Предел прочности при сжатии формула

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N.

Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

Предел прочности при сжатии формула

  • Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье: Анализ внутренних силовых факторов в статистически определимых системахЕщё настоятельно рекомендую взглянуть на статью:
  • Расчёт статистически определимого бруса

Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

Предел прочности при сжатии формула

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня. Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса.

Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а).

Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

Предел прочности при сжатии формула

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Предел прочности при сжатии формула

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

Предел прочности при сжатии формула

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Предел прочности при сжатии формула

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε' имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε' к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

  1. Таблица 2
  2. Коэффициент Пуассона.
  3. Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
  4. Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
  5. Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

  • Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
  • Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
  • Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

  1. Диаграмма сжатия стержня имеет вид (рис. 10, а)

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

Расчеты на прочность и жесткость при растяжении и сжатии

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии

  • Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
  • Условие прочности стержня при его растяжении (сжатии):
  • При проектном расчете определяется площадь опасного сечения стержня:
  • При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии

  1. Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
  2. Часто дополнительно делают расчет на жесткость отдельных участков стержня.
  3. Следующая важная статья теории:Изгиб балки

Предел прочности при сжатии формула — Мастерок

Прочность металлических конструкций – один из важнейших параметров, определяющих их надежность и безопасность.

Издревле вопросы прочности решались опытным путем — если какое-либо изделие ломалось — то следующее делали толще и массивнее.

С 17 века ученые начали планомерное исследование проблемы, прочностные параметры материалов и конструкций из них можно рассчитать заранее, на этапе проектирования. Металлурги разработали добавки, влияющие на прочность стальных сплавов.

Предел прочности при сжатии формула

Предел прочности

Предел прочности — это максимальное значение напряжений, испытываемых материалом до того, как он начнет разрушаться. Его физический смысл определяет усилие растяжения, которое нужно приложить к стрежневидному образцу определенного сечения, чтобы разорвать его.

Каким образом производится испытание на прочность

Прочностные испытания на сопротивление разрыву проводятся на специальных испытательных стендах. В них неподвижно закрепляется один конец испытываемого образца, а к другому присоединяют крепление привода, электромеханического или гидравлического. Этот привод создает плавно увеличивающее усилие, действующее на разрыв образца, или же на его изгиб или скручивание.

Читайте также:  Переработка горбыля в щепу

Предел прочности при сжатии формула

Испытание на разрыв

Электронная система контроля фиксирует усилие растяжения и относительное удлинение, и другие виды деформации образца.

Виды пределов прочности

  • Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.
  • Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.
  • Различают следующие виды предела прочности при:
  • сжатии — определяет способность материала сопротивляться давлению внешней силы;
  • изгибе — влияет на гибкость деталей;
  • кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
  • растяжении.

Предел прочности при сжатии формула

Виды испытаний прочности материалов

Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.

Предел прочности стали

На сегодняшний день сталь все еще является наиболее применяемым конструкционным материалом, понемногу уступая свои позиции различным пластмассам и композитным материалам. От корректного расчета пределов прочности металла зависит его долговечность, надежность и безопасность в эксплуатации.

Предел прочности стали зависит от ее марки и изменяется в пределах от 300 Мпа у обычной низкоуглеродистой конструкционной стали до 900 Мпа у специальных высоколегированных марок.

На значение параметра влияют:

  • химический состав сплава;
  • термические процедуры, способствующие упрочнению материалов: закалка, отпуск, отжиг и т.д.

Некоторые примеси снижают прочность, и от них стараются избавляться на этапе отливки и проката, другие, наоборот, повышают. Их специально добавляют в состав сплава.

Условный предел текучести

Кроме предела прочности, в инженерных расчетах широко применяется связанное с ним понятие-предел текучести, обозначаемый σт. Он равен величине напряжения сопротивления разрыву, которое необходимо создать в материале, для того, чтобы деформация продолжала расти без наращивания нагрузки. Это состояние материала непосредственно предшествует его разрушению.

