Производство стали в электропечах преимущества и недостатки

Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Существует огромное количество разновидностей этого материала, так как даже незначительное изменение химического состава приводит к изменению физико-механических качеств.

Сырье для производства стали сегодня представлено отработанными стальными изделиями. Также было налажено производство конструкционной стали из чугуна. Страны-лидеры в металлургической промышленности проводят выпуск заготовок согласно стандартам, установленным в ГОСТ.

Рассмотрим особенности производства стали, а также применяемые методы и то, как проводится маркировка полученных изделий.

Производство стали в электропечах преимущества и недостатки

Особенности процесса производства стали

В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства.

Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки.

Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.

Производство стали в электропечах преимущества и недостатки

Выплавка стали в электропечи

Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:

  1. Расплавление породы. Сырье, которое используется для производства металла, называют шихтой. На данном этапе при окислении железа происходит раскисление и примесей. Уделяется много внимания тому, чтобы происходило уменьшение концентрации вредных примесей, к которым можно отнести фосфор. Для обеспечения наиболее подходящих условий для окисления вредных примесей изначально выдерживается относительно невысокая температура. Формирование железного шлака происходит за счет добавления железной руды. После выделения вредных примесей на поверхности сплава они удаляются, проводится добавление новой порции оксида кальция.
  2. Кипение полученной массы. Ванны расплавленного металла после предварительного этапа очистки состава нагреваются до высокой температуры, сплав начинает кипеть. За счет кипения углерод, находящийся в составе, начинает активно окисляться. Как ранее было отмечено, чугун отличается от стали слишком высокой концентрацией углерода, за счет чего материал становится хрупким и приобретает другие свойства. Решить подобную проблему можно путем вдувания чистого кислорода, за счет чего процесс окисления будет проходить с большой скоростью. При кипении образуются пузырьки оксида углерода, к которым также прилипают другие примеси, за счет чего происходит очистка состава. На данной стадии производства с состава удаляется сера, относящаяся к вредным примесям.
  3. Раскисление состава. С одной стороны, добавление в состав кислорода обеспечивает удаление вредных примесей, с другой, приводит к ухудшению основных эксплуатационных качеств. Именно поэтому зачастую для очистки состава от вредных примесей проводится диффузионное раскисление, которое основано на введении специального расплавленного металла. В этом материале содержатся вещества, которые оказывают примерно такое же воздействие на расплавленный сплав, как и кислород.

Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:

  1. Спокойные, которые прошли процесс раскисления до конца.
  2. Полуспокойные, которые имеют состояние, находящееся между спокойными и кипящими сталями.

При производстве материала в состав могут добавляться чистые металлы и ферросплавы. За счет этого получаются легированные составы, которые обладают своими определенными свойствами.

Способы производства стали

Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:

  1. Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье до температуры около 2000 градусов Цельсия. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
  2. Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Они являются передатчиком кислорода и тепла. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы. Электрическая плавка может проходить в самой различной среде: избыточного давления, вакуума, при определенной атмосфере. Проводимые исследования указывают на то, что электросталь обладает самым высоким качеством. Применяется технология для производства качественных высоколегированных, коррозионностойких, жаропрочных и других видов стали. Для преобразования электрической энергии в тепловую применяется дуговая печь цилиндрической формы с днищем сферического типа. Для обеспечения наиболее благоприятных условий плавки внутреннее пространство отделывается при использовании жаропрочного металла. Работа устройства возможна только при подключении к трехфазной сети. Стоит учитывать, что сеть электрического снабжения должна выдерживать существенную нагрузку. Источником тепловой энергии становится электрическая дуга, возникающая между электродом и расплавленным металлом. Температура может быть более 2000 градусов Цельсия.
  3. Кислородно-конвертерный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.

Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.

Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.

Мартеновский способ

Суть данной технологии заключается в переработке чугуна и другого металлолома при применении отражательной печи. Производство различной стали в мартеновских печах можно охарактеризовать тем, что на шихту оказывается большая температура. Для подачи высокой температуры проводится сжигание различного топлива.

