Проводимость стали и меди

Электрическая проводимость или электропроводность — это способность тела проводить электрический ток.

Это понятие крайне важно в электротехнике: металлы, хорошо проводящие ток, используются в проводах, плохие проводники или диэлектрики — для защиты людей от электричества.

Лучшим проводником является серебро, на втором месте стоит медь (она совсем немного уступает серебру), далее идут золото и алюминий.

Достоинства и недостатки медных проводов

Медь — это пластичный переходный металл. Имеет золотисто-розовый цвет, встречается в природе в виде самородков. Используется человеком с давних времен — в его честь была названа целая эпоха.

Проводимость стали и медиВ таблице дано удельное электрическое сопротивление стали и других металлов

Сегодня медные провода часто используют в электронных устройствах. К их достоинствам относятся:

  • Высокая электропроводность (металл занимает второе место по этому показателю, уступая только серебру). По сравнению с алюминием медь эффективнее в 1,7 раза: при равном сечении медный кабель пропускает больше тока.
  • Сварку, пайку и лужение можно проводить без использования дополнительных материалов.
  • Провода обладают хорошей эластичностью и гибкостью, их можно сворачивать и сгибать без особого вреда.

Проводимость стали и медиМедь лишь немного уступает серебру

Однако до недавнего времени медные провода проигрывали алюминиевым из-за нескольких недостатков:

  • Высокая плотность: при разных размерах медный провод будет весить больше, чем алюминиевый;
  • Цена: алюминий в несколько раз дешевле;
  • Медь окисляется на открытом воздухе: впрочем, это не влияет на ее работу и легко устраняется.

Какое сопротивление меди и алюминия

Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.

Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.

В электротехнике значение имеют 2 термина:

  • Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
  • Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.

Вам это будет интересно  Особенности статического электричестваПроводимость стали и медиАлюминиевые кабели востребованы не меньше медных

Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.

Какое удельное сопротивление стали

Сталь — это металлический сплав железа с углеродом и другими элементами. В ее состав входит не менее 45% железа, содержание углерода колеблется от 0,02% до 2,14%. В зависимости от точного состава сталь используется в строительстве, машиностроении и приборостроении, а также во многих областях, например, в транспорте, народном хозяйстве, при производстве бытовых приборов.

Проводимость стали и медиСтальные провода отличаются невысокой проводимостью

Проводимость стали составляет всего 7,7 миллионов См/м, удельное сопротивление — 0,13 мкОм/м, то есть оно довольно высоко. Сталь плохо проводит электричество и не применяется при производстве непосредственно кабелей.

Однако нередко можно встретить внешнюю оцинкованную стальную оплетку, которая защищает провода от механического растяжения.

Такая защита нужна, если кабель проходит под дорогой или на нестабильном грунте, если есть риск резко дернуть провод.

Также из стали делают ПНСВ — провод нагревательный со стальной жилой, имеющий изоляцию из винила. Его размещают внутри конструкции до заливания бетона и используют в дальнейшем для электрообогрева готового блока. Электричество кабель практически не проводит.

Проводимость стали и медиИз стали производят провод ПНСВ

Сравнение проводимости разных видов стали

Характеристики стали зависят от ее состава и температуры:

  • Для углеродистых сплавов сопротивление довольно низкое: оно составляет 0,13-0,2 мкОм/м. Чем выше температура, тем больше значение;
  • Низколегированные сплавы имеют более высокое сопротивление — 0,2-0,43 мкОм/м;
  • Высоколегированные стали отличаются высоким сопротивлением — 0,3-0,86 мкОм/м;
  • Благодаря высокому содержанию хрома сопротивление хромистых нержавеющих сплавов равняется 0,5-0,6 мкОм/м;
  • Хромоникелевые аустенитные стали являются нержавеющими и благодаря никелю имеют высокую сопротивляемость — 0,7-0,9 мкОм/м.

Проводимость стали и медиИз стали часто делают оцинкованную оплетку

Медь стоит на втором месте по степени электропроводимости: она отлично пропускает электрический ток и повсеместно используется при изготовлении проводов. Не реже применяют и алюминий: он слабее меди, но дешевле и легче.

Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов

Проводимость стали и меди
Проект Карла III Ребане и хорошей компании


Раздел недели: Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д.
Проводимость стали и меди
Таблицы DPVA.ru — Инженерный Справочник Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Электрическое сопротивление и проводимость проводников, растворов, почв….  / / Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов.

  • В разумных температурных пределах вокруг некоторой точки зависимость удельного сопротивления металлов от температуры описывается как:
  • ΔR = α*R*ΔT, где α — температурный коэффициент электрического сопротивления.
  • Ниже приведена таблица значений α для ряда металлов в диапазоне температур от 0 до 100 ° C.
Зависимость сопротивления металлов от температуры. Температурный коэффициент электрического сопротивления металлов α .

Проводник Удельное сопротивление ρ, Ом*мм2/м α, 10 -3*C-1(или K -1)
Алюминий 0,028 4,2
Бронза 0,095 — 0,1
Висмут 1,2
Вольфрам 0,05 5
Железо 0,1 6
Золото 0,023 4
Иридий 0,0474
Константан ( сплав Ni-Cu + Mn) 0,5 0,05!
Латунь 0,025 — 0,108 0,1-0,4
Магний 0,045 3,9
Манганин (сплав меди марганца и никеля — приборный) 0,43 — 0,51 0,01!!
Медь 0,0175 4,3
Молибден 0,059
Нейзильбер (сплав меди цинка и никеля) 0,2 0,25
Натрий 0,047
Никелин ( сплав меди и никеля) 0,42 0,1
Никель 0,087 6,5
Нихром ( сплав никеля хрома железы и марганца) 1,05 — 1,4 0,1
Олово 0,12 4,4
Платина 0.107 3,9
Ртуть 0,94 1,0
Свинец 0,22 3,7
Серебро 0,015 4,1
Сталь 0,103 — 0,137 1-4
Титан 0,6
Фехраль (Cr (12—15 %); Al (3,5—5,5 %); Si (1 %); Mn (0,7 %); + Fe) 1,15 — 1,35 0,1
Хромаль 1,3 — 1,5
Цинк 0,054 4,2
Чугун 0,5-1,0 1,0

Электрическое сопротивление проводника при постоянном токе, зависимость сопротивления проводника от температуры, индуктивное (реактивное) сопротивление, ёмкостное (реактивное) сопротивление, полное реактивное сопротивление, полное сопротивление цепи при переменном токе (последовательное соединение)» src=»https://www.dpva.ru/netcat_files/Image/GuidePhysics/ElectricalAndMagnet/MainElectricalFormulas/Electrotrchnics.jpg»>

Проводимость стали и меди

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator

Сравнение меди и стали при использовании в качестве молниеотводов, молниеприемников, заземлителей и заземляющих проводников

Проводимость стали и меди

При прохождении тока молнии в молниеотводе происходит выделение теплоты согласно закону Джоуля-Ленца. Температура проводника увеличивается прямо пропорционально его электрическому сопротивлению.

Согласно нормативной документации молниеотводы выполняют из проволоки сечением более 50 мм2. Ближайшим стандартным калибром проволоки является проводник с круглым сечением диаметром 8 мм (50,24 мм2). В большинстве случаев именно его рекомендуют использовать специалисты.

Поскольку сопротивление меди на порядок ниже сопротивления стали, температура нагрева молниеотвода при протекании тока молнии соответственно составит: медь 122ºС и сталь около 1000ºС.

Учитывая то, что температура плавления стали превышает 1300ºС, молниеотвод способен единовременно выдержать однократное воздействие молнии.

Однако, при одновременных повторных ударах проводник может перегреться и расплавиться. медь сталь

медь сталь
температура нагрева молниеотвода ø8 мм при протекании тока молнии 122ºС ≈1000ºС
температура плавления 1000ºС 1300ºС

Эти специфичные свойства стальных молниеотводов следует принимать в расчет при проектировании, выбирая конструкции крепления.

Различный состав обуславливает разную устойчивость к бактериальной коррозии. Медь устойчива к коррозии в грунте, а сталь подвержена разрушению.

