители расположены беспорядочно (по одну и по другую сторону от основной полимерной цепи). Представляет собой более мягкий материал, напоминающий каучук.

Классификация по классам соединений

По классам соединений полимеры делятся на:

Полиолефины — полимеры, образованные из олефинов (алкенов). Пример:

Полидиены — полимеры, образованные из алкадиенов. Пример:

  • Полиамиды. Пример:
  • Поликарбонаты. Пример:
  • Полиуретаны. Пример:
  • Полисилоксаны (силиконы). Пример:

Классификация по регулярности строения

Так как поливинилхлорид не симметричный (есть голова и есть хвост) — возможны следующие присоединения: г-г, г-хв, хв-хв. Это вызывает нерегулярность строения получаемого полимера.

Другой пример — хлоропрен. Здесь уже возможны присоединения 1-4, 1-2, 3-4.

Если есть двойная связь, то возможна цис- и транс-изомерия. Пример:

Полимер( высокомолекулярное соединение- ВМС ). – это макромолекула, состоящая из большого числа (иногда до нескольких сот тысяч) повторяющихся звеньев низкомолекулярных веществ –мономеров. Различаютполимеризационные и поликонденсационныеполимеры

Читать также:  Как снять показания с электросчетчика энергомера

Полимеризационный полимер получается в реакции полимеризации путем последовательного соединения молекул друг с другом без выделения низкомолекулярных веществ.

Образование поликонденсационного полимера в реакции поликонденсации сопровождается выделением низкомолекулярных соединений( например, воды) . Примером являются природных ВМС пептиды, белки, нуклеиновые кислоты, крахмал, гликоген, целлюлоза, гликозаминогликаны.

14. 2. Классификация вмс

Существует несколько видов классификации.

а. по происхождению : природные( биополимеры) и синтетические.

Природные- белки, пептиды , нуклеиновые кислоты, натуральный каучук.

б. по химическому составу : гомополимеры и гетерополимеры( сополимеры).

Полимер, состоящий из одного вида мономеров называется гомополимером, а из нескольких видов молекул одного класса –гетерополимером, или сополимером, а процесс его образования называютсополимеризацией. Количество мономерных звеньев(n) , соединенных в полимерной цепи, носит названиестепень полимеризации.

Схема образования гомополимера

А + А + А+ . . . + А ———> А -А-А-А-А- …. –А

Схема образования гетерополимера

А+ А + В + А+ В + В . . + В + А———>А-А-В-А-В- В . . . .-В-А

  1. сополимер со случайным
  2. Природными гетерополимерами являются белки, нуклеиновые кислоты, синтетическими- фенолформальдегидные смолы.
  3. в. по составу цепи полимера бывают
  4. а) карбоцепные – С-С-С-С-С-С-

б) гетероцепные – С-О-С-О-С-О-С- или -С-N-С-N-С-N-С- и т.п.

в. по расположению атомов и атомных групп в макромолекуле различают линейные, разветвленные и сетчатые полимеры. Линейные биополимеры-полипептиды, белки, целлюлоза, амилоза , гиалуроновая кислота, разветвленные – амилопектин, гликоген.

г. в зависимости от наличия или отсутствия порядка в повторении фрагментов цепи или пространственного расположении : стереорегулярные и нестереорегулярные.

14.3. Реакции полимеризации

14.3.1. Номенклатура полимеров

В названии полимера добавляют к названию мономера ( систематическому или тривиальному) приставку поли-

14.3.2 . Общая характеристика мономеров

Какие низкомолекулярные вещества могут стать мономерами для получения ВМС ? Они обязательно должны иметь такое строение, которое позволяет им вступать в реакциюприсоединения: двойные( тройные) связи, циклы, которые могут раскрываться в процессе реакции.

Наиболее распространенные мономеры – алкены , применяемые в производстве ВМС, можно охарактеризовать общей формулой СН2=СН – Х

В таблице представлен перечень мономеров, полимеров и их названий

  • Направляющие скольженияцепей и ремней из INKULEN PE
  • Направляющие скольженияиз ZX-100K

Изготовление деталей из полимеров по чертежамХомутовые и кольцевые теплоэлектронагревателиФутеровка

Полимеры – это соединения макромолекулярного типа. Их основа – мономеры, из которых формируется макроцепь полимерных веществ. Применение полимеров позволяет создавать материалы, обладающие высоким уровнем прочности, износостойкости и рядом других полезных характеристик.

