Принцип измерения сопротивления изоляции

Сопротивление изоляции – важнейший показатель, характеризующий работоспособность электрооборудования и его безопасность для обслуживающего персонала.

В большей степени этот параметр касается кабельных линий и соединительных проводов, которые при эксплуатации подвергаются различного рода воздействиям.

Методика замеров сопротивления изоляции основывается на законе Ома для электрической цепи.

Согласно этому закону искомый показатель представляется как результат деления напряжения, приложенного к изоляционному покрытию, на величину тока, протекающего через него (Rиз = U/I).

Диагностика электропроводки и силовых кабелей – обязательная составляющая профилактических мероприятий, позволяющих поддерживать их работоспособность на должном уровне.

Проверка сопротивления изоляции электротехнических объектов проводится с учетом требований действующих нормативов (ПУЭ, в частности).

Типовые причины неисправности изоляционного покрытия

Несмотря на то, что оболочка современных электрических кабелей изготавливается из качественного и прочного материала – она, тем не менее, иногда теряет свои защитные свойства. Последнее обычно объясняется следующими причинами:

  • разрушительное воздействие высокого напряжения и солнечного света;
  • механические повреждения (деформации);
  • нарушения температурного режима;
  • климатические особенности окружающей местности (жара или сильные морозы, например).

Принцип измерения сопротивления изоляцииНарушение целостности изоляции кабеля вследствие механического повреждения

Для выяснения степени повреждения и допустимости дальнейшей эксплуатации проводов и кабелей организуются измерения сопротивления изоляции кабельных трасс.

Важно! При обнаружении явного повреждения оболочки кабеля организация и проведение испытаний теряет всякий смысл

В этом случае зона разрушений нуждается либо в ремонте (если это допустимо), либо в полной замене участка кабельной трассы или ответвления проводки.

Своевременно проведенное испытание изоляции на прочность позволяет предотвратить целый ряд неприятных последствий, включая КЗ в электросети, поражение людей высоким напряжением и возникновение пожара.

Нормы сопротивления изоляции для электрических цепей и установок

Нормативные показатели по допустимому сопротивлению изоляции у электроустановок вводятся отдельно для каждого электротехнического объекта отдельно. Требования к этому показателю существенно отличаются для таких типов оборудования, как:

  1. Силовой или сигнальный кабели, прокладываемые в различных условиях эксплуатации.
  2. Действующие промышленные электроустановки с рабочей проводкой.
  3. Бытовые приборы, имеющие внутреннюю разводку и оснащенные сетевым шнуром.

Основной показатель, из величины которого исходят при нормировании допустимого сопротивления изоляции – действующее в контролируемой цепи напряжение. Причем учитывается не только его абсолютное значение, но и тип питания (однофазное или трехфазное). Ниже приводится перечень некоторых электротехнических устройств и цепей с указанием соответствующего им нормы сопротивления изоляции:

  • кабельные проводки, расположенные на местностях и объектах без отклонений климатических условий от нормальных – 0,5 МОм;
  • стационарные электрические плиты –1 МОм;
  • щитовые с расположенными в них электропроводками и кабелями –1 МОм;
  • электротехнические приемники, работающие от напряжений до 50 Вольт – 0,3 МОм;
  • электромоторы и агрегаты с питающим напряжением 100-380 Вольт – не менее 0,5 МОм.

И, наконец, согласно ПУЭ для любых устройств, включаемых в электрические линии с действующим напряжением до 1 кВ, этот показатель не может быть менее 1 МОм. Определить, какое должно быть сопротивление защитной оболочки эксплуатируемого оборудования поможет изучение сопроводительной документации на конкретный образец.

Принцип измерения сопротивления изоляцииДопустимые значения сопротивления изоляции

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную).

Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль.

Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Обратите внимание: Импульсные посылки амплитудой порядка 1-2 кВ генерируются самим же мегаомметром.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в «динамо-машине»). Специалисты нередко называют их «стрелочными», что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи).

Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей.

Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.

Принцип измерения сопротивления изоляцииЦифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением «1800 in».

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый «продвинутый» мультиметр, ни любой другой подобный ему образец. С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).