Во влажном воздухе медь медленно окисляется и темнеет, образуя на поверхности слой оксида меди, который «консервирует» металл, в дальнейшем предотвращая коррозию. В аналогичных условиях сталь со временем полностью корродирует. Чтобы предотвратить окисление стали, ее покрывают слоем цинка (оцинкованная сталь).

Медь ‒ отличный проводник, проводимость меди многократно превышает проводимость стали. медь сталь

медь сталь
электрическая проводимость 58,1х106 Ом/м 7,7х106 Ом/м
электрическое сопротивление 1,72х10-8 Ом*м 13х10-8 Ом*м

Сталь представляет собой металлический сплав, а медь ‒ чистый металл. Сталь состоит из железа и углерода, тогда как медь является химическим элементом (Cu атомный номер 29).

Электропроводность: объяснение, формулы, единица измерения, таблица

Почему медь проводит электричество лучше, чем вода? Прочитав эту статью, вы больше не будете задавать себе больше этот вопрос. Далее мы обсудим электропроводность и рассмотрим формулы, которые описывают это понятие. Наконец, вы можете проверить свои знания на двух примерах.

Простое объяснение.

Электропроводность — это физическая величина, которая описывает насколько хорошо определенный материал проводит электричество.

Формулы

Существует три различных формульных обозначения удельной электропроводности σ (греч. сигма), k (каппа) и γ (гамма). В дальнейшем мы будем использовать σ. Формула электропроводности, также называемой удельной электропроводностью, описывается формулой:

σ = 1 / ρ .

Здесь ρ называется удельным сопротивлением. Вы можете рассчитать электрическое сопротивление R проводника с учетом его параметров следующим образом: R = ( ρ * l ) / S .

Таким образом, сопротивление R равно удельному сопротивлению ρ , умноженному на длину проводника l, деленному на площадь поперечного сечения S. Если теперь вы хотите выразить эту формулу через удельную электропроводность σ = 1 / ρ , полезно знать, что электрическая проводимость G проводника выражается следующим образом: G = 1 / R .

  • Если в верхнюю формулу подставить удельную электропроводность σ и электрическую проводимость G, то получится следующее: 1 / G = ( 1 / σ ) * ( l / S ) .
  • Путем дальнейшего преобразования можно получить выражение: G = σ * S / l .
  • С помощью электропроводности можно также описать важную зависимость между плотностью электрического тока и напряженностью электрического поля с помощью выражения: J = σ * E .

Единица измерения

Единицей удельной электропроводности σ в СИ является: [ σ ] = 1 См/м ( Сименс на метр ).

Эти единицы определяются по формуле G = σ * S / l . Если решить эту формулу в соответствии с σ, то получим σ = G * l / S .

  1. Единица измерения электрической проводимости G задается как: [ G ] = 1 / σ = 1 См ( Сименс, международное обозначение: S ).
  2. Если теперь ввести в формулу все единицы измерения, то получится:
  3. [ σ ] = 1 См * 1 м / м2 = 1 См / м .

Вы также будете чаще использовать единицы измерения См / см , м / Ом * мм2 или См * м / мм2 . Вы можете преобразовать отдельные измеряемые переменные так: См / см = См / 10-2 м и так: м / Ом * мм2 = См * м / мм2 = См * м / 10-3 м * 10-3 м = 106 См / м .

Электропроводность металлов

В зависимости от количества свободно перемещающихся электронов один материал проводит лучше, чем другой. В принципе, любой материал является проводящим, но в изоляторах, например, протекающий электрический ток ничтожно мал, поэтому здесь мы говорим о непроводниках.

В металлических связях валентные электроны, т.е. крайние электроны в атоме, свободно подвижны. Они расположены в так называемой полосе проводимости. Находящиеся там электроны образуют так называемый электронный газ.

Соответственно, металлы являются сравнительно хорошими проводниками. Если теперь подать электрическое напряжение на металл, валентные электроны медленно движутся к положительному полюсу, потому что он их притягивает.