Производство стали в электропечах преимущества и недостатки

Схема мартеновской печи

Рассматривая мартеновский способ производства стали, отметим нижеприведенные моменты:

  1. Мартеновские печи оборудованы системой, которая обеспечивает подачу тепла и отвода продуктов горения.
  2. Топливо подается в камеру сгорания поочередно, то с правой, то с левой стороны. За счет этого обеспечивается образование факела, который и приводит к повышению температуры рабочей среды и ее выдерживание на протяжении длительного периода.
  3. На момент загрузки шихты в камеру сгорания попадает достаточно большое количество кислорода, который и необходим для окисления железа.

При получении стали мартеновским способом время выдержки шихты составляет 8-16 часов. На протяжении всего периода печь работает непрерывно. С каждым годом конструкция печи совершенствуется, что позволяет упростить процесс производства стали и получить металлы различного качества.

В кислородных конвертерах

Сегодня проводится производство различной стали в кислородных конвертерах. Данная технология предусматривает продувку жидкого чугуна в конвертере. Для этого проводится подача чистого кислорода. К особенностям этой технологии можно отнести нижеприведенные моменты:

  1. Конвертор – специальное оборудование, которое представлено стальным сосудом грушевидной формы. Вместительность подобного устройства составляет 100-350 тонн. С внутренней стороны конструкция выкладывается огнеупорным кирпичом.
  2. Конструкция верхней части предполагает горловину, которая необходима для загрузки шихты и жидкого чугуна. Кроме этого, через горловину происходит удаление газов, образующихся в процессе плавления сырья.
  3. Заливка чугуна и добавление другой шихты проводится при температуре около 1400 градусов Цельсия. Для того чтобы обеспечить активное окисление железа чистый кислород подается под давлением около 1,4 МПа.
  4. При подаче большого количества кислорода чугун и другая шихта окисляется, что становится причиной выделения большого количества тепла. За счет сильного нагрева происходит расплавка всего шихтового материала.
  5. В тот момент, когда из состава удаляется излишек углерода, продувка прекращается, фурма извлекается из конвертора. Как правило, продувка продолжается в течение 20 минут.
  6. На данном этапе полученный состав содержит большое количество кислорода. Именно поэтому для повышения эксплуатационных качеств в состав добавляют различные раскислители и легирующие элементы. Образующийся шлак удаляется в специальный шлаковый ковш.
  7. Время конверторного плавления может меняться, как правило, оно составляет 35-60 минут. Время выдержки зависит от типа применяемой шихты и объема получаемой стали.

Читать также:  Адаптер к шнеку ледобураПроизводство стали в электропечах преимущества и недостатки

Стоит учитывать, что производительно подобного оборудования составляет порядка 1,5 миллионов тонн при вместительности 250 тонн. Применяется данная технология для получения углеродистых, низкоуглеродистых, а также легированных сталей.

Читайте также:  Маршрутно технологическая карта образец

Кислородно-конвертерный способ производства стали был разработан довольно давно, но сегодня все равно пользуется большой популярностью.

Это связано с тем, что при применении этой технологии можно получить качественные металлы, а производительность технологии весьма высока.

В заключение отметим, что в домашних условиях провести производство стали практически невозможно. Это связано с необходимостью нагрева шихты до достаточно высокой температуры. При этом процесс окисления железа весьма сложен, как и удаления вредных примесей

Лекция на тему "Производство стали в электропечах"

Производство стали в электропечах

Наиболее совершенные плавильные агрегаты — это электропечи, в которых электрическая энергия превращается в тепло для нагрева и расплавления металла.

Производство стали в электропечах имеет ряд преимуществ по сравнению с другими способами выплавки стали.

Так, в электропечах можно получать температуру до 2000°С и расплавлять металл с высокой концентрацией тугоплавких компонентов (хрома, вольфрама, молибдена и др.

); иметь высокоосновной шлак (до 55—60% СаО); создавать восстановительную атмосферу или вакуум (индукционные печи) и добиваться хорошего раскисления и дегазации металла.

Для выплавки стали применяют электропечи двух типов — дуговые и индукционные. Дуговые печи особенно широко применяют в металлургической промышленности.

Устройство электропечи

В этой печи (рис. 1) нагревание и расплавление шихты осуществляется за счет тепла, излучаемого тремя электрическими дугами. Электрические дуги образуются в плавильном пространстве печи между вертикально подвешенными электродами и металлической шихтой.

