Последовательное соединение полевых транзисторов схема

А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход.

Что нам на это скажут официальные источники?Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.

ru) Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы.

Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).

Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители).

Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами.

Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором.

Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два.

Полевой транзистор с управляющим p-n-переходом

Последовательное соединение полевых транзисторов схема Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод — затвор. Естественно, что между затвором и p-областью под ним (каналом) возникает p-n переход. А поскольку n-слой значительно уже канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.

Можно провести следующую аналогию: p-n переход — это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).

Последовательное соединение полевых транзисторов схема Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.

Последовательное соединение полевых транзисторов схема Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки. Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока. Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.

Последовательное соединение полевых транзисторов схемаУсловные графические изображения полевых транзисторов приведены на рисунке (а — с каналом p-типа, б — с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.

Статические характеристики полевого транзистора с управляющим p-n-переходом

Поскольку в рабочем режиме ток затвора обычно невелик или вообще равен нулю, то графики входных характеристик полевых транзисторов мы рассматривать не будем. Перейдем сразу к выходным или стоковым. Кстати, статическими их называют потому, что на затвор подается постоянное напряжение. Т.

е. нет необходимости учитывать частотные моменты, переходные процессы и т.п.Последовательное соединение полевых транзисторов схема Выходной (стоковой) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке — график слева.

На графике можно четко выделить три зоны. Первая из них — зона резкого возрастания тока стока. Это так называемая «омическая» область. Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.

Вторая зона — область насыщения. Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако).

Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления.

Значения всех этих непонятных словосочетаний будут раскрыты ниже.

Третья зона графика — область пробоя, чье название говорит само за себя.

С правой стороны рисунка показан график еще одной важной зависимости — стоко-затворной характеристики. Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.

Полевой транзистор с изолированным затвором

Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика.

Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.Последовательное соединение полевых транзисторов схема Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.

А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения.

Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения. При этом сопротивление канала будет падать, а ток через него расти.

Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока. В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом.

Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором — транзистор с индуцированным (инверсным) каналом. Из названия уже понятно его отличие от предыдущего — у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.

Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт.

Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора.

И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е.

концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе.

Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения. Условные обозначения транзисторов с изолированным затвором следующие:Последовательное соединение полевых транзисторов схема Здесь

а − со встроенным каналом n- типа;

б − со встроенным каналом р- типа; в − с выводом от подложки; г − с индуцированным каналом n- типа; д − с индуцированным каналом р- типа; е − с выводом от подложки.

Читайте также:  Регулятор оборотов коллекторного двигателя с поддержанием мощности

Статические характеристики МДП-транзисторов

Семейство стоковых и стоко-затворная характеристики транзистора с встроенным каналом предсталены на следующем рисунке:Последовательное соединение полевых транзисторов схема Те же характеристики для транзистора с идуцированным каналом:

Последовательное соединение полевых транзисторов схемаПоследовательное соединение полевых транзисторов схема

Экзотические МДП-структуры

Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия, раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6, подглавы 6.12-6.15. Почитайте, это интересно!

Общие параметры полевых транзисторов

  1. Максимальный ток стока при фиксированном напряжении затвор-исток.
  2. Максимальное напряжение сток-исток, после которого уже наступает пробой.
  3. Внутреннее (выходное) сопротивление.

    Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток — константа).

  4. Крутизна стоко-затворной характеристики. Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
  5. Входное сопротивление.

    Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.

  6. Коэффициент усиления — отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.

Схемы включения

Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком.

По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов.

Чаще всего применяется схема с общим истоком (а), как дающая большее усиление по току и мощности.

Схема с общим затвором (б) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение. Схему с общим стоком (в) также называют истоковым повторителем. Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.

Отличия полевых транзисторов от биполярных. Области применения

Как уже было сказано выше, первое и главное отличие этих двух видов транзисторов в том, что вторые управляются с помощью изменения тока, а первые — напряжения.

И из этого следуют прочие преимущества полевых транзисторов по сравнению с биполярными:

  • высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
  • высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
  • поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
  • высокая температурная стабильность;
  • малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
  • малое потребление мощности.

Однако, привсем при этом у полевых транзисторов есть и недостаток — они «боятся» статического электричества, поэтому при работе с ними предъявляют особо жесткие требования по защите от этой напасти.

Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер%. Но теперь ты знаешь, как они работают!