На микроуровне при таких напряжениях начинают рваться межатомные связи в кристаллической решетке, а на оставшиеся связи увеличивается удельная нагрузка.

Читать также:  Станок для раскроя лдсп своими руками

Общие сведения и характеристики сталей

С точки зрения конструктора, наибольшую важность для сплавов, работающих в обычных условиях, имеют физико-механические параметры стали.

В отдельных случаях, когда изделию предстоит работать в условиях экстремально высоких или низких температур, высокого давления, повышенной влажности, под воздействием агрессивных сред — не меньшую важность приобретают и химические свойства стали.

Как физико-механические, так и химические свойства сплавов во многом определяются их химическим составом.

Влияние содержание углерода на свойства сталей

По мере увеличения процентной доли углерода происходит снижение пластичности вещества с одновременным ростом прочности и твердости. Этот эффект наблюдается до приблизительно 1% доли, далее начинается снижение прочностных характеристик.

Повышение доли углерода также повышает порог хладоемкости, это используется при создании морозоустойчивых и криогенных марок.

Предел прочности при сжатии формула

Влияние углерода на механические свойства стали

Рост содержания С приводит к ухудшению литейных свойств, отрицательно влияет на способность материала к механической обработке.

Добавки марганца и кремния

Mn содержится в большинстве марок стали. Его применяют для вытеснения из расплава кислорода и серы. Рост содержания Mn до определенного предела (2%) улучшает такие параметры обрабатываемости, как ковкость и свариваемость. После этого предела дальнейшее увеличение содержания ведет к образованию трещин при термообработке.

Влияние кремния на свойства сталей

Si применяется в роли раскислителя, используемого при выплавке стальных сплавов и определяет тип стали. В спокойных высокоуглеродистых марках должно содержаться не более 0,6% кремния. Для полуспокойных марок этот предел еще ниже — 0,1 %.

При производстве ферритов кремний увеличивает их прочностные параметры, не понижая пластичности. Этот эффект сохраняется до порогового содержания в 0,4%.

Предел прочности при сжатии формула

Влияние легирующих добавок на свойства стали

В сочетании с Mn или Mo кремний способствует росту закаливаемости, а вместе с Сг и Ni повышает коррозионную устойчивость сплавов.

Азот и кислород в сплаве

Эти самые распространенные в земной атмосфере газы вредно влияют на прочностные свойства. Образуемые ими соединения в виде включений в кристаллическую структуру существенно снижают прочностные параметры и пластичность.

Легирующие добавки в составе сплавов

Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:

  • Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
  • Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
  • Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
  • Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
  • Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
  • Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.

Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.

§ 6. Механические свойства [1986 Попов К.Н. — Материаловедение для каменщиков, монтажников конструкций]

Предел прочности при сжатии формула

Механические свойства характеризуют способность материала сопротивляться действию внешних механических сил, вызывающих в нем сжатие, растяжение, изгиб, срез, кручение, истирание. Основные механические свойства строительных материалов: прочность, деформативность (упругость, пластичность), твердость, износостойкость.

Прочность — свойство материала в определенных условиях и пределах воспринимать нагрузки или другие воздействия, вызывающие в нем внутренние напряжения, без разрушения.

Частицы, из которых состоит твердый материал, удерживаются в равновесии силами взаимного сцепления. Если к какому-либо образцу материала приложить внешнюю силу F, например растягивающую (рис.

2), то ее действие равномерно распределится на все частицы материала: материал окажется в напряженном состоянии.

Напряжение вызовет изменение расстояний между частицами — материал начнет деформироваться (в нашем случае — растягиваться).

Предел прочности при сжатии формулаРис. 2. Схема определения напряжений при растяжении

Для того чтобы определить значение напряжений σ(МН/м2 или МПа), возникающих при этом в материале, мысленно делают поперечный разрез образца (а — а). Чтобы образовавшиеся половинки образца (I — II) остались в равновесии, внешней силе F (МН) должна противодействовать равная ей внутренняя сила а, т. е. F = σS, откуда σ = F/S, где S — площадь поперечного сечения образца материала, м2.