Печь состоит из цилиндрического сварного или клепаного кожуха 9 со сфероидальным днищем; подины с огнеупорной футеровкой и стенок 8; съемного арочного свода 6 с отверстиями для электродов 5 ; механизма 4 для закрепления и вертикального перемещения электродов; двух опорных сегментов 10 для поддержки и перемещения печи по направляющим фундамента 11;механизма 8 для наклона печи при выпуске стали по желобу 7. Электрический ток поступает от понижающего трансформатора 1, находящегося в отдельном помещении. Для подвода тока к электродам использованы медные шины и гибкий кабель 2.

Свод печи обычно выполняют из динасовых кирпичей, иногда из хромомагнезитовых блоков. Подина печи может быть кислой или основной.

В печах применяют угольные и графитированные электроды. Последние оказывают меньшее сопротивление току и более устойчивы при высоких температурах, но дороже угольных.

Во время плавки электроды сгорают, поэтому их приходится постепенно опускать в печь и в случае надобности наращивать (свинчивать с новыми электродами). Каждый из электродов зажат в контактных щеках металлического электрододержателя, к которому подводится электрический ток от вторичной обмотки печного трансформатора.

Первичная обмотка трансформатора питается током высокого напряжения (6000—30000В), который преобразуется в ток низкого напряжения (90—280В) в зависимости от выбранной ступени напряжения. Мощность печного трансформатора зависит от емкости печи и способа плавки. Дуговые электропечи имеют емкость от 3 до 270т и более.

Технология выплавки стали в дуговых печах

В электрических дуговых печах выплавляют высококачественную углеродистую или легированную сталь. Обычно для выплавки стали применяют шихту в твердом состоянии. Твердую шихту в дуговых печах с основной футеровкой используют при плавке стали с окислением шихты и при переплавке металла без окисления шихты.

Технология плавки с окислением шихты в основной дуговой печи подобна технологии плавки стали в основных мартеновских печах (скрап-процессам). После заправки падины в печь загружают шихту. Среднее содержание углерода в шихте на 0,5 -0,6% выше, чем в готовой стали.

Углерод выгорает и обеспечивает хорошее кипение ванны. На подину печи загружают мелкий стальной лом, затем более крупный. Укладывать шихту в печи надо плотно. Особенно важно хорошо уложить куски шихты в месте нахождения электродов.

Шихту в дуговые печи малой и средней емкости загружают мульдами или лотками через завалочное окно, а в печи большой емкости через свод, который отводят в сторону вместе с электродами. После загрузки шихты электроды опускают до легкого соприкосновения с шихтой.

Подложив под нижние концы электродов кусочки кокса, включают ток и начинают плавку стали.

Производство стали в электропечах преимущества и недостатки

  • Рис. 1 — Схема устройства дуговой электропечи емкостью 80 т:
  • 1 – электроприбор, 2 – провода, 3 – подъемник, 4 – подъемник электродов 5Ю, 6 – свод, 7 – летка, 8 – подпод, 9,10, 11 – устройства поворота печи
  • При плавки стали в дуговых печах различают окислительный и восстановительный периоды.

Во время окислительного периода расплавляется шихта, окисляется кремний, марганец, фосфор, избыточный углерод, частично железо и другие элементы, например хром, титан и образуется первичный шлак.

Реакция окисления такие же, как и при основном мартеновском процессе. Фосфор из металла удаляется в течение первой половины окислительного периода, пока металл в ванне сильно не разогрелся.

Образовавшийся при этом первичный фосфористый шлак в количестве 60 — 70% удаляют из печи.

Для получения нового шлака в основную дуговую печь подают обожженную известь и другие необходимые материалы. После удаления фосфора и скачивания первичного шлака металл хорошо прогревается и начинается горение углерода. Для интенсивного кипения ванны в печь забрасывают необходимое количество железной руды или окалины и шлакообразующих веществ.

Во время кипения ванны в течение 45-60 мин. избыточный углерод сгорает, растворенные газы и неметаллические включения удаляются. При этом отбирают пробы металла для быстрого определения в нем содержания углерода и марганца и пробы шлака для определения его состава. Основность шлака поддерживается равной 2-2,5, что необходимо для задержания в нем фосфора.

