Расход ацетилена и кислорода при резке металла

представляет собой процесс соединения деталей плавлением соединяемых поверхностей, нагрев которых производится теплом пламени, образующегося в момент сгорания смеси газов, выходящих из горелки.

Расход ацетилена и кислорода при резке металла

Технология газовой сварки

  состоит в соблюдении определенной последовательности процессов обработки металлов газовым племенем, имеющим высокую температуру.

При этом необходимо соблюдение определенного состава горючей смеси, которая оказывает влияние на свойства пламени сварки. Путем изменения соотношений кислорода стакими газами как ацетилен, пропан или МАФ,  получают различные виды сварочного пламени.

Они находятся в зависимости от состава соединяемых изделий и происходящим при этом процессов окисления и восстановления.

Расход ацетилена и кислорода при резке металла Расход ацетилена и кислорода при резке металла Расход ацетилена и кислорода при резке металла

Сварка в среде защитных газов обеспечивает сварочной ванне и зоне дуги защиту от окисления. Применяется сварка в среде газов для соединения отдельных деталей в летательных аппаратах, трубопроводах, при сварке тугоплавких и цветных металлов. Сварка в газовой среде позволяет исключить появление на поверхности сварочного шва оксидов и шлаковых включений

  • Часто нам задают такой вопрос.
  • Отвечаем; Точного расчёта при расходе газа не существует и по определению быть не может, так как всё зависит в первую очередь от опытности сварщика, от целостности и качества комплектующего оборудования и, конечно же от толщины и марки металла с которым предстоит работать.
  • Но для того что бы максимально приблизить Вас к подсчётам, читайте созданные для Вас таблицы и покупайте наши учебные материалы по газосварке.

Расход газа при проведении сварки находится в зависимости от его вида, состава, и толщины металла.

Сварка с ацетиленом в качестве горючего газа

Толщина металла,
мм
При пробивании отверстия кислородной струей,
сек
Ширина реза,
мм
Расход газов,
М3.реза
ацетилен кислород
4 5-8 2,00 0,059 0.285
10 8-10 2,5 0,070 0,410
20 10-13 3.0 0,087 0,615
40 15-20 4.0 0,121 1,025
60 20-28 4,5 0,148 1,445

Сварка с пропан – бутаном в качестве горючего газа

Толщина металла,
мм
При пробивании отверстия кислородной струей,
сек
Ширина реза,
мм
Расход газов,
М3.реза
пропан-бутан кислород
4 5-8 2,5 0,035 0.289
10 8-13 3,0 0,041 0,415
20 13-18 4.0 0,051 0,623
40 22-28 4.5 0,071 1,037
60 25-30 5,0 0,087 1,461

Кроме сварки и резки пламя газа используется для наплавки и пайки, при которых его расход ниже.

Газовая сварка и резка металлов находит свое применение для соединения стальных изделий, имеющих небольшую толщину, а также для сварки цветных металлов, изделий из чугуна. Газовая сварка и резка широко используется при проведении монтажных и ремонтных работ, поскольку сварка газовой горелкой не требует больших затрат на установку оборудования.

Сварка газовых труб производится путем нагрева пламенем кромок труб до их расплавления. В созданном потоке пламени расплавляется присадка, которая заполняет зазор, образованный между торцами соединяемых труб. Сварку производят главным образом кислородом и с такими газами как ацетилен, пропан и газ МАФ.

При изготовлении изделий машин и сооружений применяется газовая сварка металлов, которая дает возможность получить неразъемные соединения, обеспечивающие высокую прочность и надежность в эксплуатации в условиях высоких температуры и давления.

Газовая сварка оборудование, которое для нее требуется, не отличается большими габаритами. В него входят водяные затворы, баллоны для хранения сжатых газов, вентили и редукторы к ним, сварочные горелки.

Расход ацетилена и кислорода при резке металла Редуктор кислородный БКО-50 Расход ацетилена и кислорода при резке металла Редуктор для горючего газа пропан БПО-5

Проведение работ требует неукоснительного соблюдения правил безопасности. В их число входит запрещение пользования открытым огнем в аппаратном помещении, установка вентиляции в помещении, наличие у каждого баллона поверочного клейма с актуальными датами поверки и регулярная их проверка на предмет устарения. Обязательная проверка редукторов, обеспечение надежного крепления рукавов к редукторам и горелкам, соблюдение строгой последовательности зажигания пламени горелки и резака.Редуктор для баллона выбрать

Огнепреградительные клапана фото

Расход ацетилена и кислорода при резке металла Огнепреградительный клапан обратный Расход ацетилена и кислорода при резке металла Сетевой огнепреградительный клапан
Читать зачем нужны огнепрекрадительные клапана

С такими вопросами сталкивается каждый в момент заправки и использования газа. Во первых некто не хочет чувствовать себя обманутым или хочет рассчитать примерное количество расхода средств при выполнении определённого типа работ.