Принцип измерения сопротивления изоляцииПринцип измерения сопротивления изоляцииПринцип измерения сопротивления изоляцииПринцип измерения сопротивления изоляцииЦифровой измеритель Fluke 1507

Важно! Для замеров берутся только предварительно поверенные приборы, обязательно имеющие лицензию производителя.

Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.

Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.

Используемые методы испытаний

Еще до того, как проверить состояние изоляции – важно определиться с объектом, на котором требуется оценить ее качество. Это могут быть:

  1. Электрическая проводка.
  2. Силовые кабели высокого напряжения.
  3. Низковольтные линии электропередач.
  4. Контрольные провода.

Для каждой из этих электротехнических категорий выбираются индивидуальные методики измерения сопротивления изоляции. Рассмотрим все перечисленные варианты более подробно.

Электропроводка

Перед началом измерительных процедур электропроводка и распределительные коробки осматриваются на предмет отсутствия разрывов и явных разрушений. После этого обследуются места подсоединения проводов к типовым розеткам и выключателям.

Важно! Начинать замеры сопротивлений изоляции допускается лишь после того, как проводка полностью обесточена, а все потребители на объекте отключены от нее.

Читайте также:  Индукционная термообработка сварных швов

Принцип измерения сопротивления изоляцииИзмерение сопротивления изоляции электропроводки с помощью цифрового прибора Fluke-1507

В однофазной сети для определения искомого параметра потребуется провести следующие операции:

  1. Сначала щупы мегаомметра подключаются между фазной и нулевой жилами проводки.
  2. Затем определяется сопротивление изоляции между фазной и центральной жилой защитного заземления.
  3. Количество проведенных измерений соответствует комплекту проводов в линии.

Если при снятии показаний мегаомметр показывает сопротивление менее 0,5 Мом – электрическую линию придется разбить на более короткие отрезки. По результатам последующих обследований каждого из них находится участок с неудовлетворительным качеством изоляции. Его в последствии нужно будет полностью заменить.

Высоковольтные силовые кабели (подготовка)

Перед измерением изоляции силового кабеля последний проверяется на отсутствие на нем опасных напряжений. Кроме того, для подготовки измерительной схемы потребуется проделать следующие операции:

  1. Прежде всего, с токоведущих жил посредством переносного заземления нужно снять остаточный заряд.
  2. Затем кабель полностью очищается от пыли и грязи, мешающих измерительному процессу.
  3. После этого потребуется ознакомиться с паспортными данными кабеля (там указывается искомый параметр, полученный по результатам заводских испытаний).
  4. Последняя операция необходима для того, что заранее определиться с рабочим пределом, выставляемом на приборе.

Принцип измерения сопротивления изоляцииПодготовка кабельной линии к проведению измерений сопротивления изоляции

Важно! Перед измерением сопротивления изоляции кабеля обязательно проведение контрольной проверки мегаомметра на исправность.

Эта операция состоит в контроле показаний по шкале прибора при замкнутых и разомкнутых измерительных концах. В первом случае стрелка смещается ближе к «нулю», а во втором – показывать «бесконечность».

Силовые кабели (измерения)

Измерение сопротивления изоляции мегаомметром начинается с контрольной проверки каждой из фаз по отношению к заземленной стальной оболочке. И лишь после этого проверяется сопротивление между отдельными жилами (фото слева). В процессе снятия показаний недопустимо чтобы измерительные концы соприкасались между собой, а также контачили с заземляющими конструкциями и стальной оболочкой.

Принцип измерения сопротивления изоляцииа) измеряется сопротивление изоляции между фазой и заземленной оболочкой кабеля, б) замер сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».

Если обнаружится, что сопротивление изоляции ниже допустимого уровня – в соответствие с требованиями ПУЭ проводится дополнительные замеры. Они предполагают проведение измерений изоляции всех фаз по отношению к земле и оценку величины проводимости между фазными проводниками.

Обратите внимание: Для повышения точности снятия показаний, указывающих на величину сопротивления изоляции проводов, делается несколько замеров.

Их общее число варьируется: для 3-х жильного кабеля в пределах 3-6 измерений, а для пятижильного может потребоваться 4, 8 или даже 10 подходов.