Проводимость стали и медиРис. 1. Движение электронов в металле

На рисунке 1 видно, что некоторые электроны не могут быть притянуты непосредственно к положительному полюсу, потому что на пути стоит, так сказать, твердое атомное ядро. Там они замедляются и в некоторой степени отклоняются. Именно поэтому электроны не могут ускоряться в металле бесконечно, и именно так возникает удельное сопротивление или электропроводность.

Теперь вы также можете измерить удельную электропроводность в металле с помощью следующей формулы: σ = ( n * e2 * τ ) / m .

В этой формуле n означает число электронов, e — заряд электрона, m — массу электрона, а τ — среднее время полета электрона между двумя столкновениями.

Таблица удельной электропроводности

Для большинства веществ уже известны значения удельной электропроводности. Некоторые из них вы можете найти в следующей таблице ниже. Все значения в этой таблице действительны для комнатной температуры, т.е. 25°C.

Вещество Удельная электропроводность в См / м
Серебро 62 · 106
Медь 58 · 106
Золото 45,2 · 106
Алюминий 37,7 · 106
Вольфрам 19 · 106
Латунь 15,5 · 106
Железо 9,93 · 106
Нержавеющая сталь (WNr. 1,4301) 1,36 · 106
Германий (легирование

Удельное сопротивление меди, стали, аллюминия, железа и других металлов

Сравнительно небольшое удельное сопротивление меди – важный, но не единственный положительный фактор.

Широкое применение этого материала объясняется разумной стоимостью, устойчивостью к неблагоприятным внешним воздействиям.

Из него несложно создавать качественные изделия необходимой формы, которые без дополнительной защиты сохраняют функциональность при длительной эксплуатации в сложных условиях.

Из меди создают разные виды кабельной продукции

Медь – основной материал для проводников

Квалифицированный выбор подходящего материала сопровождается комплексной оценкой нескольких факторов. Медный проводник не повреждается коррозией, потому что на поверхности образуется защитный слой из окислов.

Структурная целостность сохраняется при малом радиусе поворота, после многократных изгибов. Отмеченные параметры пригодятся для оснащения помещений с повышенной влажностью и прокладки линий сложной конфигурации.

Тем не менее, главным преимуществом является малое сопротивление проводов из меди. Кроме улучшения токопроводимости с одновременным снижением потерь при передаче энергии, следует отметить уменьшение веса и размеров кабельной продукции, по сравнению с альтернативными вариантами.

Удельное сопротивление чистых металлов при низких температурах

Колебательные процессы в молекулярной решетке препятствуют свободному перемещению электронов. Этим объясняется увеличение сопротивления по мере роста температуры.

Линейная зависимость наблюдается от небольшой положительной температуры, вплоть до точки начала плавления. Соответствующий фазовый переход сопровождается резким увеличением электрического сопротивления.

Разумеется, подобный режим после разрушения не является рабочим.

Удельное сопротивление натрия

Теоретические показатели «а» подтверждаются результатами эксперимента «б». Если структуру чистого металла исказить примесями (загрязнениями, компонентами сплавов), произойдет беспорядочное распределение носителей электрического заряда. Это, в свою очередь, увеличит потери в цепи (сопротивление).

Таблица сопротивления металлов

Чтобы убедиться в преимуществах меди, надо сделать соответствующий сравнительный анализ. Ниже приведены значения сопротивлений металлов в сводной таблице.

Что такое электрическое сопротивление

Основные электрические параметры проводников, созданных из разных материалов

МатериалУдельное сопротивление в Омах на метр, замеренное при комнатной температуре (+20°C)Удельная электропроводность при аналогичных условиях, в сименсах на метр
Медь 1,68х10^-3 5,96х10^7
Серебро 1,59х10^-3 6,3х10^7
Золото 2,44х10^-3 4,1х10^7
Алюминий 2,82х10^-3 3,5х10^7
Вольфрам 5,6х10^-3 1,79х10^7
Железо 1х10^-7 1х10^7
Платина 1,06х10^-7 9,43х10^6
Литий 9,28х10^-8 1,08х10^7

Важно! Малого сопротивления проводника из железа недостаточно для широкого применения соответствующих изделий на практике. Активное окисление провоцирует быстрое разрушение.

