Расчет передаточного числа планетарного редуктора

Планетарные зубчатые передачи

Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями. Наиболее распространенная простая однорядная пла­нетарная передана (рис. 16.

1) состоит из центрального колеса 1 с наружными зубьями, неподвижного центрального колеса 3 с внутренними зубьями, сателлитов 2—колес с наружными зубьями, зацепляющихся одновременно с колесами 1 и 3 (здесь число сателлитов с = 3), и во­дила Н, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно колесо неподвижно (соединено с корпусом).

Расчет передаточного числа планетарного редуктора

Рис. 16.1. Схема однорядной планетарной передачи

При неподвижном колесе 3 вращение колеса 1 вызывает вращение сателлита 2 относительно собственной оси, а обкатывание сателлита по колесу 3 перемещает его ось и вращает водило Н. Сателлит таким образом совершает вращение относительно водила и вместе с водилом вокруг центральной оси, т. е. совершает движение, подобное движению планет. Поэтому передачи называют планетарными.

При неподвижном колесе 3 движение передают чаще всего от коле­са/к водилу Я, можно передавать движение от водила Н к колесу 1.

В планетарных передачах применяют не только цилиндрические, но и конические колеса с прямым или косым зубом.

Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной.

С помощью дифференциального механизма можно суммировать дви­жение двух звеньев на одном или раскладывать движение одного звена на два других.

Например, в дифференциале заднего моста автомобиля движение от водила Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.

Достоинства планетарных передач. 1. Малые габариты и масса вслед­ствие передачи мощности по нескольким потокам, численно равным числу сателлитов. При этом нагрузка в каждом зацеплении уменьша­ется в несколько раз. 2. Удобство компоновки в машинах благодаря соосности ведущего и ведомого валов. 3.

Работа с меньшим шумом, чем в обычных зубчатых передачах, что связано с меньшими разме­рами колес и замыканием сил в механизме. При симметричном рас­положении сателлитов силы в передаче взаимно уравновешиваются. 4. Малые нагрузки на валы и опоры, что упрощает конструкцию опор и снижает потери в них. 5.

Возможность получения больших переда­точных чисел при небольшом числе зубчатых колес и малых габаритах.

Недостатки. 1. Повышенные требования к точности изготовления и монтажа передачи. 2. Большее число деталей (подшипников), слож­нее сборка.

  • Планетарную передачу применяют как: а) редуктор в силовых пере­дачах и приборах; б) коробку передач, передаточное число в которой изменяют путем поочередного торможения различных звеньев (напри­мер, водила или одного из колес); в) дифференциал в автомобилях, тракторах, станках, приборах.
  • Часто применяют планетарную передачу, совмещенную с электро­двигателем (мотор-редуктор,  мотор-колесо).
  • Передаточное число планетарных передач

При определении передаточного числа планетарной передачи ис­пользуют метод остановки водила (метод Виллиса). По этому методу всей планетарной передаче мысленно сообщается дополнительное вращение с частотой вращения водила п„, но в обратном направлении. При этом водило как бы останавливается, а закрепленное колесо освобождается.

Получается так называемый обращенный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом ста­новятся промежуточными (паразитными) колесами, т. е. колесами, не влияющими на передаточное число механизма.

Передаточное число в обращенном механизме определяют как в двухступенчатой передаче с одним внешним и вторым внутренним зацеплением.

Здесь существенное значение имеет знак передаточного числа. Пе­редаточное число считают положительным, если в обращенном меха­низме ведущее и ведомое звенья вращаются в одну сторону, и отри­цательным, если в разные стороны. Так, для обращенного механизма передачи по рис. 16.1 имеем

Расчет передаточного числа планетарного редуктора

В рассматриваемом обращенном механизме знак минус показывает, что колеса 2 и 3 вращаются в обратную сторону по отношению к колесу 1. 194

16.3. Разновидности планетарных передач

Расчет передаточного числа планетарного редуктора

16.4. Подбор чисел зубьев планетарных передач

Рассмотрим последовательность подбора чисел зубьев на примере получившей наибольшее распространение планетарной однорядной прямозубой передачи (см. рис. 16.1).

Число зубьев z1 центральной шестерни 1 задают из условия неподреза­ния ножки зуба: z1 > 17 (см. § 11.10). Принимают z1 = 24 при Н < 350 НВ; z1 = 21 при Н52 HRC.

Число зубьев z1 неподвижного центрального колеса 3 определяют по заданному передаточному числу и из формулы (16.2):

Расчет передаточного числа планетарного редуктора

Число зубьев Z2 сателлита 2 вычисляют из условия соосности, в со­ответствии с которым межосевые расстояния aw зубчатых пар с вне­шним и внутренним зацеплениями должны быть равны. Из рис. 16.1 для немодифицированной прямозубой передачи

Расчет передаточного числа планетарного редуктора

где d=mz — делительные диаметры.

Так как модули зацеплений планетарной передачи одинаковые, то формула (16.5) принимает вид

Расчет передаточного числа планетарного редуктора

Полученные числа зубьев z1, z2 и г3 проверяют по условиям сборки и соседства.