После удаления углерода скачивают весь шлак. Если в металле в период окисления углерода содержится меньше, чем требуется по химическому анализу, то в печь вводят куски графитовых электродов или кокс.

В восстановительный период плавки раскисляют металл, переводят максимально возможное количество серы в шлак, доводят химический состав металла до заданного и подготовляют его к выпуску из печи.

Восстановительный период плавки в основных дуговых печах при выплавке сталей с низким содержанием углерода проводится под белым (известковым) слоем шлака, а при выплавке высокоуглеродистых сталей — под карбидным шлаком.

Для получения белого шлака в печь загружают шлаковую смесь, состоящую из извести и плавикового шпата. Через некоторое время на поверхности образуется слой шлака с достаточно высокой концентрацией FeO и МnО. Пробы шлака имеют темный цвет.

Перед раскислением металла в печь двумя-тремя порциями забрасывают второю шлаковую смесь, состоящей из кусковой извести, плавикового шпата, молотого древесного угля и кокса. Через некоторое время содержание FeO и МnО понижается.

Пробы шлака становятся светлее, закись железа из металла начинает переходить в шлак. Для усиления раскисляющего действия к концу восстановительного периода в печь забрасывают порошок ферросилиция, под влиянием которого содержание FeO в шлаке понижается.

В белом шлаке содержится до 50 — 60% СаО, а на поверхности его плавает древесный уголь, что позволяет эффективно удалять серу из металла.

Во время восстановительного периода плавки в металл вводят необходимые добавки, в том числе и легирующие. Окончательно металл раскисляют в печи алюминием.

Выплавка стали под карбидным шлаком на первой стадии восстановительного процесса происходит так же, как и под белым шлаком. Затем на поверхность шлака загружают карбидообразующую смесь, состоящую из кокса, извести плавикого шпата.

При высоких температурах образующийся карбид кальция увеличивает раскислительную и обессеривающую способность карбидного шлака. Для ускорения образования карбидного шлака печь хорошо герметизируют.

Карбидный шлак содержит 55 -65% СаО и 0,3 — 0,5% FeO; он обладает науглероживающей способностью.

При выплавке стали методом переплава в печь не загружают железную руду, условия для кипения ванны отсутствуют. Шихта состоит из легированных отходов с низким содержанием фосфора, поскольку его нельзя будет удалить в шлак.

Для понижения содержания углерода в шихту добавляют 10-15% мягкого железа. Образующийся при расплавлении шихты первичный шлак из печи не удаляют.

Это сохраняет легирующие элементы (Сг, Ті, V), которые переходят из шлака в металл.

Устройство и работа индукционных печей

Индукционные печи отличаются от дуговых способом подвода энергии к расплавленному металлу.

Индукционная печь примерно работает так же, как обычный трансформатор: имеется первичная катушка, вокруг которой при пропускании переменного тока создается переменное магнитное поле.

Читайте также:  Миксер для шпаклевки своими руками

Магнитный поток наводит во вторичной печи переменный ток, под влиянием которого нагревается и расплавляется металл. Индукционные печи имеют емкость от 50 кг до 100 т и более.

В немагнитном каркасе имеются индуктор и огнеупорный плавильный двигатель. Индуктор печи выполнен в виде катушки с определенным числом витков медной трубки, внутри которой циркулирует охлаждающая вода. Металл загружают в тигель, который является вторичной обмоткой. Переменный ток вырабатывается в машинных или ламповых генераторах.

Подвод тока от генератора к индуктору осуществляется посредством гибкого кабеля или медных шин. Мощность и частота тока определяются емкостью плавильного тигля и состава шихты. Обычно в индукционных печах используется ток частотой 500 -2500 гц. Крупные печи работают на меньших частотах. Мощность генератора выбирают из расчета 1,0-1,4 квт/кг шихты.

Плавильные тигли печей изготавливают из кислых или основных огнеупорных материалов.

Печь (рис. 2) состоит из огнеупорного плавильного тигля и индуктора 8. Индуктор выполнен в виде катушки из медной трубки, по которой циркулирует охлаждающая вода.

Ток подается по гибким шинам 7 через печные конденсаторы 6 от рубильника 4, находящегося на щите управления 5.

К щиту ток подается от пускателя 1 через преобразователь 2 и конденсатор 3.