Таблица удельных сопротивлений проводников

Сопротивление тока: формула

В некоторых ситуациях с расходами не считаются. Военную и космическую технику создают с применением проводников из драгоценных металлов. Такие решения помогают уменьшить сечение и вес, повысить стойкость к радиационным и другим особым воздействиям.

Для изготовления серийных изделий бытового и промышленного назначения применяют более доступные по цене материалы.

Данные для расчета электрических параметров проводников с учетом изменения температуры

МатериалУдельное сопротивление (в Ом на мм кв./ м), замеренное при комнатной температуре (+0°C)Поправочный температурный коэффициент (ПК)
Медь 0,0176 0,004
Алюминий 0,0278 0,0045
Сталь 0,13 0,0063
Никелин 0,43-0,45 0,0072
Латунь 0,04 0,002
Нихром 0,98 0,0003
Вольфрам 0,0612 0,00047

Применение нержавеющей стальной проволоки помогает увеличить прочность при одновременной оптимизации себестоимости. Для улучшения антикоррозийных свойств применяют специальные добавки. Они повышают сопротивление проводника из стали почти в 10 раз, по сравнению с медным аналогом.

В любом случае особое значение имеют конкретные условия в процессе использования, а также назначение изделий. Никель, например, проявляет ферромагнитные свойства при чрезвычайно низких температурах ниже порогового значения «точки Кюри» (-358 0°C). Кремний, который применяют для изготовления микросхем и транзисторов, обладает особыми параметрами полупроводника.

Сравнение проводимости меди и алюминия

Первый вывод можно сделать после изучения табличных данных. Сопротивление алюминия примерно на 80% выше, по сравнению с медью. В такой же пропорции хуже проводимость. Но для корректного анализа необходимо изучить дополнительно следующие факты:

  • алюминий легче, но для получения аналогичных электрических параметров понадобится увеличить поперечное сечение (толщину проводника);
  • медные изделия (многожильные кабели) не повреждаются неоднократным сгибанием;
  • удельное сопротивление алюминия изменяется больше при повышении/ снижении температуры;
  • пленка из окислов на его поверхности образуется быстрее, поэтому для надежности (долговечности) современную проводку делают из меди.

Медный и алюминиевый кабель соединяют через стальной переходник, чтобы предотвратить электрохимическую коррозию

Применение электропроводности материалов

Наличие отмеченных свойств используют не только в инженерных энергетических сетях. Хорошая электропроводность позволяет передавать на большие расстояния информационные сигналы без искажений.

Сохранение высокой амплитуды уменьшает требования к усилительным трактам, снижает общую себестоимость систем.

Минимизация потерь пригодится в электролизных установках, при создании контактных групп и обмоток двигателей.

Важно! Во всех перечисленных примерах, кроме общего повышения эффективности, можно рассчитывать на предотвращение перегрева.

Расчет сопротивления

Для коррекции температурных изменений в последнем столбце второй таблицы приведены отдельные множители по каждой позиции. Расчет выполняют по формуле RT=Rn*(1+ПК*Т), где приведенные символы означают:

  • RТ – электрическое сопротивление в Омах при определенной температуре;
  • Rn – сопротивление проводника при нулевой температуре;
  • ПК – поправочный коэффициент;
  • Т – эксплуатационная температура в градусах Цельсия.

Понятие электрического сопротивления

Этим термином называют свойство создавать препятствия прохождению в цепи электрического тока. Связь между физическими величинами описывается классической формулой R=U/I (обозначения сопротивления, напряжения и силы тока, соответственно). Движение электронов совершается под воздействием электромагнитного поля, разницы потенциалов.

Повышает сопротивление металлов любое искажение кристаллической структуры молекулярной решетки. Данная причина объясняет сильную зависимость параметра от чистоты материала и температуры. Так, стандарты для трубной продукции допускают применение различных сплавов.

Электротехническую медь (марка М006) создают с контролируемым количеством посторонних примесей не более 0,1%.