Список источников:

ru.wikipedia.org dssp.petrsu.ru zpostbox.narod.ru electrono.ru radio.cybernet.name

Полезные комментарии:

http://habrahabr.ru/blogs/easyelectronics/133493/#comment_4435883 http://habrahabr.ru/blogs/easyelectronics/133493/#comment_4436509 http://habrahabr.ru/blogs/easyelectronics/133493/#comment_4441531

Рекомендую почитать:

«Основы на пальцах», автор DI HALT (за наводку спасибо AlexeiKozlov)

Схемы Подключения Полевых Транзисторов

Схемы включения биполярного транзистора Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором Рис. Если пластина имеет показатель n, то будет р.

Последовательное соединение полевых транзисторов схема Предназначен для усиления мощности электромагнитных колебаний. С изолированным затвором делятся на: с встроенным и индуцированным каналом.

Последовательное соединение полевых транзисторов схема Схемы включения полевых транзисторов Подобно тому, как в различных электронных устройствах биполярные транзисторы работают с включением по схеме с общим эмиттером, с общим коллектором или с общей базой, полевые транзисторы во многих случаях можно использовать аналогичным образом включая их: с общим истоком, с общим стоком или с общим затвором. Транзистор с индуцированным каналом может работать только в режиме обогащения.

Как проверить полевой транзистор с помощью тестера.

Последовательное соединение полевых транзисторов схема Стоко-затворная характеристика показывает то же самое, отличия опять-таки в напряжениях на затворе.Последовательное соединение полевых транзисторов схема Современные приборы практически не боятся этого, поскольку по входу в них могут быть встроены защитные устройства типа стабилитронов, которые срабатывают при превышении напряжения. Мы получили наглядную модель биполярного транзистора структуры p-n-p.Последовательное соединение полевых транзисторов схема Время нагрева зависит от температуры утюга и лежит в пределах 30 — 90 секунд. На рис.Последовательное соединение полевых транзисторов схема С индуцированным каналом Транзисторы со встроенным каналом На схеме вы видите транзистор с встроенным каналом. Типы полевых транзисторов Когда ориентируются по данным деталям электрических схем, то принимают во внимание такие показатели: внутреннее и внешнее сопротивление, напряжение отсечки и крутизна стокозатворной характеристики.Последовательное соединение полевых транзисторов схема Исток источник носителей заряда, аналог эмиттера на биполярном. Драйверы для полевых транзисторов, самые простые и распространённые

Что такое транзистор?

Последовательное соединение полевых транзисторов схемаПоследовательное соединение полевых транзисторов схема Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда. Как работает полевой транзистор?

  • 5 СХЕМ на ОДНОМ ПОЛЕВОМ (МОП, МДП, MOSFET) ТРАНЗИСТОРЕ 2N65F
  • Читайте дополнительно: Как правильно сделать смету на электромонтажные работы

Каскад ОЗ обладает низким входным сопротивлением, в связи с чем имеет ограниченное применение. Поделитесь с друзьями:. Транзистор полевой Первоначально определимся с терминологией. МДП — транзисторы в качестве диэлектрика используют оксид кремния SiO2. В силу конструктивных особенностей МОП-транзисторы чрезвычайно чувствительны к внешним электрическим полям.

Виды транзисторов

Каждая из ветвей отличается на 0. Изображение схем подключения полевых триодов Практически каждая схема способна работать при очень низких входных напряжениях. Схема включения MOSFET Традиционная, классическая схема включения «мосфет», работающего в режиме ключа открыт-закрыт , приведена на рис 3.

    Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Транзисторы управляются напряжением, и в статике не потребляют ток управления. Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. Чтобы на резисторе Rи не выделялась переменная составляющая напряжения, его шунтируют конденсатором Си. Каскад с общим истоком дает очень большое усиление тока и мощности. Разница потенциалов достигает величины от 0,3 до 0,6 В. Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам.

    Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Стабильность при изменении температуры. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов сужаются и сопротивление канала становится высоким. Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда.

    Принцип работы триода При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается. Поэтому использование такого подхода на практике сильного ограничено в усилительной технике.

    Также сюда подключается и усилитель колебаний. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует. Защита от переполюсовки на основе полевого транзистора

    Транзистор полевой

    При добавлении бора акцептор легированный кремний станет полупроводником с дырочной проводимостью p-Si , то есть в его структуре будут преобладать положительно заряженные ионы. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током.

    На рисунке приведен полевой транзистор с каналом p-типа и затвором выполненным из областей n-типа. Опишем подробнее каждую модификацию.

    Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала.

    Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. С его ростом расширяются р-n- переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале.

    Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам. Устройство полевого транзистора с управляющим p-n переходом Приведено на рис.

