Работа с осциллографом для начинающих

Работа с осциллографом для начинающихВ статье «Электронный осциллограф — устройство, принцип работы» вкратце было рассказано об этом универсальном приборе. Приведенных сведений достаточно для того, чтобы сделать процесс измерений осознанным, но в случае ремонта столь сложного прибора понадобятся более глубокие знания, ведь схемотехника электронных осциллографов весьма разнообразна и достаточно сложна.

Чаще всего в распоряжении начинающего радиолюбителя оказывается однолучевой осциллограф, но освоив приемы пользования таким прибором, не составит труда перейти на двухлучевой или цифровой осциллограф.

На рисунке 1 показан достаточно простой и надежный осциллограф С1-101, имеющий настолько малое количество ручек, что запутаться в них абсолютно невозможно. Обратите внимание, что это не какой-нибудь осциллограф для школьных уроков физики, именно таким пользовались на производстве всего лишь лет двадцать назад.

Питание осциллографа не только 220В. Возможно питание от источника постоянного тока 12В, например автомобильного аккумулятора, что позволяет пользоваться прибором в полевых условиях.

Работа с осциллографом для начинающих

Рисунок 1. Осциллограф С1-101

Вспомогательные регулировки

На верхней панели осциллографа расположены ручки регулирования яркости и фокусировки луча. Их назначение понятно без объяснений. На передней панели находятся все остальные органы управления.

Два регулятора, обозначенные стрелками, позволяют регулировать положение луча по вертикали и горизонтали. Это позволяет более точно совмещать изображение сигнала на экране с координатной сеткой для улучшения отсчета делений.

  • Нулевой уровень напряжения находится на центральной линии вертикальной шкалы, что позволяет наблюдать двухполярный сигнал без постоянной составляющей.
  • Для исследования однополярного сигнала, например цифровых схем, луч лучше переместить на нижнее деление шкалы: получится одна вертикальная шкала из шести делений.
  • На передней панели находятся также тумблер включения питания и индикатор включения.
  • Усиление сигнала

Переключателем «V/дел» устанавливается чувствительность канала вертикального отклонения. Усиление канала Y калиброванное, изменяется с шагом 1, 2, 5, плавной регулировки чувствительности нет.

Вращением этого переключателя следует добиться, чтобы размах исследуемого импульса был не менее 1 деления вертикальной шкалы. Только тогда можно добиться устойчивой синхронизации сигнала. Вообще следует стремиться, получить размах сигнала по возможности больше, до тех пор, пока он не вышел за пределы координатной сетки. В таком случае точность измерений возрастает.

В общем случае рекомендация по выбору усиления может быть такой: выкрутить переключатель против часовой стрелки до положения 5V/дел, после чего вращать ручку по часовой стрелке до тех пор, пока размах сигнала на экране не станет таким, как было рекомендовано в предыдущем абзаце. Это как в случае с мультиметром: если величина измеряемого напряжения неизвестна начинать измерения с самого высоковольтного диапазона.

Самое последнее по часовой стрелке положение переключателя чувствительности по вертикали обозначено черным треугольником с надписью «5ДЕЛ».

В этом положении на экране возникают прямоугольные импульсы размахом 5 делений, частота импульсов 1 КГц. Назначение этих импульсов – проверка и калибровка осциллографа.

В связи с этими импульсами вспоминается несколько комичный случай, который можно рассказать в качестве анекдота.

Пришел как-то к нам в мастерскую один товарищ и попросил воспользоваться осциллографом для налаживания какой-то самопальной конструкции.

После нескольких дней творческих мучений слышим от него такой возглас: «Эх ты, и питание выключил, а импульсы-то какие хорошие!».

Оказалось, что по незнанию он просто включил калибровочные импульсы, которые никакими ручками на передней панели не управляются.

Открытый и закрытый вход

Непосредственно под переключателем чувствительности находится трехпозиционный переключатель режимов работы, которые часто называют «открытый вход» и «закрытый». В крайнем левом положении этого переключателя возможно измерение постоянного и переменного напряжений с постоянной составляющей.

В правом положении вход усилителя вертикального отклонения включается через конденсатор, который не пропускает постоянную составляющую, зато можно увидеть переменную, даже если постоянная составляющая находится далеко от 0В.