Классификация полимеров

Природные. Образуются естественным природным путем. Пример: янтарь, шелк, натуральный каучук.

Синтетические. Производятся в лабораторных условиях и не содержат природных компонентов. Пример: поливинилхлорид, полипропилен, полиуретан.

Искусственные. Производятся в лабораторных условиях, но в их основе лежат природные составляющие. Пример: целлулоид, нитроцеллюлоза.

https://www.youtube.com/watch?v=5B-Fms1O1zU\u0026t=50s

Виды полимеров и их применение очень многообразны. Большая часть предметов, которые окружают человека, созданы с использованием этих материалов. В зависимости от типа, они имеют различные свойства, которые и определяют сферу их применения.

Существует ряд распространенных полимеров, с которыми мы сталкиваемся ежедневно и этого даже не замечаем:

  • Полиэтилен. Используется для производства упаковки, труб, изоляций и других изделий, где требуется обеспечить влагонепроницаемость, устойчивость к агрессивным средам и диэлектрические характеристики.
  • Фенолформальдегид. Является основой пластмасс, лаков и клеевых составов.
  • Синтетический каучук. Обладает лучшими прочностными характеристиками и устойчивостью к истиранию, чем натуральный. Из него изготавливается резина и различные материалы на ее основе.
  • Полиметилметакрилат – всем известный плексиглас. Используется в электротехнике, а также в качестве конструкционного материала в других производственных областях.
  • Полиамил. Из него изготавливается ткань и нитки. Это капрон, нейлон и другие синтетические материалы.
  • Политетрафторэтилен, он же – тефлон. Применяется в медицине, пищевой промышленности и различных других областях. Всем известны сковородки с тефлоновым покрытием, которые были когда-то очень популярны.
  • Поливинилхлорид, он же ПВХ. Часто встречается в виде пленки, используется для изготовления изоляции кабелей, кожзаменителей, оконных профилей, натяжных потолков. Имеет очень широкую сферу использования.
  • Полистирол. Применяется для производства бытовых изделий и широкого ряда строительных материалов.
  • Полипропилен. Из этого полимера изготавливаются трубы, тара, нетканые материалы, бытовые изделия, строительные клеи и мастики.

Читать также:  Выключатель с подсветкой мигает лампочка

Где применяются полимеры

Область применения полимерных материалов очень широка. Сейчас можно с уверенностью сказать – они используются в промышленности и производстве практически в любой сфере. Благодаря своим качествам полимеры полностью заменили природные материалы, существенно уступающие им по характеристикам. Поэтому стоит рассмотреть свойства полимеров и области их применения.

По классификации материалы можно разделить на:

Качества каждой разновидности определяет область применения полимеров.

Оглядевшись вокруг, мы можем увидеть огромное количество изделий из синтетических материалов. Это детали бытовых приборов, ткани, игрушки, кухонные принадлежности и даже бытовая химия. По сути – это огромный ряд изделий от обычной пластмассовой расчески до стирального порошка.

Такое широкое использование обусловлено низкой стоимостью производства и высокими качественными характеристиками. Изделия прочны, гигиеничны, не содержат вредных для организма человека компонентов и универсальны.

Даже обычные капроновые колготки изготовлены из полимерных составляющих. Поэтому полимеры в быту применяются гораздо чаще, чем натуральные материалы.

Они существенно превосходят их по качествам и обеспечивают низкую цену изделия.

Примеры:

  • пластиковая посуда и упаковка;
  • части различных бытовых приборов;
  • синтетические ткани;
  • игрушки;
  • кухонные принадлежности;
  • изделия для санузлов.

Любая вещь из пластика или с включением синтетических волокон изготавливается на основе полимеров, так что перечень примеров может быть бесконечным.

Строительная отрасль

Применение полимеров в строительстве тоже очень обширно. Их стали использовать сравнительно недавно, примерно 50-60 лет тому назад. Сейчас большая часть строительных материалов производится с применением полимеров.

