Прочность стали на срез таблица

Прочность стали на срез таблица 18 Май 2022 Механические свойства стали и области ее применения Прочность стали на срез таблица 18.05.2022 VT-METALL Прочность стали на срез таблица

Из этого материала вы узнаете:

  • Состав стали
  • Физические, химические и технологические свойства стали
  • Механические свойства стали по ГОСТу
  • Маркировка сталей
  • Таблица механических свойств сталей разных марок
  • Влияние углерода на механические свойства стали

Механические свойства стали во многом определяют то, в каких сферах она применяется. Именно поэтому мы можем отнести их к наиболее важным. Такие качества, как высокая прочность и способность значительно изменять форму, дают возможность применять металл практически везде: от изготовления хирургических инструментов до космической отрасли.

Для определения данных параметров применяются различные методы. Кроме того, они учитывают механические свойства не только сталей, но и их сплавов, благодаря чему данные металлы можно с уверенностью назвать универсальными и удобными в работе. О том, какие параметры данных материалов позволяют применять их в самых разнообразных сферах, поговорим далее.

Состав стали

Основными компонентами стали являются железо и углерод, на долю последнего приходится до 2,14 %. Все существующие на данный момент подобные сплавы классифицируют, исходя из их химического состава.

В производстве используются два вида стали:

  • Углеродистая, в состав которой, помимо основных составляющих, входят фосфор, сера, марганец, кремний. Сырье может относиться к высоко-, средне- и низколегированным маркам в соответствии с долей углерода в материале. Такой металл подходит для любых нужд, в том числе для изготовления инструмента, эксплуатируемого в условиях высоких нагрузок под постоянным напряжением.
  • Легированная содержит в себе железо, углерод в сочетании с легирующими элементами (такими как кремний, бор, азот, хром, цирконий, ниобий, вольфрам, титан). От состава легированной стали зависят ее механические и иные свойства, цена, качество продукции, сферы возможного применения. Сегодня можно найти жаропрочные, цементуемые, улучшаемые стали. По структуре специалисты выделяют сырье доэвтектоидного, ледебуритного, эвтектоидного и заэвтектоидного типа.
  • Определить химические и механические свойства стали, а также область ее использования позволяет марка.
  • VT-metall предлагает услуги:
  • Порошковая покраска металла
  • В процессе производства в сталь вносят примеси. На основании их доли в составе сплава выделяются два типа продукции:
  • Обыкновенного качества, что предполагает наличие до 0,6 % углерода и соответствие металла ГОСТ 14637 и ГОСТ 380-94. Для маркировки подобной продукции используются буквы «Ст» – данное сокращение говорит о том, что сталь имеет стандартное качество. Такое сырье входит в число наиболее доступных по цене.
  • Качественная сталь, то есть легированная и углеродистая, которая производится по ГОСТ 1577. Маркировка обязательно содержит в себе особенности состава, количество углерода в сотых долях. Данный материал более дорогой, чем аналог обыкновенного качества, его ценят за высокую пластичность, способность противостоять механическому воздействию. Кроме того, подобный металл можно без труда варить.

Физические, химические и технологические свойства стали

Физические свойства:

  1. Плотность, которая определяется как масса металла на единицу объема. Высокий данный показатель стальных изделий, в том числе арматуры а500с, позволяет активно использовать их для строительных нужд.
  2. Теплопроводность, то есть способность стали обеспечивать распространение теплоты от более нагретых частей к менее нагретым.
  3. Электропроводность – способность материала пропускать электрический ток.

Прочность стали на срез таблица

Химические свойства:

  1. Окисляемость, что предполагает возможность соединения металла кислородом. Данное свойство усиливается при нагревании стали. На сплавах, имеющих малую долю углерода, в процессе окисления под действием воды, влажного воздуха формируется ржавчина, то есть оксиды железа.
  2. Стойкость к коррозии – способность металла не вступать в химические реакции, не окисляться.
  3. Жаростойкость представляет собой отсутствие окислительных процессов на сплаве под воздействием высокой температуры, а также способность не образовывать окалину.
  4. Жаропрочность – сохранение сталью прочности в условиях высокой температуры.