Условие сборки требует, чтобы во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, в противном случае собрать передачу невозможно. Установлено, что при симметричном расположении сателлитов условие сборки удовлетворя­ется, когда сумма зубьев центральных колес (z1 + z3) кратна числу сателлитов с = 2…6 (обычно с = 3), т. е.

Расчет передаточного числа планетарного редуктора

16.5. Расчет на прочность планетарных передач

Расчет на прочность планетарных передач ведут по формулам для обычных зубчатых передач. Расчет выполняют для каждого зацепления. Например, в передаче, изображенной на рис. 16.

1, необходимо рассчи­тать внешнее зацепление колес 7 и 2 и внутреннее — колес 2 и 3.

Так как модули и силы в этих зацеплениях одинаковы, а внутреннее за­цепление по своим свойствам прочнее внешнего, то при одинаковых материалах колес достаточно рассчитать только внешнее зацепление.

Расчет передачи ведут в последовательности, изложенной в § 13.6, со следующими отличиями.

Расчет начинают с подбора чисел зубьев колес: z1, z2, z3 [см. формулы (16.4-16.9)].

При определении допускаемых напряжений (см. § 12.5) коэффици­енты долговечности ZN и YH находят по числу циклов NK перемены напряжений зубьев за весь срок службы при вращении колес только относительно друг друга.

Для центральной шестерни

(16.10)

Расчет передаточного числа планетарного редуктора

где с —число сателлитов; LH — суммарное время работы передачи, ч; п', = nt –пH — относительная частота вращения центральной шестерни; nt и пH —частоты вращения центральной шестерни и водила, мин1. По п', вычисляют окружную скорость, по которой выбирают степень точности передачи и коэффициенты KHv, KFv. Для сателлитов

Расчет передаточного числа планетарного редуктора

(16.11)

где n3 — число нагружений зуба за один оборот сателлита; п'г = п'1 z1/z2 — относительная частота вращения сателлита.

Зуб сателлита за один оборот нагружается дважды — в зацеплении с колесами / и 3 (см. рис. 16.1). Однако при определении числа циклов щ = 1, так как зуб работает с колесами / и 3 разными боковыми сторонами.

При определении допускаемых напряжений изгиба [a]F2 для зубьев сателлита вводят коэффициент YA, учитывающий двустороннее прило­жение нагрузки (симметричный цикл нагружения): У^ = 0,65; 0,75; 0,9 соответственно для улучшенных, закаленных ТВЧ (или цементован­ных) и азотированных сталей.

Межосевое расстояние планетарной прямозубой передачи для пары колес внешнего зацепления (центральной шестерни с сателлитом) определяют по формуле (см. § 13.4)

Расчет передаточного числа планетарного редуктора

(16.12) 

где и’ — z2/z1 — передаточное число рассчитываемой пары колес; Кс= 1,1… 1,2 — коэффициент неравномерности распределения нагрузки между сателлитами; Г, — вращающий момент на валу центральной ше­стерни, Нм; с —число сателлитов; ψba — коэффициент ширины венца колеса: ψba = 0,4 для Н < 350 НВ, ψba = 0,315 при 350 НВ

Конструкции и расчет редукторов

  • Для получения передаточных чисел от 10 до 60 могут быть использованы двухступенчатые редукторы со ступенями, выполненными по схеме 2K-h.
  • Двухступенчатые редукторы, выполненные по схеме 2K-h, с двухвенцовыми сателлитами, в обоих ступенях могут иметь передаточные числа от 60 до 400.
  • Двухступенчатые планетарные редукторы этой же схемы используются для получения крутящих моментов до 4000 кН • м.

В силовых установках, в двухступенчатых редукторах можно получить передаточные числа до 60 и более, Передаточные числа свыше 50 уменьшают число зубьев на центральных шестернях и уменьшают срок службы редуктора.

При этом повышается уровень шума. Поэтому сумма передаточных чисел не должна превышать 50,

Редуктор планетарный двухступенчатый блочный

На листе 111 приведена конструкция редуктора, выполненная по схеме 2K-h. В торцевой крышке на двух подшипниках установлен вал, откованный вместе с центральной шестерней первой ступени передач. Опорами сателлитов служат двухрядные сферические и роликовые подшипники. Водило первой ступени соединяется с центральной шестерней второй ступени через зубчатое соединение.

Расчет передаточного числа планетарного редуктора

Расчет передаточного числа планетарного редуктораРасчет передаточного числа планетарного редуктора

Сателлиты второй ступени установлены на двух двухрядных роликовых подшипниках, водило установлено на двух однорядных цилиндрических роликоподшипниках. Водила первой и второй ступени имеют жесткую конструкцию. Внутренние зубья центрального колеса первой ступени нарезаны на внутреннем выступе корпусной детали.

Кованое центральное колесо второй ступени из легированной стали с общей термической обработкой. Колесо болтовым соединением объединено с корпусными деталями. Смазываются зацепление и подшипники маслом, залитым в картер редуктора. Валы уплотняются манжетными уплотнениями. Характерной особенностью редуктора является его блочность и удобство сборки.