Квалифицированное применение этого материала предваряется оценкой всех значимых факторов. Кроме себестоимости, уточняют:

  • особенности механической и других видов обработки;
  • стабильность электрических параметров в определенных условиях эксплуатации;
  • стойкость к внешним воздействиям, долговечность.

В некоторых ситуациях значительные начальные инвестиции оправданы продленным сроком службы, надежностью.

Видео

Электрическая проводимость металлов таблица — booktube.ru

Электрическое сопротивление 1 метра провода (в Ом), сечением 1 мм², при температуре 20 С°. Формула: ρ = Ом · мм²/м.

Материал проводника Удельное сопротивление ρ в Ом
Серебро 0.015
Медь 0.0175
Золото 0.023
Латунь 0,025. 0,108
Хром 0,027
Алюминий 0.028
Натрий 0.047
Иридий 0.0474
Вольфрам 0.05
Цинк 0.054
Молибден 0.059
Никель 0.087
Бронза 0,095. 0,1
Железо 0.1
Сталь 0,103. 0,137
Олово 0.12
Свинец 0.22
Никелин (сплав меди, никеля и цинка) 0.42
Манганин (сплав меди, никеля и марганца) 0,43. 0,51
Константан (сплав меди, никеля и алюминия) 0,44-0,52
Копель ( медно-никелевый сплав с 43% никеля и 0,5% марганца) 0.5
Титан 0.6
Ртуть 0.94
Хромель (хром 8,7—10 %; никель 89—91 %; кремний, медь, марганец, кобальт — примеси) 1.01
Нихром (сплав никеля, хрома, железа и марганца) 1,05. 1,4
Фехраль 1,15. 1,35
Висмут 1.2
Хромаль (Сплав 4.5 – 6% алюминия, 17%-30% хрома, остальное железо) 1,3. 1,5

Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм².

Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом.

Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм².

  Измерение металлосвязи методика нормы периодичность проверки

В связи с тем, что существует два типа электрических сопротивлений –

В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом.

Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

  • Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.
  • В международной системе единиц удельное сопротивление ρ выражается формулой:
  • Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.

Таблица удельных сопротивлений проводников

Материал проводника Удельное сопротивление ρ в
Серебро Медь Золото Латунь Алюминий Натрий Иридий Вольфрам Цинк Молибден Никель Бронза Железо Сталь Олово Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Титан Ртуть Нихром (сплав никеля, хрома, железа и марганца) Фехраль Висмут Хромаль 0,015 0,0175 0,023 0,025. 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095. 0,1 0,1 0,103. 0,137 0,12 0,22 0,42 0,43. 0,51 0,5 0,6 0,94 1,05. 1,4 1,15. 1,35 1,2 1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора.

Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться.

Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок в зависимости от температуры — в диапазоне от 0 до 1350°С.

В общем случае, удельное сопротивление определяется только составом вещества и его температурой, оно численно равно полному сопротивлению изотропного проводника, имеющего длину 1 м и площадь поперечного сечения 1 м2.

Удельное электрическое сопротивление стали существенно зависит от состава и температуры. При повышении температуры этого металла увеличивается частота и амплитуда колебаний атомов кристаллической решетки, что создает дополнительное сопротивление прохождению электрического тока через толщу сплава. Поэтому, с ростом температуры сопротивление стали увеличивается.

Изменение состава стали и процента содержания в ней легирующих добавок значительно сказывается на величине электросопротивления. Например, углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Значения температурного коэффициента для некоторых металлов

Металл α
Серебро Медь Железо Вольфрам Платина 0,0035 0,0040 0,0066 0,0045 0,0032 Ртуть Никелин Константан Нихром Манганин 0,0090 0,0003 0,000005 0,00016 0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

  Когда проводится проверка кабельных линий лабораторией?

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Алюминий

Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного – 2.7 Мг/м 3 . Т.о., алюминий примерно в 3.5 раза легче меди.

Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди.

Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами – как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.

Свойства и характеристики металла

Железо – достаточно легкий, умеренно тугоплавкий металл, серебристо-серого цвета. Легко реагирует с разбавленными кислотами и поэтому считается элементом средней активности. На воздухе – сухом, металл постепенно покрывается пленкой оксида, которая препятствует дальнейшей реакции.

