Предел текучести материала формула

Разные материалы по-разному реагируют на приложенную к ним внешнюю силу, вызывающую изменение их формы и линейных размеров. Такое изменение называют пластической деформация. Если тело после прекращения воздействия самостоятельно восстанавливает первоначальную форму и линейные размеры — такая деформация называется упругой.

Упругость, вязкость, прочность и твердость являются основными механическими характеристиками твердых и аморфных тел и обуславливают изменения, происходящие с физическим телом при деформации под действием внешнего усилия и ее предельном случае — разрушении.

Предел текучести материала — это значение напряжения (или силы на единицу площади сечения), при котором начинается пластическая деформация.

Предел текучести материала формула

Текучесть металла

Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе.

Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена.

Разрушение или серьезная деформация строительных конструкций или элементов транспортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам.

Предел текучести — это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать.

Предел текучести материала формула

На практике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы.

На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций.

Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой — компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.

Величина предела текучести материала

С развитием атомной физики в XX веке появилась возможность рассчитать значение параметра теоретическим путем. Эту работы первым проделал Яков Френкель в 1924 году.

Исходя из прочности межатомных связей, он путем сложных для того времени вычислений определил величину напряжения, достаточного для начала пластической деформации тел простой формы.

Величина предела текучести материала будет равна

ττ=G/2π. , где G — модуль сдвига, как раз и определяющий устойчивость связей между атомами.

Расчет величины предела текучести

Гениальное допущение, сделанное Френкелем при расчетах, заключалось в том, что процесс изменения формы материала рассматривался как приводимый в действие напряжениями сдвига. Для начала пластической деформации полагалось достаточным, чтобы одна половина тела сдвинулась относительно другой до такой степени, чтобы не смогла вернуться в начальное положение под действием сил упругости.

Предел текучести материала формула

График физического предела текучести

Френкель предположил, что испытываемый в мысленном эксперименте материал имеет кристаллическое или поликристаллическое строение, свойственно для большей части металлов, керамики и многих полимеров.

Такое строение предполагает наличие пространственной решетки, в узлах которой в строго определенном порядке расположены атомы. Конфигурация этой решетки строго индивидуальны для каждого вещества, индивидуальны и межатомные расстояния и связывающие эти атомы силы.

Таким образом, чтобы вызвать пластическую деформацию сдвига, потребуется разорвать все межатомные связи, проходящие через условную плоскость, разделяющую половины тела.

При некотором значении напряжения, равному пределу текучести, связи между атомами из разных половин тела разорвутся, и рады атомов сместятся друг относительно друга на одно межатомное расстояние без возможности вернуться в исходное положение. При продолжении воздействия такой микросдвиг будет продолжаться, пока все атомы одной половины тела не потеряют контакт с атомами другой половины

В макромире это вызовет пластическую деформацию, изменит форму тела и при продолжении воздействия приведет к его разрушению. На практике линия начала разрушений проходит не посередине физического тела, а находится в местах расположения неоднородностей материала.

Физический предел текучести

В теории прочности для каждого материала существует несколько значений этой важной характеристики.

Физический предел текучести соответствует значению напряжения, при котором, не смотря на деформацию, удельная нагрузка не меняется вовсе или меняется несущественно.

Иными словами, это значение напряжения, при котором физическое тело деформируется, «течет», без увеличения прилагаемого к образцу усилия

Условный предел текучести

Большое число металлов и сплавов при испытаниях на разрыв демонстрируют диаграмму текучести с отсутствующей или слабо выраженной «площадкой текучести». Для таких материалов говорят о условном пределе текучести. Его трактуют как напряжение, при котором происходит деформация в переделах 0,2%.

Предел текучести материала формула

Условный предел текучести

К таким материалам относятся легированные и высокоуглеродистые стальные сплавы, бронза, дюралюминий и многие другие. Чем более пластичным является материал, тем выше для него показатель остаточных деформаций. Примером пластичных материалов могут служить медь, латунь, чистый алюминий и большинство низкоуглеродистых стальных сплавов.

Предел текучести стали

Сталь, как самый популярный массовый конструкционный материал, находится под особо пристальным вниманием специалистов по расчету прочности конструкций и предельно допустимых нагрузок на них.

Стальные сооружения в ходе их эксплуатации подвергаются большим по величине и сложным по форме комбинированным нагрузкам на растяжение, сжатие, изгиб и сдвиг. Нагрузки могут быть динамическими, статическими и периодическими.