Читайте также:  Датчик холла униполярный цифровой

Отдельно собирается торцевая крышках валом и подшипниками и водило с сателлитами первой и второй ступени.

 Редуктор планетарный двухступенчатый с плавающими венцами

В двухступенчатом планетарном редукторе (лист 112) с передаточным числом и = 51,3 консольное центральное колесо быстроходной ступени редуктора опирается с одной стороны на два однорядных шариковых подшипника, размещенных в левой щеке водила.

Каждый сателлит первой ступени установлен на однорядном шариковом подшипнике, который опирается на ось, установленную неподвижно в щеках водила. Правая щека с помощью цилиндрических штифтов соединена со шлицевой втулкой. Движение на центральное колесо второй ступени передается через шлицевое соединение втулки с валом.

Опорами каждого сателлита второй ступени служат два однорядных шариковых подшипника. Водила обеих ступеней неразъемные, что значительно упрощает их конструкцию. Водило второй ступени выполнено как одно целое с тихоходным валом и опирается на два однорядных шариковых подшипника.

Центральные колеса с внутренними зубьями первой и второй ступени выполнены плавающими и застопорены от вращения зубчатыми муфтами.

Наружные зацепления зубчатых муфт с одной стороны входят в зацепление с зубьями центрального колеса, а с другой — соединяются с венцами, закрепленными неподвижно в корпусе редуктора.

Муфты и центральные колеса о внутренним зацеплением удерживаются от осевого смещения пружинными кольцами, установленными в канавках центрального колеса и неподвижного венца. Использование плавающих центральных колес дает возможность выравнивать нагрузку между сателлитами по длине зубьев и тем самым повышать передаваемый момент.

Введение плавающих центральных колес и зубчатых муфт ведет к усложнению конструкции редуктора, поэтому их используют только при высоких частотах вращения.

Редуктор планетарный двухступенчатый с двухвенцовыми сателлитами

Двухступенчатые редукторы с двухвенцовыми сателлитами в силовых установках могут иметь передаточное число до 400, а в кинематических — до 600, выполненных по схеме 2K-h обеих ступеней. При использовании эффективных методов поверхностного упрочнения зубьев можно достичь и наименьшего расхода металла на единицу передаваемого момента, по сравнению с другими видами передач.

На листе 113 показан двухступенчатый планетарный редуктор с передаточным числом и =167. Конструктивное исполнение как первой, так и второй ступени аналогично ранее рассмотренной конструкции одноступенчатого редуктора с двухвенцовыми сателлитами.

Вторая ступень редуктора передает больший момент, чем первая ступень, и поэтому водило установлено на однорядных роликовых конических-подшипниках. Корпус редуктора сварной.

Для устранения возможной деформации корпус подвергается термической обработке для снятия внутренних напряжений, вызываемых нагревом при сварке.

Масло заливается в картер корпуса, и зацепление смазывается купанием в ванне, а подшипники — разбрызгиванием.

Редуктор планетарный двухступенчатый с плавающими венцами второй ступени

В двухступенчатых планетарных редукторах, при исполнении первой ступени по схеме 2K-h, а второй — по схеме 3К, можно получить передаточные числа от 60 до 600 при высоком КПД и при небольшой массе на единицу передаваемого момента.

На листе 114 представлен двухступенчатый планетарный редуктор с передаточным числом и = 286. Со стороны быстроходного вала планетарная передача выполнена по схеме 2K-h. Быстроходный вал откован как одно целое с центральной шестерней и опирается на два однорядных шариковых подшипника.

Сателлиты, входящие в зацепление с центральной шестерней и с центральным колесом с внутренним зацеплением, в качестве опор имеют по два цилиндрических подшипника с короткими цилиндрическими роликами, с двумя буртами наружного кольца одним буртом на внутреннем кольце.

Между наружными кольцами установлено пружинное кольцо в канавке отверстия сателлита и распорное кольцо, что устраняет осевое перемещение колец. Внутренние кольца подшипников от осевого смещения предохраняются двумя кольцами, установленными между торцевыми поверхностями подшипников и щеками водила.

С водила движение через шлицевое соединение передается на вал центральной шестерни второй ступени, выполненной по схеме 3К.

Сдвоенные сателлиты опираются на сферические двухрядные роликоподшипники, внутренние кольца которых посажены на неподвижные оси, закрепленные с одной стороны планками и болтами к щекам родила.

Для обеспечения самоустановки сателлитов и равномерного распределения нагрузки по длине зубьев центральные колеса с внутренними зацеплениями, неподвижное и подвижное, имеют соединения через зубчатые муфты.

На валах установлены двойные севанитовые уплотнения.

Смазывание зацеплений происходит окунанием в масло, налитое в картер, а подшипников — разбрызгиванием. Для отвода теплого воздуха и паров масла на верхней части корпуса установлен вентиляционный колпак.

Габаритные и присоединительные размеры редукторов (лист 115) даны в табл. 187.