В качестве примера использования закрытого входа можно привести такую распространенную практическую задачу, как измерение пульсаций источника питания: выходное напряжение источника 24В, а пульсации не должны превышать 0,25В.

Если предположить, что напряжение 24В при чувствительности канала вертикального отклонения 5В/дел. займет почти пять делений шкалы (ноль придется устанавливать на самую нижнюю линию вертикальной шкалы), то луч взлетит под самый верх, и пульсации в десятые доли вольта будут практически незаметны.

Чтобы точно измерить эти пульсации достаточно перевести осциллограф в режим закрытого входа, поместить луч в центр вертикальной шкалы и выбрать чувствительность 0,05 или 0,1В/дел. В таком режиме замер пульсаций будет достаточно точным. Следует заметить, что постоянная составляющая может быть достаточно большой: закрытый вход рассчитан на работу с постоянным напряжением до 300В.

В среднем положении переключателя измерительный щуп просто ОТКЛЮЧАЕТСЯ от входа усилителя Y, что дает возможность выставить положение луча, не отключая щуп от источника сигнала.

В некоторых ситуациях это свойство достаточно полезно. Самое интересное, что это положение отмечено на панели осциллографа значком общего провода, земли. Создается впечатление, что измерительный щуп соединяется с общим проводом. И что будет тогда?

В некоторых моделях осциллографов переключатель режима входа не имеет третьего положения, это просто кнопка или тумблер, переключающий режимы открытый/закрытый вход. Важно, что в любом случае такой переключатель есть.

Чтобы предварительно оценить работоспособность осциллографа достаточно коснуться пальцем сигнального (иногда говорят горячего) конца измерительного щупа: на экране должна появиться сетевая наводка в виде размытого луча. Если частота развертки близка к частоте сети, появится размытая, рваная и лохматая синусоида. При касании пальцем «земляного» конца наводок на экране, естественно, не будет.

Вот тут можно вспомнить один из способов проверки конденсаторов на обрыв: если взять в руку исправный конденсатор и коснуться им горячего конца, то на экране появится та же лохматая синусоида. Если конденсатор в обрыве, то никаких изменений на экране не произойдет.

Управление разверткой

Переключателем «Время/дел.» устанавливается длительность развертки. При наблюдении периодического сигнала вращением этого переключателя следует добиться, чтобы на экране показывался один или два периода сигнала. 

Работа с осциллографом для начинающих

Рисунок 2.

Ручка синхронизации развертки осциллографа С1-101 обозначена всего одним словом «Уровень». У осциллографа С1-73 дополнительно к этой ручке имеется ручка «стабильность» (некоторая особенность схемы развертки), у некоторых осциллографов эта же ручка называется просто «СИНХР». О пользовании этой ручкой следует рассказать несколько подробней.

Как добиться устойчивого изображения сигнала

При подключении к исследуемой цепи на экране чаще всего может появиться картинка, показанная на рисунке 3.

Работа с осциллографом для начинающих

Рисунок 3.

Для того, чтобы получить устойчивое изображение следует покрутить ручку «Синхронизация», которая на лицевой панели осциллографа С1-101 обозначена как «Уровень». На разных осциллографах почему-то встречаются разные обозначения органов управления, но по сути дела это одна и та же ручка.

Работа с осциллографом для начинающих

Рисунок 4. Синхронизация изображения

Чтобы из размытого изображения, показанного на рисунке 19 получить устойчивый сигнал достаточно покрутить ручку «СИНХР.» или в нашем случае «уровень». При вращении против часовой стрелки до знака «минус» на экране появится изображение сигнала, в данном случае синусоиды, показанное на рисунке 20а. Синхронизация начинается по падающему фронту сигнала.

При вращении той же ручки до знака «плюс» та же самая синусоида будет иметь вид, как на рисунке 4б: развертка запускается по восходящему фронту. Первый период синусоиды начинается чуть выше нулевой линии, это сказывается время запуска развертки.

Если осциллограф имеет линию задержки, то подобного пропадания не будет. Для синусоиды это, может быть, не особо заметно, а вот при исследовании прямоугольного импульса можно лишиться на изображении всего фронта импульса, что в ряде случаев достаточно важно. Особенно при работе с внешней разверткой.