Основные направления:

  • изготовление ограждающих и строительных конструкций различного типа;
  • клеящие составы и пены;
  • производство инженерных коммуникаций;
  • материалы для тепло- и гидроизоляции;
  • наливные полы;
  • различные отделочные материалы.

В сфере ограждающих и строительных конструкций – это полимербетон, композитная арматура и балки, рамы для стеклопакетов, поликарбонат, стеклопластик и различные другие материалы подобного типа. Все изделия на полимерной основе имеют высокие прочностные характеристики, длительный срок службы и устойчивость к негативным природным явлениям.

Клеи отличаются устойчивостью к влаге и отличной адгезией. Они используются для склеивания различных материалов и имеют высокую прочность соединения. Пены – идеальное решение для герметизации стыков. Они обеспечивают высокие теплосберегающие характеристики и насчитывают огромное количество разновидностей с различными качествами.

Читать также:  Фрезер для гипсокартона какой выбрать

Применение полимерных материалов в сфере производства инженерных коммуникаций – одно из наиболее обширных направлений. Они используются в водоснабжении, электрообеспечении, теплосбережении, оборудовании канализационных сетей, вентиляции и отопительных систем.

Материалы для теплоизоляции имеют отличные теплосберегающие характеристики, малый вес и доступную стоимость. Гидроизоляция отличается высоким уровнем водонепроницаемости и может выпускаться в различном виде (рулонные изделия, порошок или жидкие смеси).

Полимерные полы – это специализированный материал, который позволяет создать на черновой основе идеально ровную поверхность без трудоемких работ. Такая технология используется как в бытовом, так и в промышленном строительстве.

Современная промышленность выпускает широкий ряд отделочных материалов на основе полимеров. Они могут иметь различную структуру и форму выпуска, но по характеристикам всегда превосходят натуральную отделку и имеют гораздо меньшую стоимость.

Медицина

Применение полимеров в медицине имеет широкое распространение. Самый простой пример – одноразовые шприцы. На данный момент производится около 3 тысяч изделий, используемых в медицинской сфере.

Чаще всего в данной области используются силиконы. Они незаменимы при проведении пластических операций, создания защиты на ожоговых поверхностях, а также изготовления различных изделий.

В медицине полимеры использовались с 1788 года, но в ограниченном количестве.

А 1895 году они получают более широкое распространение после операции, в ходе которой костный дефект был закрыт полимером на основе целлулоида.

Все материалы данного типа можно разделить на три группы согласно применению:

  • 1 группа – для введения в организм. Это искусственные органы, протезы, кровезаменители, клеи, лекарственные препараты.
  • 2 группа – полимеры, имеющие контакт с тканями, а также веществами, предназначенными для введения в организм. Это тара для хранения крови и плазмы, стоматологические материалы, шприцы и хирургические инструменты, составляющие медицинского оборудования.
  • 3 группа – материалы, не имеющие контакта с тканями и не вводящиеся в организм. Это оборудование и приборы, лабораторная посуда, инвентарь, больничные принадлежности, постельное белье, оправы для очков и линзы.

Сельское хозяйство

Наиболее активно полимеры используются в тепличном хозяйстве и мелиорации. В первом случае имеется потребность в различных пленках, агроволокне, сотовом поликарбонате, а также арматуре. Это все необходимо для сооружения теплиц.

В мелиорации используются трубы из полимерных материалов. Они имеют меньший вес, чем металлические, доступную стоимость и более длительный срок службы.

Пищевая промышленность

В пищевой промышленности полимерные материалы используются для изготовления тары и упаковки. Могут иметь форму твердых пластиков или пленок. Основное требование – полное соответствие санитарно-эпидемиологическим нормам.

Не обойтись без полимеров и в пищевом машиностроении. Их применение позволяет создавать поверхности с минимальной адгезией, что важно при транспортировке зерна и других сыпучих продуктов.

Также антиадгезионные покрытия необходимы в линиях выпечки хлеба и производства полуфабрикатов.

Полимеры применяются в различных отраслях деятельности человека, что обусловливает их высокую востребованность. Обойтись без них невозможно. Натуральные материалы не могут обеспечить ряда характеристик, необходимых для соответствия конкретным условиям использования.