Особенно трудно приходится с метчикам которые пишут смету по расходам при строительстве или производстве.

И так рассмотрим пример количества газа на кислородном баллоне.

  Параметры и размеры баллонов из углеродистых и легированных сталей можно посмотреть по ГОСТу 949-73 «Баллоны стальные малых и средних объёмов для газов с рабочим давлением в баллоне не более на Рр ≤ 19,7МПа». Самыми популярными баллонами всегда были с объемами 5, 10 и 40 литров.

  1.    По ГОСТ 5583-78 «Газ кислород в газообразном виде, технический и медицинский» (приложение 2),
  2. объем газа кислород в баллоне (V) в кубических метрах при нормальных условиях вычисляют по формуле:
  3. V = K1•Vб,
  4.    Vб – вместимость баллона, дм3;
    K1 — коэффициент для определения объема кислорода в баллоне при нормальных условиях, вычисляемый по формуле

Расход ацетилена и кислорода при резке металлаФормула расчета газа в баллоне    Р — давление газа в баллоне, измеренное манометром, кгс/см2;
0,968 — коэффициент для пересчета технических атмосфер (кгс/см2) в физические;
t — температура газа в баллоне, °С;
Z — коэффициент сжигаемости кислорода при температуре t.

Значения коэффициента К1 приведены в таблице 4, ГОСТ 5583-78.

  •    Посчитаем объем кислорода в самом распространенном баллоне в строительстве: объемом 40л с рабочим давлением 14,7МПа (150кгс/см2). Коэффициент К1 определяем по таблице 4, ГОСТ 5583-78 при температуре 15°С:
  • V = 0,159 • 40 = 6,36м3
  •    Вывод (для рассматриваемого случая): 1 баллон = 40л = 6,36м3

Необходимо отметить, что комплектующие, необходимые для проведения газовой сварки, должны быть высокого качества, что обеспечит надежность создаваемого соединения.

Расход ацетилена и кислорода при резке металла

При возникновении вопроса газовая сварка купить, необходимо обращаться в специализированные магазины.

Как происходит резка металла газом

Наиболее распространенный способ для осуществления резки металла сегодня – автогенный, его еще называют газовый или кислородный. Его суть сводится к тому, что под воздействием пламени газа, металл нагревается и начинает плавиться, а под воздействием струи кислорода происходит его сгорание, делая узкий паз.

В качестве подогревателя используют ацетилен, пропан-бутан, природный, коксовый газ.

Поверхностная газовая резка применяется в случаях, когда необходимо удаление слоев металла, чтобы образовались шлицы, канавки и другие конструктивные элементы.

Разделительный вид предусматривает выполнения сквозного реза, для получения необходимого количества металлических элементов, частей. Прожиг металла для получения глубоких или сквозных отверстий называется резкой копьем.

Расход ацетилена и кислорода при резке металлаТаблица толщин реза и расхода газа для мундштуков типа NXВ результате этого получается разрез. Кислород подается под большим давлением, Часто оно достигает 12 атмосфер, такая струя даже без подачи огня может разрезать кожу.

Строение режущего аппарата сконструировано таким образом:

  • газовая горелка;
  • два баллона;
  • смеситель;
  • регулятор давления;
  • шланги.

Газовая горелка состоит из головки с несколькими соплами, в основном достаточно трех. Через два боковых подается горючее вещество, через третий, который размещается посредине, подается кислород. Баллоны предназначены непосредственно для газа и кислорода, в зависимости от объемов предполагаемой работы подбираются соответствующие по вместительности баллоны.

Расход ацетилена и кислорода при резке металлаГазовая горелка

Для обеспечения одного часа непрерывной работы будет расходоваться в среднем 0,7 м3 ацетилена (1 м3 пропана) и 10 м3 кислорода.

В целом необходимое количество исходного сырья будет зависеть от плотности металла и необходимой температуры для его нагрева.

Сократить расход пропана можно за счет специальных насадок на сопла, которые фиксируют подачу газа в определенном направлении, чем ближе будет подача к кислородной струе, тем возрастет расход топлива.