Для твердых и упругих тел с увеличением напряжений σ пропорционально возрастают его относительные деформации ξ: σ = Еξ, где Е — модуль упругости, МПа, характеризующий жесткость материала.

Чем выше модуль упругости, тем меньше материал деформируется. Так, модуль упругости каучука 10…

20 МПа, а стали — 200 000 МПа; это значит, что под действием одной и той же силы деформация стали будет в 10 000 раз меньше, чем каучука при прочих равных условиях.

При увеличении действующей силы напряжения в материале возрастают и могут превысить силу сцепления частиц и материал разрушится.

На практике разрушение материала начинается значительно раньше того момента, когда напряжения в нем достигнут теоретического предельного значения.

Это объясняется тем, что в реальных материалах много дефектов самого различного уровня (начиная от молекулярного и кончая макродефектами — например, трещинами).

Напряжение, при котором происходит разрушение материала при испытании, называют пределом прочности.

В зависимости от характера приложения нагрузки F и вида возникающих напряжений различают прочность при сжатии, растяжении, изгибе, скалывании (срезе) (рис. 3).

Предел прочности при сжатии формулаРис. 3. Схема определения пределов прочности материалов на сжатие (а), растяжение (б), изгиб (в) и срез (г)

Прочность определяют на образцах материала, форму и размеры которых устанавливает стандарт на этот материал. Так, для оценки прочности бетона приняты образцы-кубы размером 150х150х150 мм.

Предел прочности бетона при сжатии Rсж обычно 10…50 МПа. Чтобы разрушить бетонный куб размером 150x150x150 мм с Rсж = 10 МПа, надо приложить усилие F = RcжS = 10х(0,15х 0,15) = 0,225 МН.

Поэтому для испытания материалов применяют специальные машины, снабженные механизмом для силового воздействия на образец и измерительными устройствами.

Читайте также:  Сверлильный станок 2а112 технические характеристики

Так, предел прочности при сжатии определяют с помощью гидравлических прессов, развивающих усилия до 106 Н и более (рис. 4).

Предел прочности при сжатии формулаРис. 4. Схема гидравлического пресса для испытания на сжатие: 1 — станина, 2 — поршень, 3, 5 — нижняя и верхняя опорные плиты, 4 — испытуемый образец, 6 — маховик для ручного подъема и опускания верхней плиты, 7 — манометр, 8 — масляный насос

Для испытания на прочность образец 4 устанавливают на нижнюю плиту 3 пресса, зажимают верхней плитой 5 и включают масляный насос 8.

За повышением давления масла наблюдают по манометру 7, фиксируя давление, при котором начинается разрушение материала. Разрушающее усилие Fpaзp равно произведению значений зафиксированного давления и площади поршня пресса.

Предел прочности при сжатии Rсж = Fразр/S, где S — площадь поперечного сечения образца, м2.

Аналогично определяют прочность при растяжении, изгибе, скалывании. Однако расчетные формулы при изгибе и скалывании имеют другой вид.

Прочность при сжатии, растяжении и изгибе у одного и того же материала может сильно различаться. У всех каменных материалов прочность при сжатии в 5…15 раз выше, чем при изгибе и растяжении.

У древесины, наоборот, прочность при изгибе немного выше прочности при сжатии.

Интересно отметить, что прочность древесины при сжатии вдоль волокон близка к прочности бетона, а при изгибе она прочнее бетона более чем в 10 раз.

  • Увлажнение многих материалов вызывает снижение их прочности. Степень понижения прочности материала, насыщенного водой, характеризуется коэффициентом размягчения
  • Кр = Rнас/Rсух,
  • где Rнас — прочность материала в насыщенном водой состоянии, МПа; Rсух — прочность материала в сухом состоянии, МПа.
  • Значение Kр для разных материалов колеблется от 0 (необожженная глина) до 1 (стекло, сталь, битум).