Технологические свойства:

  1. Ковкость, то есть способность материала принимать заданную форму под действием внешних сил.
  2. Обрабатываемость резанием – важное свойство стали, которое упрощает производство металлопроката, так как данный металл хорошо поддается обработке режущим инструментом.
  3. Жидкотекучесть – способность расплава проникать в узкие зазоры, заполнять пространство.
  4. Свариваемость – позволяет осуществлять эффективные сварочные работы, формируя надежное неразъемное соединение, лишенное дефектов.

Механические свойства стали по ГОСТу

Прочность

От данной характеристики зависит, сможет ли металл не разрушиться под действием больших внешних нагрузок. Это механическое свойство стали измеряется количественно при помощи предела текучести и прочности:

  • Пределом прочности называют максимальное механическое напряжение, при превышении которого происходит разрушение сплава.
  • Предел текучести, то есть степень механического напряжения. Превышение данного показателя вызывает дальнейшее растяжение металла без дополнительной нагрузки.

Так, при небольших деформациях металлический стержень сохраняет упругость, возвращаясь к исходной длине после снятия приложенного напряжения. Если же напряжение оказывается выше предела текучести, наблюдается пластическая деформация изделия. Иными словами – происходит необратимое удлинение стержня, после которого он не способен вернуться к исходной длине.

Растяжение стержня до разрыва позволяет установить максимальное напряжение, то есть предел прочности материала на разрыв.

Пластичность

Данное механическое свойство стали позволяет ей под действием внешней нагрузки менять форму и потом сохранять ее. Для количественной оценки этого показателя измеряют удлинение при растяжении и угол изгиба. Если во время простого испытания на изгиб металл разрушается при большом пластическом прогибе, его признают пластичным. В противном случае речь идет о хрупком сплаве.

Прочность стали на срез таблица

Хорошая пластичность проявляется при испытании растяжением в виде значительного удлинения заготовки либо ее сжатия. Под удлинением понимают увеличения длины в процентном выражении после разрушения до первоначальной длины. А сужение в процентах – это сокращение площади изделия в сравнении с исходным объемом.

Вязкость

Еще одно важное механическое свойство стали, которое подразумевает способность материала справляться с динамическими нагрузками. Его оценивают количественно как отношение работы, необходимой для разрушения образца, к площади его поперечного сечения. Чаще всего понятием «вязкость» обозначают уровень, при котором происходит нехрупкое разрушение металла.

Характер разрушения может быть хрупким или пластичным – разница между этими явлениями наиболее ярко прослеживается на примере ферритных стальных сплавов.

Ферритные стали и все металлы, обладающие объемно-центрированной кубической атомной решеткой, имеют общую особенность: при низких температурах им свойственен хрупкий характер разрушения, а при высоких – пластичный.

Температуру перехода из одного состояния в другое специалисты обозначают как температуру вязко-хрупкого перехода.

Маркировка сталей

В машиностроении высоко ценятся механические свойства конструкционной, то есть углеродистой и легированной стали, а также высоколегированных нержавеющих сталей. При обозначении марок конструкционной легированной стали (ГОСТ 4543) первые две цифры свидетельствуют о среднем содержании углерода, которое указывается в сотых долях процента.

Прочность стали на срез таблица

Буквы в маркировке имеют такую расшифровку:

  • Р – бор;
  • Ю – алюминий;
  • С – кремний;
  • Т – титан;
  • Ф – ванадий;
  • Х – хром;
  • Г – марганец;
  • Н – никель;
  • М – молибден;
  • В – вольфрам.