Таблица обобщение по теме "Полимеры. Состав, строение, свойства и применение" для подготовки к Единому государственному экзамену

  • Ацетатное волокно
  • (C6H10O5)n – хлопковая или древесная целлюлоза и ангидрид уксусной кислоты

Ацетатные волокна формируют из растворов ацетилцеллюлозы в органических растворителях (триацетилцеллюлозу — в смеси метиленхлорида и спирта, вторичную ацетилцеллюлозу — в ацетоне), обычно по т. н. сухому методу. По этому методу получают филаментные нити, т. н. ацетатный шёлк.

Высокая эластичность, вдвое превышающая вискозную, но чуть меньше натуральношёлковой.

 Устойчивость к грибковым заражениям и микроорганизмам. Ткань не плесневеет и не портится насекомыми.

  1.  Великолепная способность к драпировке, объясняемая особой гибкостью и объёмностью материала.
  2.  Пластичность, придающая малую сминаемость изделиям.
  3.  Мягкость и приятность на ощупь.

 Гладкость, не притягивающая пыль. Изделия легко очищаются от большинства загрязнений.

 Гипоаллергенность. Материал не вызывает аллергических реакций и раздражений.

  •  Отлично держит форму изделий.
  •  Не выгорает на солнце.
  •  Быстро высыхает после стирки.

Искусственный шёлк весьма востребован и в наши дни. Ацетатные волокна находят применение, как в чистом виде, так и в составе смесовых тканей: с шерстью, бархатом, габардином и крепом. Ацетат добавляет изделиям эластичность, прочность, устраняет образование катышков и предотвращает усадку.

Из ацетатных тканей шьют красивую верхнюю одежду и нижнее бельё, они хороши в качестве подкладок для жакетов, юбок, платьев и брюк .Быстрая высыхаемость позволяет изготавливать из материала зонты, купальники и занавески для ванных комнат.

Роскошный блеск и приятная прохлада при касании используются при создании чудесного домашнего текстиля: комплектов шелковистого постельного белья, декоративных подушек, изысканных покрывал, штор для спален и гостиных. Ацетатные волокна часто входят в состав материй для обивки мебели.

Рекомендуют использовать для просторных помещений с высокими потолками.

Разновидность искусственного шёлка – ткань, называемая «омбре» имеет градуированную окраску и широко используется для декорирования помещений и пошива оригинальной одежды.

4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки

Высокомолекулярными соединениями (ВМС) называют соединения с молекулярной массой более 10000.

  • Практически все высокомолекулярные вещества являются полимерами.
  • Полимеры — это вещества, молекулы которых состоят из огромного числа повторяющихся структурных звеньев, соединенных между собой химическими связями.
  • Полимеры могут быть получены с помощью реакций, которые можно разделить на два основных типа: это реакции полимеризации и реакции поликонденсации.

Реакции полимеризации

Реакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера).

Количество молекул мономера (n), объединяющихся в одну молекулу полимера, называют степенью полимеризации.

В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией, а если различны — сополимеризацией.

Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена:

Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола:

Полимеры, получаемые реакцией полимеризации, и исходные мономеры

этилен, этен полиэтилен
пропилен, пропен полипропилен
стирол, винилбензол полистирол, поливинилбензол
винилхлорид, хлористый винил, хлорэтилен, хлорэтен поливинилхлорид (ПВХ)
тетрафторэтилен (перфторэтилен) тефлон, политетрафторэтилен
изопрен (2-метилбутадиен-1,3) изопреновый каучук (натуральный)
  бутадиен-1,3 (дивинил) бутадиеновый каучук, полибутадиен-1,3
хлоропрен(2-хлорбутадиен-1,3) хлоропреновый каучук
и
  1. бутадиен-1,3 (дивинил)
  2. и
  3. стирол (винилбензол)
бутадиенстирольный каучук

Реакции поликонденсации

Реакции поликонденсации — это реакции образования полимеров из мономеров, в ходе которых, помимо полимера, побочно образуется также низкомолекулярное вещество (чаще всего вода).

В реакции поликонденсации вступают соединения, в состав молекул которых входят какие-либо функциональные группы. При этом реакции поликонденсации по тому, один используется мономер или больше, аналогично реакциям полимеризации делятся на реакции гомополиконденсации и сополиконденсации.