Расчет передаточного числа планетарного редуктора Расчет передаточного числа планетарного редуктора

Таблица 187

Габаритные и присоединительные размеры планетарных двухступенчатых редукторов с плавающими венцами второй ступени (лист 115), мм

Расчет передаточного числа планетарного редуктора Расчет передаточного числа планетарного редуктора Расчет передаточного числа планетарного редуктора

  1. Редуктор планетарный двухступенчатый усиленной конструкции
  2. Редукторы этого типа используются в цементной промышленности для привода крупных высокопроизводительных цементных трубных мельниц.
  3. Редукторы изготовляются с передаточными числами от 30 до 60, с передаваемыми моментами до 3000 кН • м, работают в непрерывном длительном режиме.
  4. На листе 116 представлен двухступенчатый редуктор с радиусами водил первой и второй ступени r1= 462 мм и r2= 700 мм.

Центральная шестерня первой ступени плавающая, соединяется с валом электродвигателя через зубчатую муфту.

Сателлиты первой ступени установлены на двухрядных роликовых сферических подшипниках, насаженных на пустотелые валики, последние закрепляются болтами к щекам водила.

Опорами водила с одной стороны служит цилиндрический двухрядный роликовый подшипник, а с другой — сферический двухрядный роликовый подшипник.

Сферический подшипник неподвижно закреплен в корпусе по наружному и внутреннему кольцам и устраняет осевое перемещение водила.

Водило первой ступени соединяется с центральной шестерней второй ступени зубчатой муфтой. Раздвоенные сателлиты опираются на два сферических роликовых подшипника.

Таким образом обеспечивается самоустановка каждой части сателлита по зубьям центральной шестерни и колеса.

Опорами для водила служат цилиндрический роликовый подшипник и двухрядный сферический роликоподшипник, последний жестко установлен в корпусе.

В отверстие водила с допусками горячей посадки запрессован тихоходный вал. Центральные колеса первой и второй ступени болтовыми соединениями жестко связаны с корпусными деталями. Сварные корпус и крышка — из листового металла.

Особое внимание уделено обильному смазыванию всех трущихся деталей редуктора. К центральным шестерням смазка подводится через брызгалы.

Двухрядные сферические подшипники имеют подвод смазки с двух сторон зацеплению зубчатых муфт непрерывным потоком подается масло специальными соплами.

Такое обильное снабжение охлажденным и отфильтрованным маслом зацепления и подшипников гарантирует надежность непрерывно работающего редуктора.

Смотрите также

Расчет передаточного числа планетарного редуктора — Мастерок

  • Планетарные редукторы относятся к механическим зубчатым передачам.
  • Механические передачи служат для передачи энергии на расстояние, как правило с преобразованием по скорости и моменту. В зубчатых передачах движение осуществляется благодаря непосредственному контакту зубчатых коле
  • Редуктор – это устройство преобразующее высокую угловую скорость вращения входного вала (от двигателя) в более низкую на выходном валу (к полезной нагрузке), повышая при этом вращающий момент.
  • Передаточное отношение (i) – это отношение угловой скорости ведущего вала к угловой скорости ведомого вала .

Планетарные редукторы – это механизмы в которых оси отдельных колес являются подвижными. Простейший планетарный редуктор, состоящий из четырех звеньев, изображен на рисунке 1. В этих редукторах колеса с подвижными осями вращения называются планетарными колесами или сателлитами (звено 1), а звено, на котором располагаются оси сателлитов, – водилом или планетарным водилом [H] (звено 2). Зубчатые колеса с неподвижными осями вращения называются солнечными или центральными (звено 3); неподвижное колесо – коронной шестерней, эпициклом или опорным колесом (звено 4). На практике, для повышения прочности планетарного редуктора, количество сателлитов увеличивают до максимально возможного. Планетарный редуктор, изображенный на рисунке 1, носит название редуктора Джемса.

Расчет передаточного числа планетарного редуктора

Передаточное отношение U от колеса 3 до водила H редуктора, при неподвижной коронной шестерне, имеет вид:

Расчет передаточного числа планетарного редуктораРасчет передаточного числа планетарного редуктора

где, U – коэффициент передаточного отношения; индекс (1) – указывает на что, что неподвижным является элемент 1, в данном случае это коронная шестерня; индексы 3 и H – указывают, что расчет передаточного отношения от колеса 3 (солнечная шестерня) к водилу H; r – радиусы колес, индексы указывают на радиус соответствующего колеса (r1 – радиус коронной шестерни);

z – количество зубьев шестерни, индексы указывают на количество зубьев соответствующего колеса);

На рисунке 2 изображен вид классического одноступенчатого планетарного редуктора:

Расчет передаточного числа планетарного редуктора

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, а два других служат в качестве ведущего и ведомого.

Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также от того, какой элемент закреплён. Для получения самого большого передаточного отношения, неподвижным оставляют коронную шестерню, см. рисунок 3.

Такие передачи как правило используют в планетарных мотор-редукторах, на транспорте и машиностроении.