После буквы идут цифры, которые обозначают примерное содержание легирующего элемента в целых единицах процента. Если цифр нет, то доля конкретного вещества в металле не превышает 1,5 %. Буква «А» в конце маркировки является признаком высококачественной стали. Показателем особенно высококачественной стали является буква «Ш» через три тире.

Механические свойства нержавеющих высоколегированных сталей (ГОСТ 5632) зависят от перечисленных далее компонентов. При маркировке они обозначаются таким образом:

  • А – азот;
  • В – вольфрам;
  • Д – медь;
  • М – молибден;
  • Р – бор;
  • Т – титан;
  • Ю – алюминий;
  • Х – хром;
  • Б – ниобий;
  • Г – марганец;
  • Е – селен;
  • Н – никель;
  • С – кремний;
  • Ф – ванадий;
  • К – кобальт;
  • Ц – цирконий.
Читайте также:  Как собрать ящик из фанеры

После букв идут цифры, отражающие долю легирующего элемента в составе сплава в процентах.

Для фиксации основных механических свойств сталей применяют следующие обозначения:

  • E – модуль упругости. Представляет собой коэффициент пропорциональности между нормальным напряжением и относительным удлинением.
  • G – модуль сдвига, также известный как модуль касательной упругости. Это коэффициент пропорциональности между касательным напряжением и относительным сдвигом.
  • μ – коэффициент Пуассона. Является абсолютным значением отношения поперечной к продольной деформации в упругой области.
  • σт – условный предел текучести, то есть напряжение, при котором после снятия нагрузки остаточная деформация находится на уровне 0,2 %.
  • σв – временное сопротивление, известное как предел прочности. Представляет собой такое механическое свойство металла, в том числе углеродистой стали, как прочность на разрыв.
  • δ – относительное удлинение. Это отношение абсолютного остаточного удлинения образца после разрыва к начальной расчетной длине.
  • HB, HRC, HV – твердость.

Таблица механических свойств сталей разных марок

Далее представлены механические свойства стали после термической обработки.

E = 200…210 ГПа, G = 77…81 ГПа, коэффициент Пуассона μ = 0,28…0,31.

Наименование ГОСТ Параметры термической обработки Предел прочности σв, МПа Предел текучести σт, МПа Твердость
Сталь 10 1050-74 Калибровка после отжига и отпуска 315–410 HB 143
Сталь 20 1050-74 Калибровка после отжига и отпуска 390–490 HB 163
Сталь 40 1050-74 После отжига и отпуска 590 HB 197
Сталь 40Х 4543-71 Пруток, закалка +860 °C, отпуск +500 °C в воде, масле 590 345 HB 174–217
Сталь 20Х13 5949-75 Пруток, закалка +1000…+1050 °C, отпуск +600…+700 °C на воздухе, в масле 830 635 HRC 29
Сталь 08Х18Н10Т 5945-75 Пруток, закалка и отпуск 420–520 180–200
Сталь 12Х18Н10Т 5945-75 Пруток, закалка +1020…+1 100 °C на воздухе, в масле, воде 510 196

Влияние углерода на механические свойства стали

Механические свойства углеродистой стали определяются в первую очередь количеством углерода в составе сплава. При увеличении его доли возрастает объем цементита, сокращается величина феррита. Иными словами, повышаются прочность и твердость, снижается пластичность.

Прочность стали на срез таблица

Стоит оговориться, что прочность становится выше при доле углерода в пределах 1 %, а при переходе этой отметки показатель уменьшается. Данная особенность объясняется тем, что по границам зерен в заэвтектоидных сталях образуется сетка вторичного цементита, которая негативно отражается на прочности материала.

Рост доли углерода приводит к увеличению количества цементита, а он является очень твердой и хрупкой фазой. Превосходит феррит по твердости примерно в 10 раз, имея показатель 800HB против 80HB. Вот почему увеличение содержания углерода позволяет повысить такие механические свойства стали, как прочность и твердость, и снизить пластичность, вязкость.