  • К реакциям гомополиконденсации относятся:
  • * образование (в природе) молекул полисахарида (крахмала, целлюлозы) из молекул глюкозы:
  • * реакция образования капрона из ε-аминокапроновой кислоты:
  • К реакциям сополиконденсации относятся:
  • * реакция образования фенолформальдегидной смолы:
  • * реакция образования лавсана (полиэфирного волокна):

Материалы на основе полимеров

Пластмассы

Пластмассы — материалы на основе полимеров, которые способны под действием нагревания и давления формоваться и сохранять заданную форму после охлаждения.

Помимо высокомолекулярного вещества в состав пластмасс входят также и другие вещества, однако основным компонентом все же является полимер. Благодаря своим свойствам он связывает все компоненты в единую целую массу, в связи с чем его называют связующим.

  1. Пластмассы в зависимости от их отношения к нагреванию делят на термопластичные полимеры (термопласты) и реактопласты.
  2. Термопласты — вид пластмасс, способных многократно плавиться при нагревании и застывать при охлаждении, благодаря чему возможно многоразовое изменение их изначальной формы.
  3. Реактопласты — пластмассы, молекулы которых при нагревании «сшиваются» в единую трехмерную сетчатую структуру, после чего изменить их форму уже нельзя.

Так, например, термопластами являются пластмассы на основе полиэтилена, полипропилена, поливинилхлорида (ПВХ) и т.д.

Реактопластами, в частности, являются пластмассы на основе фенолформальдегидных смол.

Каучуки

Каучуки — высокоэлластичные полимеры, углеродный скелет которых можно представить следующим образом:

Как мы видим, в молекулах каучуков имеются двойные C=C связи, т.е. каучуки являются непредельными соединениями.

Каучуки получают полимеризацией сопряженных диенов, т.е. соединений, у которых две двойные C=C связи, разделены друг от друга одной одинарной С-С связью.

  • Так например, особо зарекомендовавшими себя мономерами для получения каучуков являются:
  • 1) бутадиен:
  • 2) изопрен:
  • 3) хлоропрен:
  • В общем виде (с демонстрацией только углеродного скелета) полимеризация таких соединений с образованием каучуков может быть выражена схемой:
  • Таким образом, исходя из представленной схемы, уравнение полимеризации изопрена будет выглядеть следующим образом:

Весьма интересным является тот факт, что впервые с каучуком познакомились не самые продвинутые в плане прогресса страны, а племена индейцев, у которых  промышленность и научно-технический прогресс отсутствовали как таковые.

Естественно, индейцы не получали каучук искусственным путем, а пользовались тем, что давала им природа: в местности, где они проживали (Южная Америка), произрастало дерево гевея, сок которого содержит до 40-50% изопренового каучука.

По этой причине изопреновый каучук называют также натуральным, однако он может быть получен и синтетическим путем.

Все остальные виды каучука (хлоропреновый, бутадиеновый) в природе не встречаются, поэтому всех их можно охарактеризовать как синтетические.

Однако каучук, не смотря на свои преимущества, имеет и ряд недостатков.

Так, например, из-за того что каучук состоит из длинных, химически не связанных между собой молекул, его свойства делают его пригодным для использования только в узком интервале температур.

На жаре каучук становится липким, даже немного текучим и неприятно пахнет, а при низких температурах подвержен затвердеванию и растрескиванию.

Технические характеристики каучука могут быть существенно улучшены его вулканизацией.

Вулканизацией каучука называют процесс его нагревания с серой, в результате которого отдельные, изначально не связанные друг с другом, молекулы каучука «сшиваются» друг с другом цепочками из атомов серы (полисульфидными «мостиками»). Схему превращения каучуков в резину на примере синтетического бутадиенового каучука можно продемонстрировать следующим образом:

Волокна

Волокнами называют материалы на основе полимеров линейного строения, пригодные для изготовления нитей, жгутов, текстильных материалов.

Классификация волокон по их происхождению

  1. Искусственные волокна (вискозу, ацетатное волокно) получают химической обработкой уже существующих природных волокон (хлопка и льна).
  2. Синтетические волокна получаются преимущественно реакциями поликонденсации (лавсан, капрон, нейлон).
Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]