Необходимый для питания индукционной печи переменный ток повышенной частоты вырабатывают в специальных машинных или ламповых генераторах. Ток от генераторов к индуктору подводится по гибкому кабелю или медным шинам. Обычно в индукционных печах используют ток частотой 500—2500 Гц.

В индукционных печах сталь выплавляют методов переплава шихты. Угар легирующих элементов при этом получается очень небольшим.

Шлак образуется при загрузке шлакообразующих компонентов на поверхность расплавленного металла.

Температура шлака во всех случаях меньше температуры металла, так как шлак не обладает магнитной проницаемости и в нем не индуцируется ток. Для выпуска стали из печи, тигель наклоняют в сторону сливного носка.

В индукционных печах нет углерода, поэтому металл не науглероживается. Под действием электромагнитных сил металл циркулирует, что ускоряет химические реакции и способствует получению однородного металла.

  1. Индукционные печи применяют для выплавки высоколегированных сталей и сплавов особого назначения, имеющих низкое содержание углерода и кремния.
  2. Производство стали в электропечах преимущества и недостатки 
  3. Рис. 2 — Схема устройства индукционной высокочастотной печи

Способы производства стали

  • Способы получения стали зависят от применяемого оборудования:
  • 1)кислородно-конвертерный;
  • 2)мартеновский;
  • 3)электроплавильный.

При первом способе выплавка стали производиться в конвертере, представляющим собой стальной сосуд грушевидной формы, выложенный внутри огнеупорным кирпичом.

Для получения стали ,в конвертер заливают жидкий чугун, имеющий высокую температуру (1250-1400 С) и загружают известняк, металлолом. Затем подают кислород под давлением. При этом кислород быстро выжигает из чугуна избыток углерода и др.

примесей, известь взаимодействует с фосфором, серой и переводит их в шлак. По ходу плавки берут пробы металла на экспресс-анализ. Если содержание углерода соответствует заданному продувку кислородом прекращают и сталь сливают в ковш, а шлак сливают через специальное отверстие.

В готовой стали остается кислород в виде окисла железа. Для его восстановления в ковш вводят раскислители. Если сталь полностью раскислена и при застывании в изложницах из нее почти не выделяются газы, ее называют «спокойной». При выплавке спокойной стали в качестве раскислителей вводят сначала ферромарганец, потом ферросилиций и в последнюю очередь алюминий.

В тех случаях, когда из стали не удален кислород при ее разливке в изложницы и постепенном охлаждении последний взаимодействует с углеродом. с образованием окиси углерода. При интенсивном выделении окиси углерода поверхность металла как бы бурлит и сталь называют «кипящей». В этом случае в качестве раскислителей вводят только ферромарганец.

Наличие в жидком металле растворенных газов является причиной образования в слитке пустот, снижающих свойства стали. Для предотвращения образования пустот необходима дегазация жидкой стали до разлива ее в изложницы.

Наиболее полная дегазация достигается обработкой стали в вакуумных камерах, в результате которой значительно повышаются плотность слитка и физико-механические свойства металла.

После раскисления и дегазации сталь разливают по изложницам.

Существует два типа конвертеров- бессемеровский и томассовский, которые отличаются видом футеровки (огнеупорный материал).Для кремнистых чугунов- бессемеровский конвертер, для чугунов, обогащенных окислами фосфора- томассовский. В кислородных конвертерах выплавляют углеродистые, низколегированные и легированные стали. Из таких сталей изготовляют проволоку, трубы, рельсы.

  1. Преимущества конвертерного способа:
  2. 1) высокая производительность;
  3. 2) компактность и простота устройства конвертера;
  4. 3) 3) низкая себестоимость стали.
  5. Недостатки:
  6. 1)в конвертерах перерабатывается только жидкий чугун, а переработка металлолома возможна в небольшом количестве (до 10%);
  • 2)в процессе продувки наряду с выгоранием углерода и других примесей выгорает немалая часть железа (потери металла составляют 10-15%);
  • 3)процесс получения стали вследствие большой скорости с трудом поддается регулированию, что сокращает возможность получения стали точно определенного состава.
  • Конвертерную сталь применяют главным образом для изготовления изделий не требующих от металла особо высоких качеств.