Несмотря на сложнейшие условия использования, конструктор должен обеспечить у проектируемых им конструкций и механизмов долговечность, безотказность и высокую степень безопасности как для персонала, таки для окружающего населения.

Предел текучести материала формула

Предел текучести стали

Поэтому к стали и предъявляются повышенные требования по механическим свойствам.

С точки зрения экономической эффективности, предприятие стремится снизить сечение и другие размеры производимой им продукции, чтобы снизить материалоемкость и вес и повысить, таким образом, эксплуатационные характеристики.

На практике это требование должно быть сбалансировано с требования ми по безопасности и надежности, зафиксированными в стандартах и технических условиях.

Предел текучести для стали является ключевым параметрам в этих расчетах, поскольку он характеризует способность конструкции выдерживать напряжения без необратимых деформаций и разрушения.

Влияние содержание углерода на свойства сталей

Согласно физико-химическому принципу аддитивности, изменение физических свойств материалов определяется процентным содержанием углерода.

Повышение его доли до 1,2% дает возможности увеличить прочность, твердость, предел текучести и пороговую хладоемкость сплава.

Дальнейшее повышение доли углерода приводит к заметному снижению таких технических показателей, как способность к свариваемости и предельная деформация при штамповочных работах. Стали с низким содержанием углерода демонстрируют наилучшую свариваемость.

Азот и кислород в сплаве

Эти неметаллы из начала таблицы Менделеева являются вредными примесями и снижают механические и физические характеристики стали, такие, например, как порог вязкости, пластичность и хрупкость.

Если кислород содержится в количестве свыше 0,03%- это ведет к ускорению старения сплава, а азот увеличивает ломкость материала.

С другой стороны, содержание азота повышает прочность, снижая предел текучести.

Предел текучести материала формула

Микроструктура сплава, в составе которого присутствуют азот и кислород

Добавки марганца и кремния

Легирующая добавка в виде марганца применяется для раскисления сплава и компенсации отрицательного влияния вредных серосодержащих примесей. Ввиду своей близости по свойствам к железу существенного самостоятельного влияния на свойства сплава марганец не оказывает. Типовое содержание марганца – около 0,8%.

Кремний оказывает похожее воздействие, его добавляют в процессе раскисления в объемной доле, не превышающей 0,4%. Поскольку кремний существенно ухудшает такой технический показатель, как свариваемость стали. Для конструкционных сталей, предназначенных для соединения сваркой, его доля не должна превышать 0,25%. На свойства стальных сплавов кремний влияния не оказывает.

Примеси серы и фосфора

  • Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики.
  • Предельно допустимое содержание этого элемента в виде хрупких сульфитов– 0,06%
  • Сера ухудшает пластичность, предел текучести, ударную вязкость, износостойкость и коррозионную стойкость материалов.

Фосфор оказывает двоякое воздействие на физико-механические свойства сталей. С одной стороны, с повышением его содержания повышается предел текучести, однако с другой стороны, одновременно понижаются вязкость и текучесть. Обычно содержание фосфора находится в пределах от 0,025 до 0,044%.

Особенно сильное отрицательное влияние фосфор оказывает при одновременном повышении объемных долей углерода.

Легирующие добавки в составе сплавов

Легирующими добавками называют вещества, намеренно введенные в состав сплав для целенаправленного изменения его свойств до нужных показателей. Такие сплавы называют легированными сталями. Лучших показателей можно добиться, добавляя одновременно несколько присадок в определенных пропорциях.

Предел текучести материала формула

Влияние легирующих элементов на свойства стали

Распространенными присадками являются никель, ванадий, хром, молибден и другие. С помощью легирующих присадок улучшают значение предела текучести, прочности, вязкости, коррозионной стойкости и многих других физико-механических и химических параметров и свойств.

Текучесть расплава металла

Текучестью расплава металла называют его свойство полностью заполнять литейную форму, проникая в малейшие полости и детали рельефа. От этого зависит точность отливки и качество ее поверхности.

Читайте также:  Несколько правил здорового позвоночника

Предел текучести материала формула

Жидкий металл для процессоров

Свойство можно усилить, если поместить расплав под избыточное давление. Это физическое явление используется в установках литья под давлением. Такой метод позволяет существенно повысить производительность процесса литья, улучшить качество поверхности и однородность отливок.