Читать также:  Сравнение токарных станков по металлуРасчет передаточного числа планетарного редуктора

На практике широко применяются многоступенчатые планетарные редукторы. Давайте рассмотрим двигатель постоянного тока с планетарным редуктором. Для примера возьмем планетарный мотор-редуктор МРП42 производства ООО «Электропривод» с передаточным отношением 1/144. Такое большое передаточное отношение можно получить, используя редуктор с несколькими ступенями. На рисунке 4 изображена первая ступень.

Читайте также:  Крупнейшие месторождения железа в россии

Расчет передаточного числа планетарного редуктора

Вращение от мотора передается на водило через сателлиты первой ступени. На водиле первой ступени закреплена шестеренка передающая вращение дальше (на вторую ступень).

Передаточное отношение первого звена:

Расчет передаточного числа планетарного редуктора

Вторая ступень, мало отличается от первой, см. рисунок 5.

Рис. 5. Вторая ступень планетарного редуктора

  1. Передаточное отношение второго звена:
  2. В третьей ступени установлены четыре сателлита, для увеличения нагрузочной способности на редуктор, вследствие чего уменьшен их диаметр, рисунок 6.
  3. Передаточное отношение второго звена:

Рис. 6. Третья ступень планетарного редуктора.

  • Подсчет полного передаточного отношения, складывается из произведения передаточных отношений все звеньев, вошедших в состав редуктора:
  • Подсчитанное по формулам передаточное отношение соответствует заявленному для рассматриваемого в нашем примере мотор-редуктора.

Законченный вариант планетарного редуктора изображен на рисунке 7, в нем добавлен присоединительный фланец с установленным подшипником скольжения. В этом редукторе все шестерни выполнены из металла, что обуславливает продолжительный жизненный цикл изделия.

Рис. 7. Планетарный редуктор в сборе.

  1. Приглашаем на выставку «МЕТАЛЛООБРАБОТКА-2018»
  2. Приглашаем на выставку «Росупак-2017»
  3. Приглашаем на выставку «Металлообработка-2017»
  4. В продаже мотор-редукторы МРП, МРЦ
  5. BMD-R – блоки дистанционного управления коллекторными двигателями постоянного тока
  6. BMD-DIN – начат выпуск блоков управления коллекторными двигателями с креплением на DIN-рейку
  7. Загрузить всю книгу

2.3. Передаточное отношение планетарных и дифференциальных механизмов

Звенья, вращающиеся вокруг неподвижной оси, называются основными или центральными.

Центральное колесо 1 называется солнечным, а неподвижное 3 – коронным или корончатым. Зубчатое колесо 2 имеющее подвижную ось называется сателлитом. Звено Н называется водилом или поводком. Механизмы, в состав которых входят зубчатые колеса с подвижными осями называются планетарными или дифференциальными.

Читать также:  Как сделать плавный пуск для циркулярной пилы

Планетарными (рис. 14 а) называются механизмы, имеющие одну степень свободы. Дифференциальные (рис. 14 б) механизмы имеют две и более степени свободы.

Эти механизмы обязательно должны быть соосными, то есть оси солнечных колёс должны располагаться на одной и той же прямой линии.

Рассмотрим дифференциальный механизм (рис. 15).

  • где: n=4; ; .
  • , таким образом определённость в движении звеньев этого механизма будет в том случае, если будут известны законы движения двух его ведущих звеньев.

Так как сателлиты имеют подвижные оси, то использовать формулы для расчёта передаточного отношения механизмов с неподвижными осями не представляется возможным. В этом случае прибегают к методу инверсии (метод обращённого движения).

Будем рассматривать движение всех колёс относительно водила. Всем звеньям зададим вращательное движение с угловой скоростью водила, но в обратном направлении и найдём скорости всех звеньев механизма. Для этого вычтем угловую скорость водила из всех угловых скоростей колёс.

  1. Скорость звена в действительном движении (до инверсии)
  2. Скорость звена в обращённом движении (после инверсии)

Механизм, полученный в результате инверсии (остановки водила) называется обращённым (рис. 16). В результате получили обычную зубчатую передачу с неподвижными осями.

  • Эту зависимость (1) называют формулой Виллиса для дифференциальных механизмов.
  • Если бы было n – колёс, то:
  • где s – солнечное колесо.
  • Дифференциальный механизм никакого определённого передаточного отношения не имеет, если ведущим является одно из звеньев (колесо или водило), и приобретает определённость, если ведущих колёс будет два.
  • Передаточное отношение обращённого механизма можно рассчитать,
  • зная числа зубьев колёс.

У планетарных механизмов (рис. 2.29) одно из центральных (основных) колёс неподвижно, тогда формула Виллиса примет вид:

  1. или в общем случае:
  2. Передаточное отношение планетарного механизма от любого n-го колеса равно 1 минус передаточное отношение от этого же самого колеса к солнечному колесу, при неподвижном водиле.
  3. Планетарными называют передачи , в которых , кроме зубчатых ко – лес с неподвижными осями , имеются колеса , вращающиеся и одновре – менно перемещающиеся по окружности ( планетарные колеса или сател – литы ).