Когда количество углерода доходит до 0,8 %, возрастает доля перлита в сплаве от 0 % до 100 %, вызывая повышение твердости, прочности. Однако не стоит забывать, что последующий рост количества углерода вызывает образование вторичного цементита по границам перлитных зерен. Это явление мало влияет на твердость, но негативно сказывается на прочности, так как цементитная сетка очень хрупкая.

Повышение доли углерода отражается не только на механических, но и на физических свойствах стали. Снижается плотность, теплопроводность, магнитная проницаемость, тогда как удельное электросопротивление, коэрцитивная сила увеличиваются.

С ростом количества углерода происходит повышение порога хладноломкости, а именно: каждая десятая доля процента повышает t50 примерно на 20є. Поэтому сталь с долей углерода в 0,4 % при нулевой температуре становится хрупкой, из-за чего считается недостаточно надежной.

В железоуглеродистом сплаве содержится преимущественно связанный углерод в форме цементита. Тогда как в чугунах он присутствует в свободном состоянии в виде графита. Увеличение доли данного компонента приводит к изменению свойств металла: возрастает твердость, прочность, снижается пластичность.

Количество углерода влияет как на механические, так и на технологические свойства стали. Чем выше содержание данного вещества, тем тяжелее металл режется, сваривается и деформируется. Последняя характеристика наиболее ярко проявляется в холодном состоянии.

От механических и химических свойств стали зависит сфера применения материала – ее можно узнать по маркировке. Металл, обладающий высокой жаропрочностью, подходит для использования при постоянных высоких температурах. Это же правило распространяется на марки стали с хорошей свариваемостью и стойкостью к образованию ржавчины.

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Прочность стали на срез таблица

Экспресс расчет стоимости заказа

Узнайте предварительную стоимость заказа, отправив нам необходимую информацию:

Допускаемые напряженияи механические свойства материалов

Для определения допускаемых напряжений в машиностроении применяют следующие основные методы. 1.

Дифференцированный запас прочности находят как произведение ряда частных коэффициентов, учитывающих надежность материала, степень ответственности детали, точность расчетных формул и действующие силы и другие факторы, определяющие условия работы деталей. 2. Табличный — допускаемые напряжения принимают по нормам, систематизированным в виде таблиц

(табл. 1 — 7). Этот метод менее точен, но наиболее прост и удобен для практического пользования при проектировочных и проверочных прочностных расчетах.

В работе конструкторских бюро и при расчетах деталей машин применяются как дифференцированный, так и. табличный методы, а также их комбинация. В табл.

4 — 6 приведены допускаемые напряжения для нетиповых литых деталей, на которые не разработаны специальные методы расчета и соответствующие им допускаемые напряжения.

Типовые детали (например, зубчатые и червячные колеса, шкивы) следует рассчитывать по методикам, приводимым в соответствующем разделе справочника или специальной литературе.

Приведенные допускаемые напряжения предназначены для приближенных расчетов только на основные нагрузки. Для более точных расчетов с учетом дополнительных нагрузок (например, динамических) табличные значения следует увеличивать на 20 — 30 %.

Допускаемые напряжения даны без учета концентрации напряжений и размеров детали, вычислены для стальных гладких полированных образцов диаметром 6-12 мм и для необработанных круглых чугунных отливок диаметром 30 мм. При определении наибольших напряжений в рассчитываемой детали нужно номинальные напряжения σном и τном умножать на коэффициент концентрации kσ или kτ:

Прочность стали на срез таблица 1. Допускаемые напряжения* для углеродистых сталей обыкновенного качества в горячекатаном состоянии

Маркастали Допускаемые напряжения **, МПа
при растяжении [σp] при изгибе [σиз] при кручении [τкр] при срезе [τср] при смятии [σсм]
I II III I II III I II III I II III I II
Ст2Ст3Ст4Ст5Ст6 115125140165195 809095115140 60707590110 140150170200230 100110120140170 808595110135 8595105125145 65657580105 5050607080 707585100115 5050656585 4040505565 175190210250290 120135145175210
Читайте также:  Torx e8 чем открутить

* Горский А.И.. Иванов-Емин Е. Б.. Кареновский А. И. Определение допускаемых напряжений при расчетах на прочность. НИИмаш, М., 1974.