Работа с внешней разверткой

Рядом с регулятором «УРОВЕНЬ» находится тумблер, обозначенный как «ВНЕШ/ВНУТР». В положении «ВНУТР» развертка запускается от исследуемого сигнала. Достаточно на вход Y подать исследуемый сигнал и покрутить ручку «УРОВЕНЬ» как на экране появится устойчивое изображение, как было показано на рисунке 4.

Если упомянутый тумблер установить в положение «ВНЕШ», то получить устойчивое изображение не удастся никаким вращением ручки «УРОВЕНЬ». Для этого надо подать сигнал, по которому будет синхронизироваться изображение на вход внешней синхронизации. Этот вход расположен на белой пластмассовой панели, расположенной справа от входа Y.

Там же расположены гнезда выхода пилообразного напряжения развертки (используется для управления различными ГКЧ), выход калибровочного напряжения (может использоваться в качестве генератора импульсов) и гнездо общего провода.

В качестве примера, где может потребоваться работа с внешней разверткой может послужить схема задержки импульса, показанная на рисунке 5.

Работа с осциллографом для начинающих

Рисунок 5. Схема задержки импульса на таймере 555

При подаче на вход устройства положительного импульса выходной импульс появляется с задержкой, определяемой параметрами RC цепочки, время задержки определяется по формуле, показанной на рисунке. Но по формуле значение определяется весьма приблизительно.

При наличии двухлучевого осциллографа определить время очень просто: достаточно оба сигнала подать на разные входы и измерить время задержки импульса. А если двухлучевого осциллографа в наличии нет? Вот тут-то и придет на помощь режим внешней развертки.

Первое, что надо сделать это подать входной сигнал схемы (рис. 5) на вход внешней синхронизации и сюда же подключить вход Y.

Читайте также:  Устройство асинхронного электродвигателя с короткозамкнутым ротором

Затем вращением ручки «УРОВЕНЬ» добиться устойчивого изображения входного импульса, как показано на рисунке 5б.

При этом должны соблюдаться два условия: тумблер «ВНЕШ/ВНУТР» установлен в положение «ВНЕШ», а исследуемый сигнал д.б. периодическим, а не однократным, как показано на рис.5.

После этого надо запомнить положение на экране входного сигнала и подать на вход Y выходной сигнал. Остается только подсчитать требуемую задержку по делениям шкалы. Естественно, что это не единственная схема, где может потребоваться определение времени задержки между двумя импульсами, таких схем великое множество.

  1. В следующей статье будет рассказано про виды исследуемых сигналов и их параметры, а также про то, как проводить различные измерения с помощью осциллографа. 
  2. Продолжение статьи:  Проведение измерений с помощью осциллографа
  3. Борис Аладышкин

Использование осциллографа

▌Старая статья о аналоговом осциллографе
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего!

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом. 

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр! Только хитрый, способный показывать изменение формы замеряемого напряжения. 
Как всегда, поясню на отвлеченном примере.


Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком.

И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится.

Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.  

Так вот, осциллограф это тот же стробоскоп, только электронный. А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.  

Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана.

Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку. То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова.

А на пластины Y мы подаем изучаемое напряжение.  

Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.

Работа с осциллографом для начинающих
Развертка осциллографа во времени

Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню. То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки.

Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической.

При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится.

Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.

Работа с осциллографом для начинающих

Синхронизация по уровню

В топку теорию, переходим к практике.
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор» :). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.

Работа с осциллографом для начинающих

Мой верный осциллограф 

Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.  

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Работа с осциллографом для начинающих

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная. А через кондер проходит только переменная.  

Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны.

Можно, конечно увеличивать коэффициент усиления по Y, но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину.

Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

 

Далее идет коаксиальный разъем подключения щупа. Каждый щуп содержит в себе сигнал и землю. Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме.

Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа.

А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной.

На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100, который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе. 

Еще почти на каждом осциллографе есть калибровочный выход. На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта. В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается 🙂 

Две здоровенные крутилки Усиление и Длительность 

Усиление служит для масштабирования сигнала по оси Y. Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.

Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах.

Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах.

Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t

Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб. 

Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.  

Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки. 

Читайте также:  Сплав содержащий медь и 10 50 цинка

Блок синхронизации. 

Ручка уровня — задает уровень от которого будет стартовать генератор пилы.

Переключатель со внутренней на внешнюю, позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.

Быстрый старт.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится «Пульс трупа». Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.

Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.  

Дальше выстави предел измерений по напряжению. Бери с запасом, если что уменьшишь.

Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта.

Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.  

Выбор осциллографа.
Если ты только начал, то тебе подойдет любой. Крайне желательно если он будет двухканальным. То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.

Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше.

Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — ОСУ-10. Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе цифровой RIGOL DS1042CD за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго.

Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.

Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Осциллограф — устройство, демонстрирующие силу тока, напряжение, частоты и сдвиг фаз электрической цепи. Прибор отображает соотношение времени и интенсивности электрического сигнала. Все значения изображены при помощи простого двумерного графика.

Работа с осциллографом для начинающих

Для чего предназначен осциллограф

Осциллограф используется электронщиками и радиолюбителями для того, чтобы измерить:

  • амплитуду электрического сигнала — соотношение напряжения и времени;
  • проанализировать сдвиг фаз;
  • увидеть искажение электрического сигнала;
  • на основе результатов вычислить частоту тока.

Несмотря на то, что осциллограф демонстрирует характеристики анализируемого сигнала, чаще его используют для выявления процессов происходящих в электрической цепи. Благодаря осциллограмме специалисты получают следующую информацию:

  • форму периодического сигнала;
  • значение положительной и отрицательной полярности;
  • диапазон изменения сигнала во времени;
  • длительность положительного и отрицательного полупериода.

Большинство из этих данных можно получить при помощи вольтметра. Однако тогда придётся производить замеры с частотностью в несколько секунд. При этом велик процент погрешности вычислений. Работа с осциллографом значительно экономит время получения необходимых данных.

Принцип действия осциллографа

Осциллограф выполняет замеры при помощи электронно-лучевой трубки. Это лампа, которая фокусирует анализируемый ток в луч. Он попадает на экран прибора, отклоняясь в двух перпендикулярных направлениях:

  • вертикальное – показывает исследуемое напряжение;
  • горизонтальное – демонстрирует затраченное время.

Работа с осциллографом для начинающих

За отклонение луча отвечают две пары пластин электронно-лучевой трубки. Те, что расположены вертикально,  всегда находятся под напряжением. Это помогает распределять разнополюсные значения. Положительное притяжение отклоняется вправо, отрицательное — влево. Таким образом, линия на экране прибора движется слева направо с постоянной скоростью.

На горизонтальные пластины также действует электрический ток, что отклоняет демонстрирующий показатель напряжения луча. Положительный заряд — вверх, отрицательный — вниз. Так на дисплее устройства появляется линейный двухмерный график, который называется осциллограммой.

Расстояние, которое проходит луч от левого до правого края экрана называется развёрткой. Линия по горизонтали отвечает за время измерения. Помимо стандартного линейного двухмерного графика существует также круглые и спиральные развёртки. Однако пользоваться ими не так удобно как классическими осциллограммами.

Классификация и виды

Различают два основных вида осциллографов:

  • аналоговые — аппараты для измерения средних сигналов;
  • цифровые — приборы преобразовывают получаемое значение измерений в «цифровой» формат для дальнейшей передачи информации.

По принципу действия существуют следующая классификация:

  1. Универсальные модели.
  2. Специальное оборудование.

Наиболее популярными являются универсальные устройства. Эти осциллографы используют для анализа различных видов сигналов:

  • гармонических;
  • одиночных импульсов;
  • импульсных пачек.

Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.

Универсальные осциллографы делятся на два основных вида:

  • моноблочные — имеют общую специализацию измерений;
  • со сменными блоками — подстраиваются под конкретную ситуацию и тип прибора.

Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.

Универсальные и специальные устройства делятся на:

  • скоростные – применяются в быстродействующих приборах;
  • запоминающие — аппараты, сохраняющие и воспроизводящие ранее сделанные показатели.

При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.

Устройство и основные технические параметры

Каждый прибор имеет ряд следующих технических характеристик:

  1. Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
  2. Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
  3. Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
  4. Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
  5. Значения переходной характеристики, показывающие время нарастания и выброс.

Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.

Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.

Как выполняются измерения

Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.

Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.

Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.

Измерение тока

При измерении тока цифровым осциллографом, следует узнать какой вид тока необходимо наблюдать. Осциллографы имеют два режима работы:

  • Direct Current («DC») для постоянного тока;
  • Alternating Current («АС») для переменного.

Постоянный ток измеряется при включённом режиме «Direct Current». Щупы аппарата следует подключить к блоку питания в прямом соответствии с полюсами. Чёрный крокодил присоединяется к минусу, красный — к плюсу.

На экране устройства появится прямая линия. Значение вертикальной оси будет соответствовать параметру постоянного напряжения. Силу тока можно вычислить согласно закону Ома (напряжение поделить на сопротивление).

Переменный ток представляет собой синусоиду, из-за того, что напряжение также переменно. Поэтому измерить его значение можно только в определённый промежуток времени. Параметр также вычисляется при помощи закона Ома.

Измерение напряжения

Чтобы измерить напряжение сигнала понадобится вертикальная ось координат линейного двухмерного графика. Из-за этого всё внимание будет уделено высоте осциллограммы. Поэтому перед началом наблюдения следует настроить экран более удобно для измерения.

Затем переводим аппарат в режим DC. Присоединяем щупы к цепи и наблюдаем результат. На дисплее аппарата появится прямая линия, значение которой будет соответствовать напряжению электрического сигнала.

Измерение частоты

Прежде чем, понять, как измерить частоту электрического сигнала, следует узнать, что такое период, так как эти два понятия взаимосвязаны. Один период – это наименьший промежуток времени, через который амплитуда начинает повторяться.

  Как сделать реле времени своими руками?

Увидеть период на осциллографе легче при помощи горизонтальной оси координат времени. Нужно лишь заметить, через какой промежуток времени линейный график начинает повторять свой рисунок. Началом периода лучше считать точки соприкосновения с горизонтальной осью, а концом повторения этой же координаты.

Чтобы удобнее измерить период сигнала, скорость развёртки уменьшают. В таком случае погрешность измерения не так высока.

Частота — это значение обратно пропорционально анализируемому периоду. То есть, чтобы измерить значение, нужно одну секунду времени поделить на количество периодов, происходящих за этот промежуток. Полученная частота измеряется в Герцах, стандарт для России — 50 Гц.

Читайте также:  Антисептик для дерева своими руками: виды, приготовление

Измерение сдвига фаз

Сдвигом фазы считают — взаимное расположение двух колебательных процессов во времени. Параметр измеряется в долях периода сигнала, чтобы независимо от характера периода и частоты, одинаковые сдвиги фаз имели общее значение.

Первое что необходимо сделать перед измерением: выяснить какой из сигналов отстаёт от другого и затем определить значение знака параметра. Если ток идёт впереди, то параметр сдвига угла отрицательный. В случае, когда напряжение опережает — знак значения положительный.

Чтобы вычислить градус сдвига фаз следует:

  1. Умножить 360 градусов на число клеток сетки между началами периодов.
  2. Разделить полученный результат на число делений, занимаемых одним периодом сигнала.
  3. Подобрать отрицательный или положительный знак.

Измерять сдвиг фазы в аналоговом осциллографе неудобно, потому что выводящиеся на экраны графики имеют одинаковый цвет и масштаб. Для наблюдений такого рода используют либо цифровое устройство, либо двухканальные аппараты, чтобы разместить разные амплитуды на отдельный канал.

Осциллограф: необходимые знания для работы с прибором для начинающих

Для изучения формы, амплитудных колебаний, временных характеристик и особенностей формирования электрических сигналов применяется осциллограф. Прибор используется в научных лабораториях и фундаментальных исследованиях, практическая сфера применения – тестирование электрических схем, ремонтные работы по телемеханике, поверка измерительной аппаратуры.

Измерение амплитуды сигнала на осциллографе

Что такое осциллограф

Осциллограф позволяет визуально изучать характеристики сложных сигналов, рассчитывать временные и амплитудные параметры.

Аналоговые модели отображают данные в реальном времени, современные цифровые позволяют архивировать информацию и проводить ее анализ. Для сравнения сигналов применяют устройства с несколькими информационными входами.