Испытание образца для определения предела текучести

Чтобы провести стандартные испытания, используют цилиндрический образец диаметром 20 мм и высотой 10 мм, закрепляют его в испытательной установке и подвергают растягиванию. Расстояние между нанесенными на боковой поверхности образца метками называют расчетной длиной. В ходе измерений фиксируют зависимость относительного удлинения образца от величины растягивающего усилия.

Зависимость отображают в виде диаграммы условного растяжения. На первом этапе эксперимента рост силы вызывает пропорциональное увеличение длины образца.

По достижении предела пропорциональности диаграмма из линейной превращается в криволинейную, теряется линейная зависимость между силой и удлинением.

На этом участке диаграммы образец при снятии усилия еще может вернуться к исходным форме и габаритам.

Для большинства материалов значения предела пропорциональности и предела текучести настолько близки, что в практических применениях разницу между ними не учитывают.

3.1 Методы определения механических свойств

Металлам присущи высокая пластичность, тепло- и электропро­водность. Они имеют характерный металлический блеск.

Свойствами металлов обладают около 80 элементов периодиче­ской системы Д.И. Менделеева. Для металлов, а также для метал­лических сплавов, особенно конструкционных, большое значение имеют механические свойства, основными из которых являются прочность, пластичность, твердость и ударная вязкость.

Под действием внешней нагрузки в твердом теле возникают на­пряжение и деформация. Напряжение это нагрузка (сила),отнесенная к первоначальной площади поперечного сече­ния образца.

Деформация – это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т.п.

Де­формация может быть упругая (исчезает после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки).

При все возрас­тающей нагрузке упругая деформация, как правило, переходит в пла­стическую, и далее образец разрушается.

В зависимости от способа приложения нагрузки методы испытания механических свойств ме­таллов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

Прочность – способность металлов оказывать сопротивление де­формации или разрушению статическим, динамическим или знако­переменным нагрузкам.

Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным.

Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках – усталостной прочностью.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение. Испытания проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения (рис. 3.1). По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат – значения напряжения, приложенного к образцу.

Из графика видно, что сколь бы ни было мало приложенное напряжение, оно вызывает деформацию, причем начальные деформации являются всегда упругими и величина их находится в прямой зависимости от напряжения. На кривой, приведенной на диаграмме (рис. 3.1), упругая деформация характеризуется линией ОА и ее продолжением.

Предел текучести материала формула

Рис. 3.1. Кривая деформации

Выше точки А нарушается пропорциональность между напряжением и деформацией. Напряжение вызывает уже не только упругую, но и остаточную, пластическую деформацию. Величина ее равна горизонтальному отрезку от штриховой линии до сплошной кривой.

При упругом деформировании под действием внешней силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает.

Пластическое деформирование представляет собой совершенно другой, значительно более сложный процесс. При пластическом деформировании одна часть кристалла перемещается по отношению к другой. Если нагрузку снять, то перемещенная часть кристалла не возвратится на старое место; деформация сохранится.

Эти сдвиги обнаруживаются при микроструктурном исследовании.

Кроме того, пластическое деформирование сопровождается дроблением блоков мозаики внутри зерен, а при значительных степенях деформации наблюдается также заметное изменение форм зерен и их расположения в пространстве, причем между зернами (иногда и внутри зерен) возникают пустоты (поры).

Представленная зависимость ОАВ (см. рис. 3.1) между приложенным извне напряжением (σ) и вызванной им относительной деформацией (ε) характеризует механические свойства металлов.

  • · наклон прямой ОА показывает жесткость металла, или характеристику того, как нагрузка, приложенная извне, изменяет межатомные расстояния, что в первом приближении характеризует силы межатомного притяжения;
  • · тангенс угла наклона прямой ОА пропорционален модулю упругости(Е), который численно равен частному от деления напряжения на относительную упругую деформацию:
  • · напряжение, которое называется пределом пропорциональности (σпц), соответствует моменту появления пластической деформации. Чем точнее метод измерения деформации, тем ниже лежит точка А;
  • · в технических измерениях принята характеристика, именуемая пределом текучести (σ0,2). Это напряжение, вызывающее остаточную деформацию, равную 0,2 % от длины или другого размера образца, изделия;
  • · максимальное напряжение (σв) соответствует максимальному напряжению, достигнутому при растяжении, и называется временным сопротивлением или пределом прочности.