  • ** Римскими цифрами обозначен вид нагрузки: I — статическая; II — переменная, действующая от нуля до максимума, от максимума до нуля (пульсирующая); III — знакопеременная (симметричная).

2. Механические свойства и допускаемые напряжения углеродистых качественных конструкционных сталей Прочность стали на срез таблица 3. Механические свойства и допускаемые напряжения легированных конструкционных сталей Прочность стали на срез таблица 4. Механические свойства и допускаемые напряжения для отливок из углеродистых и легированных сталей Прочность стали на срез таблица 5. Механические свойства и допускаемые напряжения для отливок из серого чугуна Прочность стали на срез таблица 6. Механические свойства и допускаемые напряжения для отливок из ковкого чугуна Прочность стали на срез таблица 7. Допускаемые напряжения для пластмассовых деталей Прочность стали на срез таблица

Для пластичных (незакаленных) сталей при статических напряжениях (I вид нагрузки) коэффициент концентрации не учитывают.

Для однородных сталей (σв > 1300 МПа, а также в случае работы их при низких температурах) коэффициент концентрации, при наличии концентрации напряжения, вводят в расчет и при нагрузках I вида (k > 1).

Для пластичных сталей при действии переменных нагрузок и при наличии концентрации напряжений эти напряжения необходимо учитывать.

Для чугунов в большинстве случаев коэффициент концентрации напряжений приближенно принимают равным единице при всех видах нагрузок (I — III). При расчетах на прочность для учета размеров детали приведенные табличные допускаемые напряжения для литых деталей следует умножать на коэффициент масштабного фактора, равный 1,4 … 5.

  1. Приближенные эмпирические зависимости пределов выносливости для случаев нагружения с симметричным циклом:
  2. для углеродистых сталей: — при изгибе, σ-1= (0,40÷0,46)σв; — при растяжении или сжатии, σ-1р= (0,65÷0,75)σ-1; — при кручении, τ-1= (0,55÷0,65)σ-1;
  3. для легированных сталей: — при изгибе, σ-1= (0,45÷0,55)σв; — при растяжении или сжатии, σ-1р= (0,70÷0,90)σ-1; — при кручении, τ-1= (0,50÷0,65)σ-1;
  4. для стального литья: — при изгибе, σ-1= (0,35÷0,45)σв; — при растяжении или сжатии, σ-1р= (0,65÷0,75)σ-1; — при кручении, τ-1= (0,55÷0,65)σ-1.
  5. Механические свойства и допускаемые напряжения антифрикционного чугуна: — предел прочности при изгибе 250 ÷ 300 МПа,

— допускаемые напряжения при изгибе: 95 МПа для I; 70 МПа — II: 45 МПа — III, где I. II, III — обозначения видов нагрузки, см. табл. 1.

Ориентировочные допускаемые напряжения для цветных металлов на растяжение и сжатие. МПа:

Стали

Прочность стали на срез таблица

ПОЛЕЗНОЕ ИНЖЕНЕРУ — ON-LINE СПРАВОЧНИКИ

Page 2

Примеры расчетов

Прочность стали на срез таблица

On-line калькуляторы:

On-line ГОСТы:

On-line справочники:

Программы:

  • Нагрузки на патрубки арматуры от трубопроводов высокого давления из стали 20 (р = 1 МПа)
  • Условный диаметр трубопровода Ду = 10 мм
  • Наружный диаметр трубопровода Da = 14 мм, толщина s = 2 мм
НУЭ НУЭ+ПЗ НУЭ+МРЗ НУЭ+АС при Рраб = 0
Мв,кгс·м Мp,кгс·м Fв,кгс Fp,кгс Мпз,кгс·м Fпз,кгс Ммз,кгс·м Fмз,кгс Мас,кгс·м
2.32 4.9 63 136 2.88 77 3.24 88 2.9

Ввести новые данные….