Измерение сопротивления изоляции силового кабеля в частном доме

Поскольку для трехфазных цепей существует несколько схем измерений – по тому же паспорту следует ознакомиться с предлагаемым производителем вариантом.

До момента индикации точных показаний на шкале мегаомметра согласно ГОСТ 3345 должно пройти не менее 60 секунд, но не более 5 минут (с момента подключения концов и подачи высокого напряжения).

Если за это время из-за высокой влажности, например, определить показания не удалось (стрелка не отклонилась на расчетное значение) – операцию придется провести еще раз.

Как проводить измерения мегаомметром

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье. 

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.
    Принцип измерения сопротивления изоляцииТак выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Принцип измерения сопротивления изоляцииПримерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Принцип измерения сопротивления изоляцииОдин из вариантов современных мегаомметров

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление.

Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку.

Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).
    Принцип измерения сопротивления изоляцииКак пользоваться мегаомметром: правила электробезопасности
  3.  Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
  4. После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
  5. После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
  6. Работать в перчатках.

Правила не очень сложные, но от их выполнения зависит ваша безопасность.

Как подключать щупы

На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

  • Э — экран;
  • Л- линия;
  • З — земля;

Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть).

На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия.

 В гнездо «земля» всегда подключается одинарный щуп.

Принцип измерения сопротивления изоляцииЩупы для мегаомметра

На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

Читайте также:  Тмнс 12 технические характеристики

Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

  • К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
  • К жиле и «земле», если проверяем «пробой на землю».
    Принцип измерения сопротивления изоляцииЕсть буква «Э» — этот конец вставляется в гнездо с такой же буквой

Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно.

Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу.

Для безопасности этот провод можно закрепить на сухом деревянном держаке.

Процесс измерения

Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими.

Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей.  Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

Наименование элементаНапряжение мегаомметраМинимально допустимое сопротивление изоляцииПримечания
Электроизделия и аппараты с напряжением до 50 В 100 В Должно соответствовать паспортным, но не менее 0,5 МОм Во время измерений полупроводниковые приборы должны быть зашунтированы
тоже, но напряжением от 50 В до 100 В 250 В
тоже, но напряжением от 100 В до 380 В 500-1000 В
свыше 380 В, но не больше 1000 В 1000-2500 В
Распределительные устройства, щиты, токопроводы 1000-2500 В Не менее 1 МОм Измерять каждую секцию распределительного устройства
Электропроводка, в том числе осветительная сеть 1000 В Не менее 0,5 МОм В опасных помещениях измерения проводятся раз в год, в друих — раз в 3 года
Стационарные электроплиты 1000 В Не менее 1 МОм Измерение проводят на нагретой отключенной плите не реже 1 раза в год

Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины.

В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции.

Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

Принцип измерения сопротивления изоляцииКак проводить измерения мегаомметром

После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Принцип измерения сопротивления изоляцииПроверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Измерение сопротивления изоляции. Общая методика

В соответствии с требованиями нормативно-технической документации, все электроустановки, реконструируемые, либо вновь вводимые в эксплуатацию, должны быть подвергнуты приемо-сдаточным испытаниям согласно ГОСТ Р 50571.16-2019. То есть, испытания должны проводиться после окончания монтажа установки, перед сдачей в эксплуатацию, или после того, как были внесены изменения (дополнения) в уже существующую.

По результатам проведения проверки должен составляться технический отчет, в двух экземплярах, куда заносятся все протоколы испытаний. В случае выявления каких-либо дефектов, электротехнической лабораторией выдается перечень замечаний для принятия мер по их устранению.

В состав протокола испытаний должны входить следующие данные:

  • Дата заявки на проведение испытания
  • Полное наименование электроустановки и ее составных частей
  • Адрес и название электролаборатории, проводившей испытания
  • Дата и место проведения испытательных мероприятий
  • Место проведения
  • Цели и программа проверки испытаний
  • Условия проведения измерений
  • Результаты проверки

При проведении приемо-сдаточных испытаний, важная роль отводится проверке сопротивления изоляции кабелей, электрооборудования, вторичных цепей, о методах измерений которой и пойдет речь дальше. Цель данной проверки заключается в выявлении и устранении возможных нарушений соответствия сопротивления установленным нормам.