Технологический процесс производства стали представлен на рис. 10.6.1

кислород
Жидкий чугун Металлолом
Производство стали в электропечах преимущества и недостатки
Конвертер
Разливка стали в ковш
Раскисление стали
Дегазация стали
Разливка стали в изложницы

Рис.10.6.1 Технологический процесс изготовления стали.

При конвертерном способе производства стали возможность переработки металлолома невелика. С ростом потребления металла и развитием машиностроения проблема утилизации отходов металлообработки и металлолома становится все более актуальной и она обусловила возникновение нового способа производства стали — в мартеновских печах.

Мартеновская печь-это печь особой конструкции пламенная печь, в которой металл плавится под непосредственным воздействием пламени горящего топлива. Мартеновская печь работает на газообразном и жидком топливе (мазуте).

В зависимости от состава шихты различают скрап-процесс и скрап-рудный процессы плавки. При скрап–процессе в печь загружаются скрап (55-75%) и чушковый чугун (25-45%). При скрап-рудном процессе в печь заливают жидкий чугун (55-75%), добавляют руду (12-20%) и скрап

Производство стали в электропечах преимущества и недостатки

  1. Преимущества мартеновского способа:
  2. 1) процесс плавки хорошо поддается управлению, что дает возможность получать сталь высокого качества и определенного состава;
  3. 2) возможность использования постоянно возрастающих ресурсов вторичного сырья (отходы сталелитейного производства, отходы металлообработки, амортизационный лом, который образуется в процессе эксплуатации машин и металлических изделий).
  4. Недостатки:
  5. 1) значительный расход топлива.
  6. Одним из основных путей снижения себестоимости стали является снижение расхода топлива и увеличение производительности мартеновских печей.

Производство стали в электрических печах (дуговые и индукционные печи) является более совершенным, чем предыдущие способы. Наиболее широкое распространение в металлургической промышленности поучили дуговые электрические печи.

При плавке стали в дуговых электропечах в состав шихтовых материалов входят в основном стальной лом и скрап с добавками чугуна, железной руды, флюсов, раскислителей и ферросплавов.

В этих печах плавку металла осуществляют теплом, выделяемым электрической дугой, образуемой между электродами и металлом (служащим вторым электродом) (температура до 3500°С).

В индукционных печах плавку металла осуществляют теплом, выделяемым от вихревых токов, образующих от подачи на корпус индуктора тока высокой частоты. Плавку ведут быстро, поэтому металл не успевает сильно окислиться. Плавка в индукционных печах ведется в воздушной среде или вакууме.

  • Преимущества способа получения стали в электропечах:
  • 1) создание высокой температуры в плавильном пространстве печи дает возможность быстро проводить плавку;
  • 2) получать сталь и сплавы любого состава;
  • 3) использование известкового шлака, способствует хорошему очищению металла от вредных примесей серы и фосфора;
  • 4) возможность ведения плавки при всех режимах и условиях производства;
  • 5) создание воздушной среды или вакуума в печи способствует хорошему раскислению и дегазации стали.
  • Недостатки:
  • 1) значительный расход электроэнергии и электродов;
  • 2) высокая стоимость получения стали.

В электропечах получают высоколегированные жаростойкие, жаропрочные и конструкционные стали и сплавы с особыми свойствами. В обычных сталеплавильных печах трудно, а иногда и невозможно получить металл, который удовлетворял бы возросшим потребностям современной техники.

Поэтому большое развитие получают различные специальные способы производства высококачественных сплавов и сталей. К ним относятся плазменный, электрошлаковый, вакуумный, и другие.

Читайте также:  Дерево из которого получают каучук

наиболее перспективны методы внепечной обработки стали: обработка жидкой стали в вакууме, продувка стали газами, обработка стали жидкими синтетическими шлаками.

Выбор способа производства стали зависит от ряда технических, экономических и географических факторов. Предпочтение отдается тому способу производства, который позволяет получить сталь необходимого состава и высокого качества при меньшей ее себестоимости.

Вопросы для самопроверки:

1.Назовите виды сырья используемые при производстве чугуна и стали.

2.В чем заключается доменный процесс?

3.Где используются продукты доменной плавки?

4.Назовите технико-экономические показатели плавки.