  1. НУЭ — нормальные условия эксплуатации.
  2. ПЗ — проектное землетрясение.
  3. МРЗ — максимальное расчетное землетрясение.
  4. АС — аварийная ситуация.
  5. MB, FB — момент и сила от массы трубопровода.
  6. MР, FР — размахи момента и силы от температурной компенсации трубопровода.
  7. MПЗ, FПЗ — момент и сила от совместного воздействия массы трубопровода и проектного землетрясения (ПЗ).
  8. MМЗ, FМЗ — момент и сила от совместного воздействия массы трубопровода и максимального расчетного землетрясения (ПЗ).
  9. MАС — момент от совместного воздействия массы трубопровода и реактивной силы при разрыве трубопровода.

ВАЖНО! 1 В таблице указаны рекомендуемые величины нагрузок, передающихся от трубопровода с разделкой под сварку, изготовленных из труб поставки РФ. 2 Направление векторов моментов произвольное. Силы направлены вдоль оси патрубков арматуры.

3 Аварийный режим учитывается только для быстродействующей отсечной арматуры. 4 При определении размахов т амплитуд приведенных напряжений в качестве минимального значения приведенных напряжений принимается ноль.

5 Справочные данные, приведенные на сайте, имеют статус «ознакомительный» и не могут заменить использование официальных источников (ПНАЭ, НП, ГОСТы и т.п.).

Отзывы:

Александр (26.10.2020)

Очень познавательно!

Наталья (03.11.2017)

Спасибо!

Юрий Алексеевич (07.12.2016)

Спасибо!!

Петр Щукин (01.04.2009)

Прошу выслать если есть ОТТ-87 и РТМ 108.711.02-79 на мой E-mail [email protected]

Прочность стали на срез таблица

Предел текучести сталей

в ГОСТах указывается с пометкой «не менее», единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.

https://www.youtube.com/watch?v=_sNZzB0maCM\u0026t=76s

Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:

  • Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм2 или 25 кгс/мм2.
  • Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм2 или 36 кгс/мм2.

Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:

  • Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм2 или 41 кгс/мм2; прокат размером от 16 до 40 мм — не менее 355 Н/мм2 или 36 кгс/мм2; прокат размером от 40 до 100 мм — не менее295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм2 или 50 кгс/мм2; прокат размером от 16 до 40 мм — не менее 430 Н/мм2 или 44 кгс/мм2; прокат размером от 40 до 100 мм — не менее 375 Н/мм2 или 38 кгс/мм2.
  • *Механические свойства стали 30 распространяются на прокат размером до 63 мм.
  • Предел текучести стали 40Х
  • (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм2 или 80 кгс/мм2.
  • Предел текучести стали 09Г2С

(ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая).

Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм2 (27 кгс/мм2) до 345 Н/мм2 (35 кгс/мм2).

Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).

Предел текучести стали 3

. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм2 (не менее).

Примеси серы и фосфора

  1. Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики.
  2. Предельно допустимое содержание этого элемента в виде хрупких сульфитов– 0,06%
  3. Сера ухудшает пластичность, предел текучести, ударную вязкость, износостойкость и коррозионную стойкость материалов.

Читайте также:  Зернистость алмазных кругов для заточки резцов

Фосфор оказывает двоякое воздействие на физико-механические свойства сталей. С одной стороны, с повышением его содержания повышается предел текучести, однако с другой стороны, одновременно понижаются вязкость и текучесть. Обычно содержание фосфора находится в пределах от 0,025 до 0,044%.

Особенно сильное отрицательное влияние фосфор оказывает при одновременном повышении объемных долей углерода.