Но при самой небольшой влажности вместо пленки появляется ржавчина – рыхлая и неоднородная по составу. Ржавчина дальнейшей коррозии железа не препятствует. Однако физические свойства металла, а, главное, его сплавов с углеродом таковы, что, несмотря на низкую коррозийную стойкость, использование железа более чем оправдано.

Далее вы узнаете, чему равна плотность железа (в кг на м3) в сравнении, например, с медью или алюминием.

Масса и плотность

Молекулярная масса железа составляет 55,8, что указывает на относительную легкость вещества. А какая же у железа плотность? Такой показатель определяется фазовой модификацией:

  • α-Fe – 7,87 г/куб. см при 20 С, и 7,67 г/куб. см при 600 С;
  • γ-фаза отличается еще более низкой плотностью – 7,59 г/куб см при 1000С;
  • плотность δ-фазы составляет 7,409 г/куб см.

С повышением температуры плотность железа закономерно падает.

А теперь давайте узнаем, какова температура плавления железа по Цельсию, сравнивая ее, например, с медью или чугуном.

Температурный диапазон

Металл относится к умеренно тугоплавким, что означает сравнительно невысокую температуру изменения агрегатного состояния:

  • температура плавления – 1539 С;
  • температура кипения – 2862 С;
  • температура Кюри, то есть, утраты способности к намагничиванию – 719 С.

Стоит иметь в виду, что когда говорят о температуре плавления или кипения, имеют дело с δ-фазой вещества.

Данное видео поведает вам о физических и химических свойствах железа:

Механические характеристики

Железо и его сплавы настолько распространены, что хотя и стали использоваться позже чем, например, медь и бронза, стали своеобразными эталонами. Когда сравнивают металлы, указывают на железо: крепче, чем сталь, мягче железа в 2 раза и так далее.

Характеристики приводятся для металла, включающего малые доли примесей:

  • твердость по шкале Мооса – 4–5;
  • твердость по Бринеллю – 350–450 Мн/кв. м. Причем у химически чистого железа твердость выше – 588–686;

Показатели прочности исключительно сильно зависят от количества и характера примесей. Эта величина регламентируется ГОСТом для каждой марки сплава или чистого метала. Так, предел прочности на сжатие для нелегированной стали составляет 400–550 МПа. При закалке этой марки предел прочности при растяжении увеличивается до 700 МПа.

  • ударная вязкость металла составляет 300 Мн/кв м;
  • предел текучести –100 Мн/кв. м.

О том, что надо для определения удельной теплоемкости железа, узнаем далее.

Теплоемкость и теплопроводность

Как и всякий металл, железо проводит тепло, хотя показатели его в этой области невысоки: по теплопроводности металл уступает алюминию – в 2 раза меньше, и меди – в 5 раз.

Теплопроводность при 25 С составляет 74,04 вт/(м·К). Величина зависит от температуры;

  • при 100 к теплопроводность составляет 132 [Вт/(м.К)];
  • при 300 К – 80,3 [Вт/(м.К)];
  • при 400 – 69,4 [Вт/(м.К)];
  • а при 1500 – 31,8 [Вт/(м.К)].

Важно:

  • Коэффициент температурного расширения при 20 С – 11,7·10-6.
  • Теплоемкость металла определяется его фазовой структурой и довольно сложно зависит от температуры. С повышением до 250 С, теплоемкость медленно увеличивается, затем резко возрастает до достижения точки Кюри, а потом начинается снижаться.
  • Удельная теплоемкость в температурном диапазоне от 0 до 1000С составляет 640,57 дж/(кг·К).

Электропроводность

Железо проводит ток, но далеко не так хорошо, как медь и серебро. Удельное электрическое сопротивление металла при нормальных условиях – 9,7·10-8 ом·м.

Поскольку железо является ферромагнетиком, его показатели в этой области более значимы:

  • магнитная индукция насыщения составляет 2,18 Тл;
  • магнитная проницаемость – 1,45.106.

Далее рассмотрена токсичность железа.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]