В зависимости от решаемых задач, встречаются модификации в виде приставок к компьютеру или комбинированные с другой измерительной аппаратурой.

Особенности прибора

Что измеряет вольтметр и как им пользоваться

Аналоговые приборы требуют большого количества специфических настроек и высокой квалификации операторов – от качества калибровки зависит погрешность результатов, велико влияние человеческого фактора. Современные цифровые аппараты лишены этих проблем и позволяют в разы быстрее получать и интерпретировать данные, но их стоимость очень высока.

Устройство и принцип работы

Осциллограф своими руками

Основной элемент аналогового осциллографа – специализированная ЭЛТ (электронно-лучевая трубка), которая делает возможным визуальное представление изучаемого сигнала.

  Он поступает на входной делитель (определяет диапазон измеряемых значений), усиливается и синхронизируется с генератором развертки, затем попадает на оконечный усилитель и входы ЭЛТ, отображение проходит в реальном времени.

Конкретная реализация зависит от производителя, но принцип действия остается неизменным.

Функциональная схема осциллографа

Цифровые приборы устроены по-другому: пользователь видит уже преобразованные в цифру данные, полученные от АЦП (аналого-цифрового преобразователя) и записанные в буферную память, поэтому имеет возможность просмотреть динамику изменения сигнала не только после запуска, но и до пускового импульса. Есть возможность сохранить информацию для последующей обработки на компьютере.

Важно! В цифровом устройстве сигнал не отображается в реальном времени и идет с задержкой.

Сфера применения

Осциллограф — понятие и конструкция прибора

Это научные исследования, тестирование образцов на производстве, проверка качества телевизионных сигналов, выявление дополнительных шумов и искажений. Возможно использование в составе узкоспециализированных программно-аппаратных комплексов, где может применяться для диагностики неисправностей АСУ и исполнительных устройств.

Как функционирует

Исследуемый сигнал через делители (входят в комплект) подается на информационный вход прибора (обычно Y вход), выбирается вид синхронизации (при внешней – используется X вход), с помощью переключателей устанавливаются частота синхронизации и диапазон изменения амплитуды. Полученная картинка интерпретируется в соответствии с установленной шкалой делений, для цифровых устройств пересчет производится автоматически, на экране будут видны форма сигнала и ряд вычисленных параметров.

Развертка

Движение луча ЭЛТ по горизонтальной оси при отсутствии исследуемого сигнала на информационных входах называется разверткой, при подаче он будет развернут на временном интервале.

Принцип работы регулятора развертки

Развертка создается с помощью генератора, работа которого зависит от выбранного режима внутренней или внешней синхронизации.

Внутренняя – частота задается вручную или синхронизируется с питающей сетью, внешняя – запуск генератора от входного импульса, различают запуск по фронту, спаду или от стороннего источника.

Регулятор развертки служит для увеличения/уменьшения периода отображения сигнала.

Блок управления параметрами синхронизации

Позволяет установить значение напряжения исследуемого сигнала и момент (фронт/спад), когда следует запускать генератор. Правильная регулировка позволит добиться стабильного изображения, что важно для снятия данных.

Совет. От устойчивости картинки зависит погрешность измерения – она должна быть качественной.

Как подключить импортный осциллограф

Нужно внимательно ознакомиться с руководством пользователя, подготовить рабочее место для прибора, качественно его заземлить.

Важно! Заземление гарантирует, что при работе на корпусе не будет опасного статического заряда, коснувшись которого рукой можно получить удар.

Далее нужно определить точки для снятия сигнала, нулевую магистраль, посредством щупа произвести их коммутацию с аттенюатором (при неизвестных уровнях сигнала выставить максимальную амплитуду). Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры. Снять показания, замеры повторить несколько раз.

Как подключить отечественный осциллограф

Для отечественной аппаратуры в качестве дополнительной меры по уменьшению погрешностей измерения нужно провести калибровку, но для начинающих такая работа с осциллографом будет сложной. В прибор встроен специальный генератор – калибратор, выдающий эталонные значения, с заранее известной погрешностью, подстройка осуществляется с помощью коррекции усиления и развертки.