Азот и кислород в сплаве

Эти неметаллы из начала таблицы Менделеева являются вредными примесями и снижают механические и физические характеристики стали, такие, например, как порог вязкости, пластичность и хрупкость.

Если кислород содержится в количестве свыше 0,03%- это ведет к ускорению старения сплава, а азот увеличивает ломкость материала.

С другой стороны, содержание азота повышает прочность, снижая предел текучести.

Микроструктура сплава, в составе которого присутствуют азот и кислород

Зависимость между напряжением текучести и пределом прочности

Связь между напряжением текучести и пределом прочности устанавливается по зависимости между экстраполированным пределом текучести и σB . Поскольку по экстраполированному пределу текучести можно достаточно точно определить напряжение текучести для большинства материалов, начиная со степени деформации , то такое допущение можно считать оправданным.

https://www.youtube.com/watch?v=_sNZzB0maCM\u0026t=94s

Ниже рассмотрены зависимости между пределом прочности и экстраполированным пределом текучести кривых упрочнения при растяжении первого рода и при сжатии второго рода.

  Температура плавления разных металлов в таблице

Экстраполированный предел текучести у кривых упрочнения первого рода при растяжении находится по пересечению касательной к кривой упрочнения в точке начала образования шейки с осью ординат. У кривых упрочнения второго рода при сжатии экстраполированный предел текучести S0 (см. рис. 1) представляет собой напряжение, соответствующее по величине отрезку ординаты, отсекаемому прямой, являющейся продолжением участка III кривой упрочнения.

Согласно теоретическим выкладкам М. П. Марковца для материалов, у которых равномерное относительное поперечное сужение ΨB

  • не более 0,15, разница между экстраполированным пределом текучести определенным по кривым упрочнения при растяжении, и пределом прочности σB не превышает 3%, а при Ψ
  • B
  • B

до 0,2 — не более 7%. При этом всегда должно быть меньше величины σ .

Теоретически установленную зависимость между и σB

М.П. Марковец подтвердил экспериментально.

Было показано, что независимо от рода материала (цветные и черные металлы), вида предшествующей термической обработки (отжиг, нормализация, закалка, закалка + отпуск) и прочности ( изучаемых материалов составлял 20-180 кГ/мм2) отношение для материалов с до 15% близко к единице (рис. 1). Только для латуни и аустенитной стали ЭИ69, у которых величина ΨB доходит до 30%, это соотношение составляет 1,2-1,3.

П. Марковцем также была проведена большая работа по сопоставлению и σB

по экспериментальным данным других исследователей — Н. Н. Давиденкова, Кербера и Роланда.

Было установлено, что данные различных авторов, полученные экспериментально в разных лабораториях над огромным количеством металлов н сплавов (алюминии, меди и их сплавах, углеродистых и легированных сталях) при комнатных и повышенных температурах (от 20 до 300°С), подтверждают теоретически установленную закономерность для металлов и сплавов, у которых ΨB не превышает 15%.

Экспериментально определим взаимосвязь между экстраполированным пределом текучести при сжатии S0 и σB

. В качестве исследуемого материала служили углеродистые и легированные горячекатаные и термически обработанные стали (табл. 1). Кривые упрочнения строили по результатам осадки образцов с торцовыми цилиндрическими выточками.

Результаты сравнения графически изображены на рис. 1, из которого видно, что между величинами S0 и σB независимо от марки изделия и вида, и режима предварительной обработки имеется линейная зависимость.

Математическая обработка экспериментальных данных показывает, что S0 в среднем меньше σ

B

примерно на 6%, т. е.