Помимо этого, в составе комплексных испытаний, проводятся визуальный осмотр, измерение токов короткого замыкания и полного сопротивления петли «фаза-нуль», измерение полного сопротивления заземляющего устройства, проверка соединений между заземлителями и заземленными элементами электрооборудования (металлосвязи) с измерением переходного сопротивления контактного соединения, прогрузка автоматических выключателей напряжением до 1000 В, измерение параметров срабатывания устройств защитного отключения (УЗО).

В дальнейшем, после сдачи объекта, периодичность проведения испытаний, согласно ПТЭЭП, должна быть один раз в год для особо опасных объектов и наружных установок, в остальных случаях один раз в три года.

Методика проверки сопротивления изоляции

Сама методика проверки сопротивления изоляции основывается на том, что к испытуемому объекту подается повышенное испытательное напряжение, в зависимости от объекта измерения, 250 В, 500 В, 1000 В или 2500 В.

Сопротивление изоляции определяется на основании измеренного тока утечки и приложенного выпрямленного напряжения.

Ток утечки — это ток, протекающий с токоведущих частей, находящихся под напряжением, установки в землю при отсутствии повреждения изоляции.

Если изоляции соответствует нормам, то ток утечки не будет превышать допустимые пределы, соответственно и сопротивление будет очень большое.

В случае ухудшения характеристик изоляции, обычно в следствии износа, ток утечки будет увеличиваться.

При этом в обычном режиме работы эти значения достаточно малы, а вот при воздействии повышенного напряжения ток утечки увеличиваясь, становится при этом током КЗ, а сопротивление изоляции значительно уменьшается.

Помимо вышесказанного, на состояние изоляции влияют еще два параметра — коэффициент абсорбции и коэффициент поляризации.

Коэффициент абсорбции (DAR)

Коэффициент абсорбции определяет степень влажности изоляционного материала. Представляет собой отношение сопротивления, измеренного мегаомметром через 60 сек. с момента приложения напряжения, к отношению сопротивления измеренного через 15 сек. после начала приложения испытательного напряжения от мегаомметра: Кабс = R60/R15.

Читайте также:  Машинка для шлифовки пяток

Если изоляция сухая, то коэффициент абсорбции будет значительно превышать единицу, в противном случае коэффициент абсорбции близок к единице.

Коэффициент поляризации (PI)

Коэффициент поляризации — это отношение сопротивлений, измеренных мегомметром через 600 сек. с момента приложения напряжения и 60 сек. после начала приложения испытательного напряжения от мегомметра: Кпол = R600/R60.

Данный коэффициент на основе изменения структуры диэлектрика, способности заряженных частиц перемещаться в диэлектрике под воздействием электрического поля, определяет степень старения изоляции, можно сказать прогнозирует остаточный ресурс.

Измерение данного коэффициента не является обязательным при проведении проверки измерения сопротивления изоляции и проводится только в составе комплексных испытаний.

Допустимые значения сопротивления изоляции

Ниже в таблице приведены минимально допустимые значения сопротивления изоляции для электроустановок, аппаратов, вторичных цепей и электропроводок напряжением до 1000 В.

Данные значения приводятся в соответствии с ПУЭ (Правила устройства электроустановок) гл.1.8 и ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) приложение 3; 3.1

Наименование элемента Напряжение мегаомметра, В Сопротивление изоляции, МОм Примечание
Электроизделия и аппараты на номинальное напряжение, В: Должно соответствовать указаниям изготовителей, но не менее 0,5 При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы
до 50
свыше 50 до 100
свыше 100 до 380
свыше 380
100
250
500 — 1000
1000 — 2500
Распределительные устройства, щиты и токопроводы 1000 — 2500 не менее 1 Измерения производятся на каждой секции распределительного устройства
Электропроводки, в том числе осветительные сети 1000 не менее 0,5 При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.
В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены
Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п. 1000 не менее 1 Измерения производятся со всеми присоединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока)
Краны и лифты 1000 не менее 0,5 Производится не реже 1 раза в год
Стационарные электроплиты 1000 не менее 1 Производится при нагретом состоянии плиты не реже 1 раза в год
Шинки постоянного тока и шинки напряжения на щитах управления 500 — 1000 не менее 10 Производится при отсоединенных цепях
Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500 — 1000 В, присоединенных к главным цепям 500 — 1000 не менее 1 Сопротивление изоляции цепей напряжением до 60 В, питающихся от отдельного источника, измеряется мегаомметром на напряжение 500 В и должно быть не менее 0,5 Мом
Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение, В:
до 60
свыше 60
100
500
не менее 0,5
не менее 0,5

Условия при проведении измерений

Измерения проводят в помещениях при температуре 25±10°С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.

Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допустимое значение электрического сопротивления изоляции испытуемого изделия.

Характеристики изоляции электрооборудования рекомендуется измерять по однотипным схемам и при одинаковой температуре. Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (разница температур не более 5°С). Если это невозможно, то должен производиться температурный пересчет.

Требования безопасности

  1. До начала проведения измерений убедитесь в отсутствии напряжения на измеряемом объекте.

  2. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.

  3. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

  4. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг).
  5. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления.

Подготовка к выполнению измерений

При подготовке к измерениям необходимо выполнить ряд технических мероприятий в соответствии с Межотраслевыми правилами по охране труда при эксплуатации электроустановок ПОТ Р М-016-2001, а также требованиями ГОСТ 12.3.

019-80 (Система стандартов безопасности труда (ССБТ). Испытания и измерения электрические. Общие требования безопасности).

При проведении испытаний руководствоваться требованиями Инструкции по охране труда при измерении сопротивления изоляции.

  1. Измерения должны проводиться мегаомметрами различного типа и на различное напряжение, в зависимости от требований испытательного напряжения.
  2. Проверить срок действия госповерки на мегаомметр.
  3. При выполнении периодических профилактических работ в электроустановках, а так же при выполнении работ на реконструируемых объектах в электроустановках, подготовку рабочего места выполняет персонал предприятия, где выполняется работа.
  4. Перед началом измерений необходимо изучить электроустановку здания и убедиться в отсутствии напряжения на испытываемом объекте, принять меры препятствующие допуску на испытуемый объект лиц, не участвующих в испытаниях, при необходимости выставить наблюдающего.
  5. Произвести отключение электроприборов, снять предохранители, отключить аппараты (автоматические выключатели, переключатели), отсоединить электронные схемы и электронные приборы, электрические части электроустановки с пониженной изоляцией или пониженным испытательным напряжением.
  6. Проверить исправность мегаомметра.

Мегаомметры

  • В качестве измерительных приборов применяются мегаомметры стрелочные аналогового типа, например М4100, ЭСО202 либо цифровые приборы, в последнее время получившие большое распространение.
  • Принцип измерения сопротивления изоляции
  • Но в независимости от типа, все мегаомметры должны иметь действующие документы об их поверке или аттестации.

Выполнение измерений

  1. Измерения сопротивления изоляции проводятся методом прямого измерения сопротивления между каждой токопроводящей жилой, одной токопроводящей жилой и остальными жилами, соединенными между собой и относительно земли (заземляющей шины).
  2. Принцип измерения сопротивления изоляции
  3. Для кабелей с металлической оболочкой, экраном или броней — между каждой токопроводящей жилой и остальными жилами, соединенными между собой и оболочкой, экраном, или броней.
  4. Для электроустановок измерения проводят между всеми изолированными частями.
  5. Для того, чтобы исключить влияние поверхностных токов при измерении сопротивления, необходимо использовать трёхпроводный метод измерения.
  6. Принцип измерения сопротивления изоляции

Сопротивление изоляции, измеренное при испытательном напряжении считается удовлетворительным, если оно соответствует минимально допустимым значениям, которые приведены в таблице. Если результаты замеров показали значения, отличные от данных допустимых значений, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.

Значение показаний мегаомметра фиксируются по истечении 1 мин. с момента приложения измерительного напряжения, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.

  • Для повторного замера все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.
  • При проведении замеров, должны учитываться погрешности, обусловленные погрешностями измерительных приборов и аппаратов, дополнительными емкостями и индуктивными связями между элементами измерительной схемы, воздействием температуры, влиянием внешних электромагнитных и электростатических полей на измерительное устройство, погрешностями метода и т.п
  • Пример протокола измерения сопротивления изоляции
  • Принцип измерения сопротивления изоляции
Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]