Дальнейшие действия

Полученные данные следует привести к среднему значению, учесть возможную погрешность устройства и оператора, сохранить информацию. Цифровой прибор все вычисления производит сам, но за удобство нужно платить.

Двухканальный осциллограф

Такой прибор позволяет не только получать данные об исследуемых сигналах, но и производить их сравнение между собой. Двухканальный прибор, соответственно, имеет два информационных входа (может быть до 16) и позволяет отображать их состояние одновременно.

Возможности двухканального прибора

Двухлучевой осциллограф применяется при необходимости измерения фазового сдвига относительно друг друга для отображаемых сигналов. Идет графическое представление на экране одного цвета, поэтому для наглядности имеет смысл разнести амплитуды.

Органы управления

На передней панели любого осциллографа находятся:

  • регулировка яркости экрана;
  • управление фокусом изображения;
  • смещение по горизонтали;
  • смещение по вертикали;
  • регулятор шкалы развертки;
  • регулятор входного делителя;
  • вход исследуемого сигнала;
  • вход для внешней синхронизации;
  • клемма заземления:
  • кнопка управления входом (открытый/закрытый);
  • управление синхронизацией.

Передняя панель одноканального осциллографа

Все вышеперечисленное присутствует у любого однолучевого прибора, для многоканальных устройств количество органов управления растет пропорционально количеству каналов, в зависимости от модели могут быть добавлены новые функции. Цифровые модели имеют аналогичное управление, которое дополнено возможностью проводить математические расчеты и анализ осциллограмм.

Режим входа

При анализе сигналов с большой постоянной составляющей удобно не учитывать ее при выводе значений на экран: итоговая амплитуда может просто выйти за границу шкалы. Для ее отсечки используется режим с закрытым входом. Если нужно учесть низкие частоты и постоянную, работу ведут в режиме открытого входа.

Вход канала осциллографа

Для внесения минимальных искажений информационный вход прибора обладает большим сопротивлением, обычно 1 МОм, чтобы не шунтировать элементы исследуемой схемы. Для высокочастотных сигналов имеют значение емкостные характеристики, обычно находятся в пределах 20-40 пикофарад.

Как проводятся измерения

Работа с осциллографом предусматривает проведение предварительной подготовки: выбор режима синхронизации, входа, шкалы измерений, затем можно приступать к измерениям.

Как измерить напряжение

После снятия с информационного входа данных с помощью регулировки синхронизации развертки получается устойчивое изображение, которое совмещается со шкалой на экране. Проводят несколько замеров, вычисляют среднее значение. Действующее значение выводят согласно шкалы измерений.

Как измерить частоту

Настроив картинку хорошего качества, на которой виден период изменения сигнала, совместив его начало с началом горизонтальной линейки и зная единицы шкалы измерений, можно вычислить частоту, которая обратно пропорциональна периоду.

Как определяется сдвиг фаз

Стабилизировав изображение с двумя сигналами (вот для чего необходим двухлучевой осциллограф), для удобства необходимо разнести значения амплитуд и совместить начала периодов, на экране будет виден сдвиг фаз. Для вычисления значения можно использовать формулу:

где:

  • а – расстояние в делениях между точками прохождения нулевой отметки осциллограмм,
  • b – период в делениях шкалы.

При наличии только одноканального прибора возможно определение сдвига фаз по фигурам Лиссажу, но это сложнее.

Сдвиг фазы между синусоидальными сигналами

Ошибки при выборе и работе с осциллографом

Понимание, как пользоваться осциллографом, приходит только с практическим опытом работы, теоретических знаний недостаточно – нужно руками произвести все настройки, коммутацию и измерения. Цифровой прибор сильно облегчает процесс, но стоимость аппаратуры очень высока.

Важно! Не стоит приобретать старый советский прибор, т.к. погрешности измерений не дадут достоверных данных, откалибровать его уже не получится.

Обязательно необходимо соблюдать технику безопасности: напряжение на ЭЛТ, как на кинескопе телевизора, – убить не убьет, но покалечить может. Паспорт и руководство описывают, как работать с осциллографом, но здравый смысл никто не отменял: экспериментировать нужно осторожно.

Видео

Ссылка на основную публикацию
Adblock
detector