Полученные экспериментальные данные согласуются с экспериментальными и теоретическими данными М. П. Марковца о зависимости между экстраполированным пределом текучести при растяжении и σB

  1. в том смысле, что S0 меньше σB примерно на ту же величину.
  2. Таблица 1
  3. Химический состав и вид предшествующей обработки сталей, для которых устанавливали зависимость между экстраполированным пределом текучести при сжатии S0 и пределом прочности σB
Сталь Предшествующая обработка Содержание элементов в %
C Mn Si Cr Ni Mo
10 Горячая прокатка 0,11 0,45 0,21
15 То же 0,15 0,43 0,27
20 » 0,19 0,37 0,37
15Х » 0,13 0,42 0,32 0,90
20Х » 0,24 0,67 0,25 0,91
45Х » 0,44 0,61 0,19 0,90
12ХНЗА » 0,13 0,26 0,64 2,95
12ХНЗА Отжиг, нормализация 0,16 0,40 0,36 0,66 2,81
40ХНМА Отжиг, нормализация, улучшение (t0 mn=600°С) 0,37 0,60 0,24 0,66 1,39 0,15-0,25

Состав стальных сплавов

Свойства металла зависят от сформированной кристаллической решетки, которая, в свою очередь, определяется содержанием углерода.

Зависимость типов решетки от количества углерода хорошо прослеживается на структурной диаграмме. Если, например, в решетке стали насчитывается до 0.06% углерода, то это классический феррит, который имеет зернистую структуру.

Такой материал непрочный, но текучий и имеет большой предел ударной вязкости.

  Бизнес на художественном литье из металла

По структуре стали делятся на:

  • ферритную;
  • перлитно-ферритовую;
  • цементитно-ферритную;
  • цементитно-перлитовую;
  • перлитную.

Добавки углерода и прочность

Закон аддитивности подтверждается процентными изменениями цементита и феррита в стали.

Если количество углеродной добавки составляет около 1,2%, то предел текучести стального материала увеличивается и повышается твердость, прочность и температуростойкость.

При последующем увеличении содержания углерода технические параметры ухудшаются. Сталь плохо сваривается и неохотно поддается штамповке. Самым лучшим образом при сварке ведут себя сплавы с небольшим содержанием углерода.

Марганец и кремний

В виде добавки, чтобы увеличить степень раскисления, дополнительно добавляют марганец. Кроме того, этот элемент уменьшает вредное воздействие серы. Содержание марганца обычно не более 0.8% и он не влияет на технологические свойства сплава. Присутствует как твердый компонент.

Кремний тоже особо не влияет на характеристики металла. Он необходим для увеличения качества сварки деталей. Содержание этого элемента не превышает 0.38% и он добавляется во время процесса раскисления.

Читать также: Оборудование для изготовления гидравлических шлангов

Сера и фосфор

Сера содержится в виде хрупких сульфитов. Повышенное количество этого элемента влияет на механические показатели сплава. Чем больше серы, тем хуже пластичность, текучесть и вязкость сплава. Если превышен предел в 0.06%, то изделие сильнее подвержено коррозии и становится способным к сильному истиранию.

Наличие фосфора увеличивает показатель текучести, но при этом уменьшается пластичность и вязкость. В общем, завышенное содержание фосфора значительно ухудшает качество металла. Особенно вредно сказывается на характеристиках совместное высокое содержание фосфора и углерода. Допустимыми пределами содержания фосфора считаются значения от 0.025 до 0.044%.

Азот и кислород

Это неметаллические примеси, которые понижают механические свойства сплава. Если содержание кислорода больше чем 0.03%, то металл быстрее стареет, падают значения пластичности и вязкости. Азотные добавки увеличивают прочность, но в этом случае предел текучести уменьшается. Увеличенное содержание азота делает сталь ломкой и способствует быстрому старению металлической конструкции.

Поведение легирующих добавок

Для улучшения всех физических показателей стали, в сплав добавляют специальные легирующие элементы. Такими добавками могут быть вольфрам, молибден, никель, хром, титан и ванадий. Совместное добавление в необходимых пропорциях, дает самые приемлемые результаты.

Легирование значительно повышает показатель текучести, ударной вязкости и препятствует деформации и растрескиванию.

( 1 оценка, среднее 4 из 5 )

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]