5. Каковы пути интенсификации доменного процесса?

6.Какое влияние оказывает подготовка шихтовых материалов на себестоимость чугуна?

7.В чем заключается сущность передела чугуна в сталь?

8.Назвать и охарактеризовать способы производства стали.

9. Каковы преимущества и недостатки способа производства стали в мартеновских печах?

10.В чем заключается операция «дегазация стали»?

Дополнительная литература

1.Бурла М.П., Гушан В.А., Казмалы И.М..Экономика Приднестровья на переходном этапе Тирасполь.:ИПЦ «Шериф», 2000

Производство стали в электропечах

Электросталеплавильный процесс более совершенный, чем кислородно-конвертерный и мартеновский, поэтому он находит все

большее применение. Это определяется возможностью получения качественной и высоколегированной стали, практически неограниченным сортаментом выплавляемой стали, использованием для нагрева металла электрической энергии.

Корпус дуговой электрической печи (рис. 3.3) состоит из кожуха 5(части корпуса выше порога рабочего окна 3), днища 2и сливного носка 10. Корпус состоит из наружной стальной обечайки с внутренней футеровкой (основной или кислой).

В корпусе печи имеются два отверстия: рабочее окно 3 — для управления ходом плавки, загрузки ферросплавов, взятия проб и скачивания шлака, а также летка для слива готовой стали и шлака. Рабочее окно закрывается заслонкой 4.

Наклоны печи в сторону рабочего окна (10—15°) или сливного желоба (40—45°) осуществляются с помощью специального механизма 77 с гидравлическим приводом 7.

Рис. 3.3. Схемы дуговых электропечей: а — прямого нагрева; б — косвенного действия Съемный свод Охарактеризуется наименьшей долговечностью футеровки.

В своде имеются отверстия, через которые пропускаются три графитизированных электрода 7диаметром 300—610 мм.

В электропечах электрический ток (напряжением 115—600 В и силой 10—50 кА) подводится к электродам электрододержателями 8и гибкими кабелями 9. Емкость печей составляет 0,5—200 т.

В дуговых электропечах прямого нагрева (рис. 3.3, а) дуга горит между электродами и расплавляемым металлом. Часть энергии дуги выделяется непосредственно на металле. Большая часть лучистой энергии дуги также попадает на поверхность металла. Таким образом, в малых объемах концентрируются большие мощности, что приводит к нагреву металла до высоких температур. При этом лег-

ко контролируются и регулируются расход теплоты и изменения температуры.

Электродуговые печи прямого нагрева характеризуются значительным испарением легкоплавкого металла в зоне дуги, поэтому наиболее пригодны для плавления стали.

К дуговым также относятся печи косвенного нагрева (рис. 3.3, б), где часть энергии дуги между двумя электродами передается металлу излучением. Сравнительно низкие температуры металла препятствуют применению этих печей для переплава черных металлов, они используются в основном в цветной металлургии.

При производстве стали в электропечах используются следующие шихтовые материалы: металлическая часть, шлакообразующие, окислители, добавочные материалы (раскислители и легирующие) и науглероживающие компоненты. Основную часть металлошихты составляет металлический лом.

В производстве реализуются две основные технологии плавки в электродуговых печах: на углеродистой или свежей шихте (с окислением примесей); на шихте из отходов легированных сталей (метод переплава).

В состав углеродистой шихты входят стальной лом (около 90%), передельный чугун в чушках (< 10%), железная руда, агломерат или окалина (1,0—1,5%), электродный бой или кокс для науглероживания металла и известь (2—3%). После загрузки шихты электроды опускают вниз, включают ток и шихта плавится.

На металл уже в периоды завалки и плавления шихты воздействует окислительная печная атмосфера (реакции (3.1)—(3.4)). Затем примеси металла окисляются оксидами шлака и железной руды по реакциям (3.8)—(3.10).

Образовавшиеся оксиды примесей металла совместно с СаО из извести формируют высокоосновной шлак, обеспечивающий дефос- форизацию стали по реакции (3.11). Уже при плавлении окисляется более 50% фосфора.

Шлак играет важную роль в окислительных процессах. Он обеспечивает передачу кислорода металлу из печной атмосферы и оксида железа FeO. Растворяющийся в металле кислород участвует в реакциях окисления (3.5)—(3.7).