Еще одной характеристикой материала является величина пластической деформации, предшествующая разрушению и определяемая как относительное изменение длины (или поперечного сечения) – так называемое относительное удлинение (δ) или относительное сужение(ψ), они характеризуют пластичность металла. Площадь под кривой ОАВ пропорциональна работе, которую надо затратить, чтобы разрушить металл. Этот показатель, определяемый различными способами (главным образом путем удара по надрезанному образцу), характеризует вязкость металла.

При растяжении образца до разрушения фиксируются графически (рис. 3.2) зависимости между приложенным усилием и удлинением образца, в результате этого получают так называемые диаграммы деформации.

Предел текучести материала формула

Рис. 3.2. Диаграмма «усилие (напряжение) – удлинение»

Деформация образца при нагружении сплава сначала является макроупругой, а затем постепенно и в разных зернах при неодинаковой нагрузке переходит в пластическую, происходящую путем сдвигов по дислокационному механизму.

Накопление дислокаций в результате деформации ведет к упрочнению металла, но при значительной их плотности, особенно в отдельных участках, возникают очаги разрушения, приводящие, в конечном счете, к полному разрушению образца в целом.

  1. Прочность при испытании на растяжение оценивают следующими характеристиками:
  2. 1) пределом прочности на разрыв;
  3. 2) пределом пропорциональности;
  4. 3) пределом текучести;
  5. 4) пределом упругости;
  6. 5) модулем упругости;
  7. 6) пределом текучести;
  8. 7) относительным удлинением;
  9. 8) относительным равномерным удлинением;
  10. 9) относительным сужением после разрыва.
  11. Предел прочности на разрыв(предел прочности или временное сопротивление разрыву) σв, – это напряжение, отвечающее наибольшей нагрузке РВ предшествующей разрушению образца:
  12. σв = Рв/F0,
  13. Эта характеристика является обязательной для металлов.
  14. Предел пропорциональности(σпц)– это условное напряжение Рпц, при котором начинается отклонение от пропорциональной зависимости мости между деформацией и нагрузкой. Он равен:
  15. σпц = Рпц/F0.
  16. Значения σпц измеряют в кгс/мм2 или в МПа.
  17. Предел текучести(σт) – это напряжение (Рт)при котором обра­зец деформируется (течет) без заметного увеличения нагрузки. Вычисляется по формуле:
  18. σт = Рт/F0.
  19. Предел упругости (σ0,05) – напряжение, при котором остаточное удлинение достигает 0,05 % длины участка рабочей части образца, равного базе тензометра. Предел упругости σ0,05 вычисляют по формуле:
  20. σ0,05 = Р0,05/F0.
  21. Модуль упругости (Е)отношение приращения напряжения к соответствующему приращению удлинения в пределах упругой деформации. Он равен:
  22. Е = Рl/lсрF0,
  23. где ∆Р – приращение нагрузки; l0 – начальная расчетная длина образца; lср – среднее приращение удлинения; Fначальная площадь поперечного сечения.
  24. Предел текучести (условный) – напряжение при котором остаточное удлинение достигает 0,2 % длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики.
  25. Предел текучести материала формула
  26. Вычисляется по формуле:
  • σ 0,2 = Р0,2/F0.
  • Условный предел текучести определяют только при отсутствии на диаграмме растяжения площадки текучести.
  • Относительное удлинение (после разрыва) – одна из характеристик пластичности материалов, равная отношению приращения расчетной длины образца после разрушения () к начальной расчетной длине (l0) в процентах:
  • .
  • Относительное равномерное удлинение (δр) – отношение приращения длины участков в рабочей части образца после разрыва к длине до испытания, выраженное в процентах.
  • Относительное сужение после разрыва (ψ), как и относительное удлинение – характеристика пластичности материала. Определяется как отношение разности F0 и минимальной ()площади поперечного сечения образца после разрушения к начальной площади поперечного сечения (F0), выраженное в процентах:
  • .

Упругость–свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упру­гость – свойство, обратное пластичности.

Очень часто для определения прочности пользуются простым, не разрушающим изделие (образец), упрощенным методом – измерением твердости.

Читайте также:  Бадья для бетона своими руками

Под твердостью материала понимается сопротивление проникновению в него постороннего тела, т.е., по сути дела, твердость тоже характеризует сопротивление деформации. Существует много методов определения твердости.