    См. также: Подключить электричество к участку

    Другие популярные статьи

    Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора. Транзистор имеет три вывода: исток, сток, затвор. Vgs — управляющее напряжение, Vg-Vs.

    Этот принцип используют для усиления сигналов. На конкретной схеме это p-канальный прибор затвор — это n-слой, имеет меньше удельное сопротивление, чем область канала p-слой , а область p-n-перехода в большей степени расположена в p-области по этой причине.

    Похожие публикации

    Типы полевых транзисторов и их схематическое обозначение. В результате возникают некомпенсированные заряды: в области n-типа — из отрицательных ионов, а в области p-типа из положительных.

    Схема с общим истоком Истоком называют электрод, через который в канал поступают носители основного заряда. С общим стоком в.

    МДП — транзисторы выполняют двух типов — со встроенным каналом и с индуцированным каналом.

    Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок в зависимости от типа проводимости основного кристалла.

    И даже наоборот, его наличие специально используется в некоторых схематических решениях. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной. Схемы включения полевых транзисторов

    *** Сайт принадлежит Елене Кравцовой Adblockdetector

    Управление мощной нагрузкой постоянного тока. Часть 3

    Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.

    Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал.

    Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

    Последовательное соединение полевых транзисторов схема

    МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

    Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком.

    Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает.

    Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

    Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

    Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

    МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь.

    Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.

    Последовательное соединение полевых транзисторов схема

    Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет.

    Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к.

    он образуется сам собой в силу особенности техпроцесса производства).

    У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида.

    Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.

    Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

    Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
    Тут вариантов три:

    • На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
    Последовательное соединение полевых транзисторов схема
  1. применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.
  2. Последовательное соединение полевых транзисторов схема
    Последовательное соединение полевых транзисторов схема

    Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных.

    Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.

  3. Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
  4. Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

    Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10.

    Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков.

    Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.

    Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

    Последовательное соединение полевых транзисторов схема

    Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом.

    А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком.

    Посмотрим тогда на IRL630.

    При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.

    Последовательное соединение полевых транзисторов схема

    Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен.

    Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t.

    Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие.

    Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.

    При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).

    А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется.

    Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал.

    Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.

    Читать

    Annotation

    Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.

    На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.

    • Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
    • Хоровиц Пауль, Хилл Уинфилд
    • Предисловие
    • Предисловие к первому изданию
    • Глава 1
    • Ввведение
    • Напряжение, ток и сопротивление
    • Сигналы
    • Конденсаторы и цепи переменного тока
    • Индуктивности и трансформаторы
    • Полное и реактивное сопротивление
    • Диоды и диодные схемы
    • Другие пассивные компоненты
    • Дополнительные упражнения
    • Глава 2
    • Введение
    • Некоторые основные транзисторные схемы
    • Модель Эберса-Молла для основных транзисторных схем
    • Некоторые типы усилительных каскадов
    • Некоторые типичные транзисторные схемы
    • Схемы, не требующие пояснений
    • Дополнительные упражнения
    • Глава 3
    • Введение
    • Основные схемы на ПТ
    • Ключи на ПТ
    • Схемы, не требующие пояснений
    • Глава 4
    • Введение
    • Основные схемы включения операционных усилителей
    • Калейдоскоп схем на операционных усилителях
    • Подробный анализ работы операционных усилителей
    • Подробный анализ работы некоторых схем на ОУ
    • Работа ОУ с одним источником питания
    • Компараторы и триггер Шмитта
    • Обратная связь и усилители с конечным усилением
    • Некоторые типичные схемы с операционными усилителями
    • Частотная коррекция усилителей с обратной связью
    • Схемы, не требующие пояснений
    • Дополнительные упражнения
    • Глава 5
    • Активные фильтры
    • Схемы активных фильтров
    • Генераторы
    • Схемы, не требующие пояснений
    • Дополнительные упражнения
    • Глава 6
    • Базовые схемы стабилизаторов на основе классической ИМС 723
    • Проектирование теплоотвода мощных схем
    • Нестабилизированные источники питания
    • Источники опорного напряжения
    • Трехвыводные и четырехвыводные стабилизаторы
    • Источники питания специального назначения
    • Схемы, не требующие пояснений
    • Дополнительные упражнения
    • Таблицы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • notes
    • 1
    • Хоровиц Пауль, Хилл Уинфилд
    • «Искусство схемотехники»
    • Том 1
    • (Главы 1–6)
    • Издание 4-е переработанное и дополненное
    • THE ART OF ELECTRONICS
    • Second Edition
    • Paul Horowitz Harvard University
    • Winfield Hill Rowland Institute for Science, Cambridge, Massachusetts
    • CAMBRIDGE UNIVERSITY PRESS
    • Cambridge
    • New York Port Chester Melbourne Sydney
    1. Предисловие
    2. Кэрол, Джекобу, Мише и Джинджер

    Перевод О.А. Соболевой

    За последние сорок лет в области электроники, может быть более, чем в любой другой области техники, наблюдалось стремительное развитие. В 1980 г., преодолев сомнения, мы приняли смелое решение создать полный курс обучения искусству схемотехники.