Упругость и пластичность. Если взять два шарика — резиновый и глиняный — и начать их сжимать, то оба они под действием приложенной силы начнут деформироваться. Если прекратить действие силы, резиновый шарик восстановит свою форму, а глиняный останется деформированным.

Материалы, ведущие себя подобно резиновому шарику, т. е. восстанавливающие свою форму и размеры после снятия нагрузки, называются упругими. Материалы, ведущие себя подобно глине, т. е. сохраняющие деформации после снятия нагрузки, называются пластичными. Соответственно обратимые деформации называются упругими деформациями, а необратимые — пластическими.

К упругим материалам относятся природные и искусственные каменные материалы, стекло, сталь; к пластичным — битумы ( при положительных температурах), некоторые виды пластмасс, свинец, бетонные и растворные смеси до затвердевания.

Твердость — способность материалов сопротивляться проникновению в них других материалов. Твердость — величина относительная, так как твердость одного материала оценивается по отношению к другому.

Самый простой метод определения твердости — по шкале твердости. В эту шкалу входят 10 минералов, расположенных по возрастающей твердости, начиная от талька (твердость 1) и кончая алмазом (твердость 10).

Твердость исследуемого материала определяют, последовательно царапая его входящими в шкалу твердости минералами.

Обычно твердость определяют на специальных приборах. Так, для оценки твердости металлов и других твердых материалов применяют метод Бринелля, основанный на вдавливании под определенной нагрузкой в испытуемый образец шарика из закаленной стали. По диаметру отпечатка от шарика рассчитывают число твердости НВ.

Высокая прочность материала не всегда говорит о его твердости. Так, древесина, хотя по прочности при сжатии равна бетону, а при изгибе и растяжении превосходит его, имеет значительно меньшую, чем у бетона, твердость.

Износостойкость — способность материала противостоять воздействию на него сил трения и ударных воздействий от движущихся предметов. Определяют ее на специальных приборах, снабженных абразивными насадками и моделирующих реальный процесс изнашивания. Износостойкость — важное свойство материалов, используемых для покрытий полов, дорог и т. п.

Стропы текстильные ленточные http://komplektacya.ru/gruzopodjemnoe-oborudovanie/stropy-gruzovye/tekstilnye/ в магазине Комплектация.ру облицовка цоколя гранитом цена за работу невысокая

Определение предела прочности при сжатии

  • Пределом прочности при сжатии материала называют напряжение, соответствующее сжимающей нагрузке, при которой происходит разрушение материала.
  • Предел прочности при сжатии определяют по формуле:
  • Rсж= , [МПа (кг/см2)], 9)
  • где: Рсж — разрушающая нагрузка, Н (кг);
  • — площадь поперечного сечения образца, м2 (см2).
  • Испытания проводятся в соответствии с ГОСТ на соответствующие материалы.

Для определения предела прочности при сжатии образцы материала подвергают действию сжимающих внешних сил и доводят до разрушения. Форма и размеры образцов различных строительных материалов должны соответствовать требованиям ГОСТ на данный вид материала. Испытуемые образцы должны быть правильной геометрической формы в виде куба, цилиндра или параллелепипеда. Образцы природных каменных материалов, имеющих форму куба, могут быть приняты с ребром 50, 70, 100, 150 и 200 мм. Образцы из плотных материалов можно принять меньшего размера, а из пористых материалов — большего.

Такие образцы-кубы изготавливают с помощью корундовых или алмазных дисковых пил, а образцы-цилиндры — с помощью специальных полых сверл. После изготовления образцы пришлифовывают так, чтобы противоположные нагружаемые грани были строго параллельны.

Правильность плоскостей проверяют угольником и штангенциркулем, образцы маркируют и указывают на них направление сланцеватости (волокнистости). Для испытания образцов материала на сжатие применяют гидравлические прессы (рис. 7). Предварительно высушенные перед испытанием образцы измеряют с точностью до 1 мм.