Наиболее распространенным является метод Бринелля (рис. 3.3, а), когда в испытуемое тело под действием силы Р внедряется шарик диаметром D.

Число твердости по Бринеллю (НВ) есть нагрузка (Р), деленная на площадь сферической поверхности отпечатка (диаметром d).

Предел текучести материала формула

Рис. 3.3. Испытание на твердость:

а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

При измерении твердости методом Виккерса (рис. 3.3, б) вдавливается алмазная пирамида. Измерив диагональ отпечатка (d), судят о твердости (HV) материала.

При измерении твердости методом Роквелла (рис. 3.3, в) индентором служит алмазный конус (иногда маленький стальной шарик). Число твердости – это значение, обратное глубине вдавливания (h). Имеются три шкалы: А, В, С (табл. 3.1).

Методы Бринелля и Роквелла по шкале B применяют для мягких материалов, а метод Роквелла по шкале C – для твердых, а метод Роквелла по шкале A и метод Виккерса – для тонких слоев (листов). Описанные методы измерения твердости характеризуют среднюю твердость сплава.

Для того чтобы определить твердость отдельных структурных составляющих сплава, надо резко локализовать деформацию, вдавливать алмазную пирамиду на определенное место, найденное на шлифе при увеличении в 100 – 400 раз под очень небольшой нагрузкой (от 1 до 100 гс) с последующим измерением под микроскопом диагонали отпечатка.

Полученная характеристика (Н) называется микротвердостью, и характеризует твердость определенной структурной составляющей.

Таблица 3.1 Условия испытания при измерении твердости методом Роквелла

Условия испытания Шкала Обозначение т
вердости
При испытании алмазным конусом и нагрузке Р = 150 кгс С HRC
При испытании алмазным конусом и нагрузке Р = 60 кгс А HRA
При вдавливании стального шарика и нагрузке Р = 100 кгс В HRB

Значение НВ измеряют в кгс/мм2 (в этом случае единицы часто не указываются) или в СИ – в МПа (1 кгс/мм2 = 10 МПа).

Вязкостьспособность металлов оказывать сопротивление ударным нагрузкам. Вязкость – свойство, обратное хрупкости. Многие детали в процессе работы испытывают не только статиче­ские нагрузки, но подвергаются также ударным (динамическим) нагрузкам. Например, такие нагрузки испытывают колеса локомо­тивов и вагонов на стыках рельсов.

Основной вид динамических испытаний – ударное нагружение надрезанных образцов в условиях изгиба. Динамическое нагружение ударом осуществляется на маятниковых копрах (рис. 3.4), а также падающим грузом. При этом определяют работу, затраченную на деформацию и разрушение образца.

  1. Обычно в этих испытаниях, определяют удельную работу, затраченную на деформацию и разрушение образца. Ее рассчитывают по формуле:
  2. КС = K/S,
  3. где КС – удельная работа; К – полная работа деформации и разрушения образца, Дж; S0 – поперечное сечение образца в месте надреза, м2 или см2.

Предел текучести материала формула

Рис. 3.4. Испытания на ударную  вязкость с помощью маятникового копра

Ширина образцов всех типов измеряется до испытаний. Высоту образцов с U- и V-образным надрезом измеряют до испытаний, а с Т-образным надрезом уже после испытаний. Соответственно удельная работа деформации разрушения обозначается KCU, KCV и КСТ.

Хрупкостьметаллов в условиях низких температур называют хладоломкостью. Значение ударной вязкости при этом существенно ниже, чем при комнатной температуре.

Ещё одной характеристикой механических свойств материалов является усталостная прочность. Некоторые детали (валы, шатуны, рес­соры, пружины, рельсы и т.п.) в процессе эксплуатации испытывают нагрузки, изменяющиеся по величине или одновременно по величи­не и направлению (знаку).

Под действием таких знакопеременных (вибрационных) нагрузок металл как бы устает, прочность его понижается и деталь разрушается. Это явление называют усталостью металла, а образовавшиеся изломы – усталостными. Для таких деталей необходимо знать предел выносливости,т.е.

величину наибольшего напряжения, которое металл может выдер­жать без разрушения при заданном числе перемен нагрузки (циклов) (N).

Износостойкость – сопротивление металлов изнашиванию вслед­ствие процессов трения.

Это важная характеристика, например, для контактных материалов и, в частности, для контактного провода и токосъемных элементов токоприемника электрифицированного транс­порта.