Читать также:  Сабельная пила для обрезки деревьев

Планетарные передачи отличаются компактностью при больших передаточных числах . Вес планетарного редуктора в 2 – 3 раза меньше

по сравнению с весом простых зубчатых редукторов тех же мощностей и передаточных чисел . Это достигается за счет распределения нагрузки между несколькими сателлитами и применения внутреннего зацепле – ния .

Однако планетарные передачи требуют повышенной точности из – готовления и сложнее в сборке , чем простые .

На практике встречается большое количество различных схем планетарных механизмов [1], в данном разделе рассмотрим наиболее известные из них ( рис .1).

Рис .1. Схемы планетарных передач : а – с одновенцовым сателлитом ; б – с двух – венцовым сателлитом , с одним внешним и одним внутренним зацеплением ; в – с двухвенцовым сателлитом , с двумя внешними зацеплениями ; г – с двухвен – цовым сателлитом , с двумя внутренними зацеплениями . 1, 3 – центральные зуб – чатые колеса ; 2, 2′ – планетарные колеса или сателлиты ; H – водило

  • Звено , в котором закреплены оси сателлитов , называют водилом H .
  • В одних схемах движение подается на одно из центральных колес ,
  • а снимается с водила , в других ведущим является водило , а ведомым – центральное колесо .

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Передаточное отношение планетарной передачи

  1. При определении передаточного отношения планетарного меха – низма используют метод обращения движения . Он состоит в том , что всем звеньям механизма сообщают добавочную угловую скорость , рав –
  2. ную по величине угловой скорости водила и противоположную ей по направлению (– w Н ). Тогда угловые скорости всех колес уменьшаются на величину w Н , а угловая скорость водила становится равной нулю , и пла – нетарный редуктор превращается в простой зубчатый , для которого от –
  3. ношение угловых скоростей может быть выражено через отношение
  4. чисел зубьев входящих в него колес .
  5. Формула передаточного отношения планетарных механизмов для приведенных на рис .1 схем имеет вид :

Детали машин



Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями. Отличительной особенностью механизмов, включающих планетарную передачу (или передачи), является наличие двух или более степеней свободы. При этом угловая скорость любого звена передачи определяется угловыми скоростями остальных звеньев.

Наибольшее распространение получила простая одинарная планетарная передача (рис. 1), которая состоит из центрального колеса 1 с наружными зубьями, неподвижного центрального колеса 3 с внутренними зубьями; сателлитов 2 – колес с наружными зубьями, зацепляющихся одновременно с колесами 1 и 3 (на рис.

1 число сателлитов с = 3), и водила Н, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно колесо неподвижно (соединено с корпусом).

Обычно внешнее центральное колесо с внутренними зубьями называют коронным (коронная шестерня или эпицикл), а внутреннее колесо с внешними зубьями – солнечным колесом (солнечная шестерня или солнце).

Расчет передаточного числа планетарного редуктора

При неподвижном колесе 3 вращение колеса 1 вызывает вращение сателлитов 2 относительно собственных осей, а обкатывание сателлитов по колесу 3 перемещает их оси и вращает водило Н. Сателлиты таким образом совершают вращение относительно водила и вместе с водилом вокруг центральной оси, с. е. совершают движение, подобное движению планет. Поэтому такие передачи и называют планетарными.

При неподвижном колесе 3 движение передают чаще всего от колеса 1 к водилу Н, можно передавать движение от водила Н к колесу 1.

Расчет передаточного числа планетарного редуктора

В планетарных передачах применяют не только цилиндрические, но и конические колеса с прямым или косым зубом.

Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной.

С помощью дифференциального механизма можно суммировать движение двух звеньев на одном или раскладывать движение одного звена на два других.

Например, в дифференциале заднего моста автомобиля движение от водила Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.

***

Разновидности планетарных передач

Существует много различных типов и конструкций планетарных передач. Наиболее широко в машиностроении применяют однорядную планетарную передачу, схема которой показана на рисунке 1. Эта передача конструктивно проста, имеет малые габариты. Находит применение в силовых и вспомогательных приводах. КПД планетарной передачи η = 0,96…0,98 при передаточных числах u = 3…8.

Планетарные механизмы, в составе которых присутствуют одна или несколько планетарных передач подразделяются на однорядные, двухрядные и многорядные.

Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд. Простой планетарный механизм с набором одновенцовых сателлитов является однорядным.

Простые планетарные механизмы с двухвенцовыми сателлитами являются двухрядными. Сложные планетарные механизмы могут быть двух, трёх, четырёх и даже пятирядными.

Для получения больших передаточных чисел в силовых приводах применяют многоступенчатые планетарные передачи. На рис. 2,а планетарная передача составлена из двух последовательно соединенных однорядных планетарных передач. В этом случае суммарное передаточное число u = u1×u2 ≤ 64, а КПД равен η = η1×η2 = 0,92…0,96.