Измерения проводят в соответствии со схемой на рисунке 2.

По результатам измерений вычисляют площадь сечения образца, перпендикулярную к направлению разрушающего усилия. Направление разрушающего усилия при испытании должно быть принято параллельным направлению сланцеватости или волокнистости образца. Для испытаний образец устанавливают на нижнюю опорную плиту пресса точно по ее центру.

Верхнюю опорную плиту при помощи винта опускают на образец, плотно закрепляют его между двумя опорными плитами, включают в действие насос пресса и дают на образец нагрузку, следя за скоростью ее нарастания.

Она должна быть 0,5 — 1 МПа в 1 с и обеспечить разрушение через 20-60 сек после начала испытания. Значение разрушающей нагрузки должно составлять не менее 10% предельного развиваемого прессом усилия. В момент разрушения образца стрелка манометра пресса остановится и пойдет обратно.

Максимальное показание разрушающей нагрузки фиксируется контрольной стрелкой.

Для каждого материала проводят испытание не менее чем на трех образцах. За окончательный результат принимается среднее арифметическое результатов всех испытаний.

После вычисления пределов прочности при сжатии образцов кубов и образцов цилиндров из природного камня их следует пересчитать и перевести к стандартному — кубу размером 150x150x150 мм.

Для этого результаты испытаний умножают на масштабный коэффициент (Kм), указанный в таблице 2.

Предел прочности материалов (разрыв металлов) при растяжении и сжатии: что это такое, виды, фото

14Ноя

Содержание статьи

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов.

В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения.

Сегодня поговорим о пределе кратковременной прочности материала при разрыве и натяжении, расскажем, что это такое, его определение и обозначение, как работать с этим показанием.

Что это значит

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения.

В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не применяет при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Как производится испытание

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все проверки проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие.

Читайте также:  Почему резак стреляет при резке

Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный.

Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине.

При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется.

Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробности посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в разные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растягиванию – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • От способов термообработки – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Предел прочности материала: что называют текучестью

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных образцов и показывает, как долго он может деформироваться без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение сплава.

Усталость стали

Обозначается буквой R. Это аналогичный параметр, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле.

То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени.

Именно столько раз металл должен без деформирования и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения векторной величины, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом численные характеристики должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образчик.

Параметр каждого из них находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма прежняя – пример, сжимание пружины), то такие качества нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называется пределом прочности, но и такую характеристику стали как твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы.

Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке.

То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под действием цикличных нагрузок.
  • Предел прочности стали при растяжении и на разрыв – это обозначение временного сопротивления внешним силам, напряжения (МПа), возникающего внутри.

Классы

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

Класс  Н/мм2
265 430
295 430
315 450
325 450
345 490
355 490
375 510
390 510
440 590

Видим, что для некоторых классов остаются одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула для механического напряжения

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d.

То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни.

Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется прочность материала и что понимается под удельным пределом  металла. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются.

Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими.

Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

Есть два типа:

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о вариантах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Также посмотрим более подробное видео:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Легирующие добавки

Также можно встретить следующие примеси:

  • Хром – увеличивает твёрдость.
  • Молибден – защищает от ржавчины.
  • Ванадий – для упругости.
  • Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.

Эти и другие химические вещества должны применяться в строгих пропорциях.

В статье мы рассказали про предел прочности металла (кратковременное сопротивление материала) – что это, формулы, как определяется и обозначается сигма при растяжении и сжатии в единицах измерения.

А также дали несколько таблиц, которыми можно пользоваться при работе. В качестве завершения давайте посмотрим видеоролик:

После того, как ознакомитесь со статьей, можете ознакомиться с нашим ассортиментом ленточнопильных изделий. Компания «Рокта» уже 15 лет на российском рынке. За это время мы охватили практически все города страны. Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]