Износ заключается в отрыве с трущейся поверхности отдель­ных ее частиц и определяется по изменению геометрических размеров или массы детали.

Усталостная прочность и износостойкость дают наиболее полное представление о долговечности деталей в конструкциях, а вязкость характеризует надежность этих деталей.

Предел текучести материала формула

Пределы текучести веществ. Как определить предел текучести

Предел прочности

— это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать терминвременное сопротивление , понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление». ©ИЦМ(www.modificator.ru)

Прочность

— это сопротивление материала деформации и разрушению, одно из основныхмеханических свойств . Другими словами, прочность — это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

  • К характеристикам прочности при растяжении
  • относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).
  • Предел прочности
  • — это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см2), а также указывается в мегапаскалях (МПа).
  • Различают:
  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа)

определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др..

Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit — предел ограниченной длительной прочности на заданный срок службы. [1]

©ИЦМ(www.modificator.ru)

  1. Физику прочности
  2. основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушенияP для данного материала зависит только от площади поперечного сечения
  3. F
  4. σ=P
  5. F
  6. Физика разрушения как фундаментальная наука о прочности металлов

. Так появилась новая физическая величина — напряжение / — и физическая постоянная материала: напряжение разрушения [4].

возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений.

Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла.

Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

  • Большое влияние на прочность материала
  • оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.
  • К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе — модифицирование сплава.
  • Учебный фильм о прочности металлов (СССР, год выпуска: ~1980):

  Сварка меди. Способы и технология сварки. Как варить медь?

Предел текучести – общее определение

В процессе эксплуатации любое сооружение испытывает нагрузки. Под влиянием атмосферных явлений и других неблагоприятных факторов стальные конструкции подвергаются комбинированным нагрузкам, к числу которых относятся сжатие, растяжение и удары.

Предел текучести

Стальные элементы чаще всего используются при возведении несущих стен, на которые оказывается основная нагрузка. В целях экономии материалов конструкторы стремятся уменьшить диаметр металлической арматуры таким образом, чтобы не допустить снижения несущей способности возводимого сооружения.

Выполнить это условие можно, если на этапе проектирования сооружения произвести правильный расчет прочности и пластичности. В первую очередь при расчетах учитывается предел текучести материала. Данный параметр обозначает напряжение, при котором происходит пластическая деформация детали без увеличения нагрузки.

Предел текучести измеряется в Паскалях. Его определение позволяет рассчитать максимальную нагрузку, которую способна выдержать пластичная сталь. Превышение этого предела вызывает необратимый процесс деформации и разрушения кристаллической решетки.

Какие факторы изменяют предел текучести

Сталь – это сплав железа с углеродом, количество которого определяет свойства металла. Углерод придает сплавам твердость и прочность.

Текучесть металла увеличивается, если количество углеродной добавки составляет порядка 1,2%. Такое соотношение позволяет улучшить прочностные характеристики и повысить устойчивость к высоким температурам.

Увеличение содержания углерода приводит к ухудшению технических параметров металла.

Влияние добавок марганца и кремния

Марганец не оказывает влияния на технические свойства сплава. Его добавляют в целях увеличения степени раскисления металла и уменьшения вредного воздействия серы. Обычно его содержание не превышает 0,8%.

Добавка кремния позволяет улучшить качество сварки. Его добавляют в процессе раскисления. А общее содержание данного элемента не превышает 0,38%.

Читайте также:  Реверсивный рубильник обозначение на схеме

Влияние углерода на механические свойства стали

Влияние добавок серы и фосфора

Количество серы, добавляемой в сплав, оказывает влияние на его механические показатели. Увеличенное содержание серы значительно снижает пластичность, вязкость и текучесть металла. Наибольшему истиранию подвержены изделия, содержащие более 0,6% серы.

Добавление фосфора позволяет улучшить показатели текучести. Однако данный элемент способствует снижению пластичности, вязкости и общих характеристик металла. Допустимым количеством фосфора считается не более 0,025-0,044%.

Как влияют сера и фосфор на свойства стали

Влияние добавок азота и кислорода

Азот и кислород относятся к неметаллическим примесям, поэтому их содержание должно быть минимальным. Если металл содержит более 0,03% кислорода, его эксплуатационные характеристики ухудшаются. Снижение пластичности и вязкости приводит к быстрому износу изделий.