Читайте также:  Виды таблеток от головной боли и их свойства

Расчет передаточного числа планетарного редуктора

  • На рисунке 2, б показана схема планетарной передачи с двухрядным (двухвенцовым) сателлитом, для которой при передаче движения от колеса 1 к водилу Н при n4 = 0 передаточное число определяется из зависимостей:
  • u = n1/nН = 1 + z2z4/(z1z3).
  • В этой передаче u = 3…19 при КПД η = 0,95…0,97.
  • Как упоминалось выше, планетарные передачи, у которых все звенья подвижны, называют дифференциальными или просто дифференциалами.

Расчет передаточного числа планетарного редуктора

Неизбежные погрешности изготовления приводят к неравномерному распределению нагрузки между сателлитами.

Для выравнивания нагрузки в передачах с тремя сателлитами одно из центральных колес выполняют самоустанавливающимся в радиальном направлении (не имеющим радиальных опор).

Для самоустановки сателлитов по неподвижному центральному колесу применяют сферические подшипники качения. Высокие требования предъявляются к прочности и жесткости водила, при этом его масса должна быть минимальной. Обычно водила выполняют литыми или сварными.

***

Достоинства и недостатки планетарных передач

Основными достоинствами планетарных передач являются:

  • малые габариты и масса вследствие передачи мощности по нескольким потокам, численно равным количеству сателлитов. При этом нагрузка в каждом зацеплении уменьшается в несколько раз;
  • удобство компоновки в машинах благодаря соосности ведущего и ведомого валов;
  • работа с меньшим шумом, чем в обычных зубчатых передачах, что обусловлено меньшими размерами колес и замыканием сил в механизме. При симметричном расположении сателлитов силы в передаче взаимно уравновешиваются;
  • малые нагрузки на валы и опоры, что упрощает конструкцию опор и снижает потери в них;
  • возможность получения больших передаточных чисел при небольшом числе зубчатых колес и малых габаритах передачи.

Не лишены планетарные передачи и недостатков:

  • повышенные требования к точности изготовления и монтажа передачи;
  • большее количество деталей, в т. ч. подшипников, и более сложная сборка.

***

Область применения планетарных передач

Планетарные передачи применяют как редукторы в силовых передачах и приборах, в коробках передач автомобилей и другой самоходной техники, при этом передаточное число такой КПП может изменяться путем поочередного торможения различных звеньев (например, водила или одного из колес), в дифференциалах автомобилей, тракторов и т. п.

Широкое применение планетарные передачи нашли в автоматических коробках передач автомобилей благодаря удобству управления передаточными числами (переключением передач) и компактности. Можно встретить планетарные передачи и в механизмах привода ведущих колес современных велосипедов. Часто применяют планетарную передачу, совмещенную с электродвигателем (мотор-редуктор, мотор-колесо).

***

Передаточное число планетарных передач

При определение передаточного числа планетарной передачи используют метод остановки водила (метод Виллиса). По этому методу всей планетарной передаче мысленно сообщается дополнительное вращение с частотой вращения водила nН, но в обратном направлении. При этом водило как бы останавливается, а закрепленное колесо освобождается.

Получается так называемый обращенный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом становятся промежуточными (паразитными) колесами, т. е. колесами, не влияющими на передаточное число всего механизма.

Передаточное число в обращенном механизме определяется как в духступенчатой передаче с одним внешним и вторым внутренним зацеплением.

Здесь существенное значение имеет знак передаточного числа. Передаточное число считают положительным, если в обращенном механизме ведущее и ведомое звенья вращаются в одну сторону, и отрицательным, если в разные стороны. Так, для обращенного механизма передачи по рис. 1 имеем:

  1. u = u1×u2 = (-n1/n2)×(-n2/-n3) = (-z2/z1)×(z3/z2) = — z3/z1,
  2. где z – числа зубьев колес.
  3. В рассматриваемом обращенном механизме знак минус показывает, что колеса 2 и 3 вращаются в обратную сторону по отношению к колесу 1.

В качестве примера определим передаточное число для планетарной передачи, изображенной на рис. 1, при передаче движения от колеса 1 к водилу Н. Мысленная остановка водила в этой передаче равноценна вычитанию его частоты nН из частоты вращения колес. Тогда для обращенного механизма этой передачи имеем:

  • u’ = (n1 – n2)/(n3 – nН) = — z3/z1,
  • где (n1 – nН) и (n3 – nН) – частоты вращения колес 1 и 3 относительно водила Н; z1 и z3 – числа зубьев колес 1 и 3.
  • Для планетарной передачи, у которой колесо 3 закреплено в корпусе неподвижно (n3 = 0), колесо 1 является ведущим, а водило Н – ведомым. Тогда получим передаточное число такой передачи:
  • (n1 – nН)/(- nН) = — z3/z1; — n1/nН + 1 = -z3/z1
  • или
  • u = n1/nН = 1 + z3/z1.
  • ***



В отличие от обычных зубчатых передач расчет планетарных начинают с подбора чисел зубьев на колесах и сателлитах. Рассмотрим последовательность подбора чисел зубьев на примере планетарной передачи, изображенной на рис. 1.

Число зубьев z1 центральной шестерни 1 задают из условия неподрезания ножки зуба: z1 ≥ 17. Принимают z1 = 24 при Н ≤ 350 НВ; z1 = 21 при Н ≤ 52 HRC и z1 = 17 при Н > 52 HRC.