Интенсивное окисление железа, а также кремния, марганца, углерода и других примесей по реакциям (3.1)—(3.4) происходит в результате продувки ванны кислородом. При этом выделяется значительное количество теплоты, быстро завершается процесс плавления шихты.

После полного расплавления шихты и перемешивания содержимого ванны берут пробу на полный химический анализ, затем скачивают шлак с фосфором, наводят новый шлак и начинается окислительный период плавки.

Для дальнейшего окисления углерода и фосфора проводят неоднократную загрузку руды и извести. Кислород руды через шлак окисляет углерод по реакции (3.7).

Окисление интенсифицируется продувкой кислородом, при этом протекает реакция (3.4).

Выделяющиеся пузырьки оксида углерода СО заставляют кипеть металл, что ускоряет прогрев ванны и удаление из металла газов и неметаллических включений, а также фосфора.

Шлак скачивают 2—3 раза, и содержание фосфора доводится до 0,01 %. Когда содержание углерода в стали становится равным нижнему пределу его содержания в выплавляемой марке стали (%), кипение, а вместе с ним и окисление заканчиваются.

Затем проводят раскисление стали двумя методами: глубинным раскислением без восстановительного периода; раскислением в восстановительный период.

Первый метод применяют при выплавке углеродистой и низколегированной конструкционной стали, а также стали с последующим внепечным рафинированием.

Сталь выплавляют под одним шлаком, без наведения последующего восстановительного шлака. В металл вводят ферросилиций, ферромарганец, феррохром. После 10—20 мин раскисления в печи (по реакциям (3.12)—(3.

14)) сталь выпускают в ковш, где проводится окончательное раскисление ферросилицием и алюминием.

Второй метод, когда раскисление проводят под восстановительным шлаком, наводимым после скачивания окислительного шлака, применяется при получении сталей с заданными свойствами, пониженным содержанием примесей или легируемых легкоокис- ляемыми элементами.

Восстановительный период плавки направлен на раскисление металла, удаление серы, доведение стали до заданного химического состава, регулирование температуры металла. Сначала в печь подают кокс или электродный бой. В результате присадки металл науглероживается.

После этого в печи наводится известковый восстановительный шлак из смеси извести, плавикового шпата и шамота в количестве 2,0—3,5% от массы металла. Затем проводят диффузионное раскисление под белым шлаком.

С этой целью на шлак подают порошок кокса и ферросилиция; шлак светлеет за счет уменьшения содержания в нем оксидов. Восстановление оксида железа в шлаке происходит по реакциям (3.15) и (3.16). Содержание оксида железа в шлаке снижается, и оксид из металла начинает переходить в шлак.

Во время восстановительного периода сера удаляется из металла по реакции (3.18). Когда достигнуты заданные состав металла и температура, выполняют конечное раскисление стали. После этого выпускают металл из печи в ковш.

Вторая разновидность плавки (метод переплава) в электропечах основывается на рациональном использовании содержащихся в шихте легирующих элементов, поэтому она проводится без окисления или с частичным окислением. Шихта для такой плавки помимо пониженного содержания фосфора должна иметь меньшее, чем в выплавляемой стали, количество марганца, кремния и углерода.

Кроме того, с целью наведения шлака для защиты металла от окисления кислородом атмосферы и науглероживания электродами вместе с шихтой во время завалки вводят шлакообразующие вещества. Во время плавки удаляются фосфор и сера. Поскольку часть элементов окисляется в период плавки, необходимо проводить раскисление.

Оксиды легирующих элементов восстанавливаются ферросилицием, алюминием, молотым коксом.

  • Чтобы интенсифицировать процесс переплава, применяют частичное окисление газообразным кислородом.
  • Общая продолжительность выплавки стали в дуговых электропечах вместимостью 5— 100 т составляет 3,5—6,5 ч.
  • Сравнение отдельных способов производства стали показывает, что выход годного металла в электропечах составляет 92—93%, в конвертерах с комбинированной продувкой — 91—92%, в обычных конвертерах с продувкой сверху и мартеновских печах — 90%, в двухванных печах и мартеновских печах с продувкой кислородом — 87—88%.
Ссылка на основную публикацию
Adblock
detector