  Разновидности материалов для сварки металла

Добавление азота способствует увеличению прочности стали. Но вместе с ней происходит уменьшение предела текучести материала. Если количество азота превышает допустимые значения, металлические конструкции быстро стареют за счет повышенной ломкости.

Микроструктура сплава, в составе которого присутствуют азот и кислород

Влияние легирующих добавок

К легирующим добавкам относятся химические элементы, добавляемые в сплав для придания определенных свойств. К числу легирующих элементов относятся:

Влияние легирующих элементов на свойства стали

  • хром;
  • титан;
  • вольфрам;
  • никель;
  • ванадий;
  • молибден.

Для получения оптимальных результатов их добавляют все вместе, соблюдая определенные пропорции.

Как рассчитывается величина текучести стали

Первые расчеты величины текучести металла были выполнены в 30-х годах прошлого столетия советским ученым Яковом Френкелем. В их основу была положена прочность межатомных связей. Ученому удалось определить, какое напряжение требуется для начала пластической деформации простых тел.

  1. Для расчета данной величины применяется следующая формула:
  2. Предел текучести стали
  3. ττ=G/2π, где величина G является модулем сдвига, определяющим устойчивость межатомных связей.

Как физик-теоретик, Френкель предположил, что материалы состоят из кристаллов, между которыми есть пространство. Там в определенном порядке расположены атомы. Чтобы достичь пластической деформации, необходимо разорвать межатомные связи в плоскости, разделяющей половинки тела.

Ряды атомов сместятся и половинки тела разорвутся, если на них оказать напряжение, величина которого соответствует определенному значению. Если воздействие будет оказываться и дальше, атомы одной половинки потеряют связь с атомами другой половинки.

Отчасти Френкель оказался прав. Только разрушение произойдет не между половинками тела, то есть посередине, а в том месте, где структура материала неоднородна.

Для каждого вида металла существует несколько значений предела текучести.

Физический предел текучести. Данной величиной обозначают силу напряжения, при которой тело деформируется без изменения прилагаемой нагрузки.

График физического предела текучести стали

Условный предел текучести. Данный термин применяют к силе напряжения, при которой значение пластической деформации материала составляет около 0,2%.

Временное сопротивление и усталость

Между ПП и временным сопротивлением различным нагрузкам есть прямая связь. Второй показатель в документации и технической литературе обозначают символом Т.

Он показывает, сколько длится деформация образца, когда на него воздействует постоянная нагрузка. Когда временное сопротивление прекращается, кристаллическая решётка вещества перестраивается. Это характерно для твёрдых материалов.

В результате вещество становится более прочным, чем было до этого. Это явление называется самоупрочнением.

Ещё одна важная характеристика — усталость металла. Говоря о стали, применяют выражение «предел выносливости». Для обозначения используют символ R.

Эта характеристика показывает, воздействие какой силы материал может переносить постоянно, а не разово. Во время эксперимента на образец оказывают давление заданной силы. Число воздействий составляет 107.

За время испытаний материал не должен деформироваться или утратить исходные характеристики.

На проведение таких экспериментов уходит много времени, поэтому их проводят не всегда. Часто обходятся математическими вычислениями, рассчитывая все важные коэффициенты.

Пределом пропорциональности называют максимальную нагрузку, при которой сохраняется соотношение, определяемое законом Гука. Согласно ему, тело деформируется прямо пропорционально величине оказываемого на него воздействия.

Каждый материал обладает определённой степенью упругости. Она может быть классической и абсолютной. Изменения могут быть обратимыми и необратимыми.

Пример первого типа — пружина: пока на неё воздействуют, она сжимается, а когда нажатие прекращается, расправляется.

Как проводятся испытания на производствах

Для проведения испытаний, целью которых является определение текучести материала, берут цилиндрическую заготовку диаметром 20 мм и длиной более 10 мм. На детали делают насечки для получения отрезка длиной 10 мм. Сама заготовка должна быть больше этой длины для того, чтобы ее можно было захватить с двух сторон.

Поведение сталей при высоких температурах

Деталь зажимают в тиски и начинают растягивать, постепенно увеличивая силу растяжения. В процессе произведения нагрузки производят замеры растущего удлинения образца. Полученные данные заносят в график, называемый диаграммой условного растяжения.

Если на заготовку оказывается небольшая нагрузка, она растягивается в обе стороны пропорционально. По мере увеличения силы растяжения достигается предел пропорциональности, после чего деталь растягивается неравномерно. Предел текучести стали определяется в тот момент, когда материал уже не может вернуться к первоначальной длине.