Число зубьев неподвижного центрального колеса 3 определяют по заданному передаточному числу u:

z3 = z1(u – 1).

Число зубьев z2 сателлита 2 вычисляют из условия соосности, в соответствии которым межосевые расстояния aw зубчатых пар с внешним и внутренним зацеплением должны быть равны. Из рис. 1 для немодифицированной прямозубой передачи:

  1. aw = 0,5(d1 + d2) = 0,5(d3 – d2),        (1)
  2. где d = mz — делительные диаметры колес.
  3. Так как модули зацеплений планетарной передачи одинаковые, то формула (1) принимает вид:
  4. z2 = 0,5(z3 – z1).
  5. Полученные числа зубьев z1, z2, и z3 проверяют по условиям сборки и соседства.

Условие сборки требует, чтобы во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, в противном случае собрать передачу будет невозможно.

Установлено, что при симметричном расположении сателлитов условие сборки удовлетворяется, когда сумма зубьев центральных колес (z1 + z3) кратна числу сателлитов с = 2…6 (обычно с = 3), т. е.

должно соблюдаться условие:

(z1 + z3)/c = целое число.

Условие соседства требует, чтобы сателлиты не задевали зубьями друг друга. Для этого необходимо, чтобы сумма радиусов вершин зубьев соседних сателлитов, равная da2 = m(z2 + 2) , была меньше расстояния l между их осями (рис. 1), т. е.:

  • da2 < l = 2aw sin (180˚/c),        (2)
  • где aw = 0,5m(z1 + z2) – межосевое расстояние.
  • Из формулы (2) следует, что условие соседства удовлетворяется, когда
  • z2 + 2 (z1 + z2) sin (180˚/c).        (3)

Расчет передаточного числа планетарного редуктора

***

Расчет на прочность планетарных передач

Расчет на прочность зубчатых передач планетарного типа ведут по методике, применяемой для обычных зубчатых передач.

Основными критериями работоспособности для большинства планетарных передач (как и для всех зубчатых передач), является усталостная контактная прочность рабочих поверхностей зубьев и прочность зубьев при изгибе.

При этом под контактной прочностью понимают способность контактирующих поверхностей зубьев обеспечить требуемую безопасность против прогрессирующего усталостного выкрашивания, а прочностью при изгибе – способность зубьев обеспечить требуемую безопасность против усталостного излома зуба.

Расчет выполняют для каждого зацепления. Например, в передаче, изображенной на рис. 1, необходимо рассчитать внешнее зацепление колес 1 и 2 и внутреннее – колес 2 и 3. Так как модули и силы в этих зацеплениях одинаковы, а внутреннее зацепление по своим свойствам прочнее внешнего, то при одинаковых материалах колес достаточно рассчитать только внешнее зацепление.

Расчет начинают с подбора чисел зубьев колес, как было показано выше.

При определении допускаемых напряжений коэффициенты долговечности находят по эквивалентных числам циклов нагружения. При этом число циклов перемены напряжений зубьев за весь срок службы вычисляют при вращении колес только относительно друг друга.

  1. При определении допускаемых напряжений изгиба для зубьев сателлита вводят коэффициент YA, учитывающий двустороннее приложение нагрузки (симметричный цикл нагружения).
  2. Межосевое расстояние планетарной прямозубой передачи для пары колес внешнего зацепления (центральной шестерни с сателлитом) определяют по формуле:
  3. aw = 450(u’ + 1)× 3√{(КНТ1Кc)/(ψbau'[σ]Н2с)},
  4. где u' = z2/z1 – передаточное число рассчитываемой пары колес; Кc = 1,05…1,15 – коэффициент неравномерности распределения нагрузки между сателлитами; Т1 – вращающий момент на валу центральной шестерни, Нм; с – число сателлитов; ψba — коэффициент ширины венца колеса:         ψba = 0,4 для Н ≤ 350 НВ;         ψba = 0,315 при 350 НВ < Н ≤ 50 HRC,         ψba = 0,25 для Н > 50 HRC.

Ширина b3 центрального колеса 3 определяется по формуле b3 = ψbaaw. Ширину b2 венца сателлита принимают на 2…4 мм больше значения b3; ширина центральной шестерни b1 = 1,1b2.

  • Модуль зацепления определяют по формуле:
  • m = 2aw/(z2 + z1).
  • Получнный расчетом модуль округляют до ближайшего стандартного значения, а затем уточняют межосевое расстояние:
  • aw = m(z2 + z1)/2.
  • Окружную силу Ft в зацеплении вычисляют по формуле:
  • Ft = 2×103КcТ1/сd1.
  • Радиальную силу Fr определяют по формуле:
  • Fr = Ft tg αw,
  • где αw = 20˚ – угол зацепления.
  • ***
  • Волновые передачи



Главная страница

Дистанционное образование

  • Группа ТО-81
  • Группа М-81
  • Группа ТО-71

Специальности

Учебные дисциплины

Олимпиады и тесты

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]