    Под «искусством» мы понимаем мастерство владения предметом, которое возникает на основе богатого опыта работы с настоящими схемами и устройствами, но не может возникнуть в результате некоего отвлеченного подхода, принятого во многих учебниках по электронике.

    Само собой разумеется, если дело касается столь стремительно прогрессирующей области, наш практический подход таит в себе и опасность — столь же стремительно «свежие» сегодня знания могут устареть.

    Электронная техника не сбавляет темп своего развития! Не успели просохнуть чернила на листах первого издания нашей книги, как нелепыми стали слова о «классическом» стираемом программируемом постоянном ЗУ, СППЗУ типа 2716 (2 Кб), стоимостью 25 долл. «Классика» исчезла бесследно, уступив место СППЗУ, емкость которых стала больше в 64 раза, а стоимость вдвое уменьшилась.

    Основная доля исправлений в этом издании обусловлена появлением новых улучшенных элементов и методов разработки — полностью переписаны главы, посвященные микрокомпьютерам и микропроцессорам (на основе IBM PC и 68008), в значительной мере переработаны главы, посвященные цифровой электронике (включая программируемые логические приборы (PLD) и новые логические семейства НС и АС), операционным усилителям и разработкам на их основе (что отражает факт появления превосходных операционных усилителей с полевым транзистором на входе) и приемам конструирования (включая САПР/АСУТП). Были пересмотрены все таблицы и некоторые из них претерпели существенные изменения, например, в табл. 4.1 (операционные усилители) уцелели лишь 65 % от 120 имевшихся в таблице входов, при этом добавились сведения по 135 новым ОУ.

    Мы воспользовались появившейся в связи с новым изданием возможностью откликнуться на пожелания читателей и учесть свои собственные замечания по первому изданию.

    В результате была переписана заново глава, посвященная полевым транзисторам (она была чересчур сложной), и помещена в другое место — перед главой по операционным усилителям (которые все в большей степени строятся на полевых транзисторах). Появилась новая глава по конструированию маломощных и микромощных схем (аналоговых и цифровых) — тема важная, но непопулярная в учебниках.

    Большая часть оставшихся глав существенно переработана. Появились новые таблицы, в том числе по аналого-цифровым и цифро-аналоговым преобразователям, цифровым логическим компонентам, маломощным устройствам, больше стало рисунков.

    Теперь книга содержит 78 таблиц (они изданы также отдельной книгой, которая называется «Таблицы для выбора компонент Хоровица и Хилла») и более 1000 рисунков.

    Перерабатывая текст, мы стремились сохранить неформальный подход, который обеспечил бы успех книге и как справочнику, и как учебнику.

    Трудности, с которыми сталкивается новичок, впервые взявшийся за электронику, всем известны: все вопросы сложно переплетаются друг с другом, и нет такого пути познания, пройдя по которому можно шаг за шагом преодолеть расстояние от неофита до компетентного специалиста.

    Вот почему в нашем учебнике появилось так много перекрестных ссылок, кроме того, мы расширили изданное отдельной книгой «Руководство по лабораторным работам» и теперь это — «Руководство для студента» («Руководство для студента к курсу «Искусство схемотехники», авторы Т. Хейес и П.

    Хоровиц), дополненное примерами конструирования схем, объяснениями, заданиями по тексту основного учебника, лабораторными упражнениями и ответами к задачам. Благодаря такому приложению, предназначенному для студентов, нам удалось сохранить краткость изложения и множество примеров, что и требовалось для тех читателей, которые пользуются книгой прежде всего как справочником.

    Надеемся, что новое издание отвечает требованиям всех читателей — как студентов, так и инженеров-практиков. Ваши предложения и замечания направляйте непосредственно П. Хоровицу по адресу: Physics Department, Harvard University, Cambridge, MA 02138 (Кембридж, MA 02138, Гарвардский университет, физический факультет, П. Хоровицу).

    Ссылка на основную публикацию
    Adblock
    detector