  ДИНИСТОРЫ, ИХ АНАЛОГИ И ТИРИСТОРЫ – СДЕЛАЙ САМ

Существуют Государственные Стандарты и Технические Условия, в которых значения предела текучести разделены на четыре класса:

  • 1 класс – до 500 кг/см2;
  • 2 класс – до 3000 кг/см2;
  • 3 класс – до 4000 кг/см2;
  • 4 класс – до 6000 кг/см2.

Определение пластичности

Показатель пластичности является не менее важным параметром, который обязательно учитывается в процессе проектирования конструкций. Он определяется двумя параметрами:

  • остаточным удлинением;
  • сужением при разрыве.

Чтобы рассчитать остаточное удлинение, производят замер двух частей детали после разрыва. Длину каждой части складывают, а затем определяют процентное соотношение к первоначальной длине. У более прочных металлических сплавов этот показатель меньше.

Характеристики пластичности стали

Определение хрупкости

Хрупкость – это свойство, противоположное пластичности. Показатель хрупкости зависит от множества факторов. К ним относятся:

  • температура воздуха (при низких температурах хрупкость материала увеличивается);
  • увеличение скорости оказываемой нагрузки;
  • влажность воздуха и пр.

Изменение этих условий приводит к изменению показателя хрупкости. К примеру, чугун – хрупкий материал. Но если чугунную деталь зажать со всех сторон, она способна перенести значительные нагрузки. А стальной прут с насечками становится невероятно хрупким.

Определение прочности

Прочность – это характеристика металла, определяющая его способность выдерживать нагрузки, не разрушаясь полностью. Для испытаний берут деталь и создают для нее условия, максимально приближенные к эксплуатационным, путем постепенного увеличения нагрузок.

Прочность стали на растяжение при изгибе

Значение термина

Предел прочности материала при растяжении сокращённо обозначается ПП. Также допускается использовать выражение «временное сопротивление». Для обозначения предела прочности применяют буквы R или σ В (сигма). Единица измерения — мегапаскаль (МПа).

Показатель означает допустимую величину силы, которая может воздействовать на объект до того, как он начнёт разрушаться. Речь идёт о механическом воздействии, но следует учитывать, что химические факторы способны изменить первоначальные свойства материала, в том числе повлиять на ПП.

К немеханическим нагрузкам относят следующие:

  • нагревание;
  • охлаждение;
  • погодные условия (ветер, осадки, влажность);
  • агрессивная среда.

Формула предела прочности при растяжении записывается так: R=0,64 (P/F), где F — площадь поверхности раскола предмета, а P — разрушающая нагрузка.

При проектировании нельзя опираться на крайние значения, поэтому инженеры оставляют допуски на различные факторы, а также на период эксплуатации.

Это значит, что при строительстве используется материал, у которого ПП превышает расчётное напряжение.

Изначально способность элемента выдерживать нагрузки определяли опытным путём. Материал использовали, не зная, как он себя поведёт во время эксплуатации, а после поломки заменяли более прочным. Со временем перешли к экспериментам и испытаниям, и по-прежнему самый точный способ найти предел прочности при натяжении и разрыве остаётся эмпирический.

Исследования проводят в лабораторных условиях, с использованием точной техники. Приборы фиксируют характеристики материала и то, как они изменяются под нагрузкой разной величины. Как правило, прочность измеряется так: предмет жёстко закрепляют и оказывают на него воздействие.

Сначала закреплённый элемент растягивают. Он становится длиннее, при этом в одном месте образуется перешеек, и именно здесь заготовка разорвётся. Так ведут себя не все материалы, а только вязкие. Чугун, сталь и другие хрупкие сплавы растягиваются незначительно. При увеличении нагрузки они трескаются и разрушаются по наклонным плоскостям. Шейки не образуются.

Сила, прикладываемая в каждый момент, измеряется с точностью до тысячных долей ньютона. Одновременно определяют размер и характер деформации. Данные сверяют с таблицами.

Второй способ — математический анализ. Он заключается в том, что прочность определяют с помощью сложных вычислений. Однако без испытаний данные, полученные расчётным путём, нельзя считать полными. Дело в том, что на практике вещество может повести себя по-другому.

( 1 оценка, среднее 4 из 5 )

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]