Шланги необходимы для подачи кислорода и горючего вещества из баллонов в смеситель, их еще называют рукавами. Материал, из которого сделаны шланги – двухслойная резина, между слоями каркас, выполненный из хлопчатобумажной нити.

Диаметр – до 12 мм, возможность эксплуатации при температуре воздуха не ниже -35 оС.

Регулятор давления необходим для обеспечения разных режимов и скоростей резки.

Подавая меньшее количество топлива можно обеспечить низкую температуру, которая необходима для тонкой стали или металла невысокой прочности, а также сократить расход сырья.

Еще одной важной функцией редуктора является поддержание равномерного уровня давления. Если в процессе резки будет прервана подача газа, металл быстро охладеет и дальнейшая обработка станет невозможной.

Резка металла пропаном и кислородом

Необходимое оборудование

Расход ацетилена и кислорода при резке металлаРезак Р101

Самым первым резаком было устройство Р1-01, его сконструировали еще в СССР, затем появились более модернизированные модели – Р2 и Р3. Отличаются аппараты размерами сопел и мощностью редуктора. Более современные ручные установки:

  • Смена;
  • Quicky;
  • Орбита;
  • Secator.

Они отличаются набором дополнительных функций и производительностью.

Quicky-Е может осуществлять фигурную резку, по заданным чертежам, скорость работы достигает 1000 мм в минуту, максимально допустимая толщина металла до 100 мм. Устройство имеет набор съемных сопел для обеспечения обработки металлических листов или труб различной толщины.

Читайте также:  Губка для полировки автомобиля

Расход ацетилена и кислорода при резке металлаМашинка автогенной резки Messer

Этот аппарат может работать, используя различные виды горючего газа, в отличие от прототипа Р1-01,который работает только на ацетилене.

Ручной резак Secator имеет более улучшенные характеристики по сравнению с аналогами.

Расход ацетилена и кислорода при резке металлаРезак Р2-01

С его помощью можно обрабатывать металл толщиной до 300 мм, это обеспечивают дополнительные насадки, входящие в комплект, они съемные и их можно приобрести дополнительно, по мере износа. Secator может производить следующие виды резки:

  • фигурную;
  • прямую;
  • кольцевую;
  • под скосом.

Скорость может регулироваться в диапазоне от 100 1200 мм в минуту, а с помощью встроенной муфты свободного хода обеспечивается плавное перемещение машины по листу металла. Редуктор с воздушным охлаждением обеспечивает более чистую работу и сокращает расход горючего вещества.

Вышеперечисленные модели относятся к ручным, то есть они компактные, управляются с помощью рук мастера. Но для больших объемов обрабатываемого металла работать с такими

Расход ацетилена и кислорода при резке металлаСтационарная режущая установка

установками неудобно и не эффективно. Для промышленного производства применяются стационарные режущие установки — это, по сути, та же технология.

Они представляют собой станок со столешницей, в которую встроен режущий механизм. Работу его обеспечивает электрический

компрессор, для которого необходима электросеть с не менее 380 В и трехфазными розетками. Технология работы моделей стационарных режущих установок ничем, но отличается от ручных. Разница лишь в производительности, максимальной температуре нагрева, и способности обрабатывать металл, толщиной более 300 мм.

Условия для резки металла газом

Газовая резка металла будет эффективна только в том случае, когда температура воспламенения металла будет меньшей, чем температура плавления. Такие пропорции соблюдаются в низкоуглеродистых сплавах, они плавятся при 1500 оС, а процесс воспламенения наступает при 1300 оС.

Для качественной работы установки необходимо обеспечить постоянную подачу газа, поскольку кислороду необходимо постоянное количество теплоты, которая поддерживается в основном (на 70%) за счет сгорания металла и лишь 30% обеспечивает пламя газа.

Если его прекратить, металл перестанет вырабатывать тепло и кислород не сможет выполнять возложенные на него функции.

Работа резака, обучение резки металла

Максимальная температура ручных газовых резаков достигает 1300 оС, это достаточная величина для обработки большинства видов металла, однако, есть и такие, которые начинают плавиться при особо высоких температурах, например, окисел алюминия – 2050 оС (это почти в три раза больше чем температура плавления чистого алюминия), сталь с содержанием хрома – 2000 оС, никеля – 1985 оС.

Если металл достаточно не разогрет и не начат процесс плавления, кислород не сможет вытеснить тугоплавкие окислы. Обратная этой ситуация, когда металл имеет низкую температуру плавления, под воздействием горящего газа он может просто расплавиться, так, нельзя применять данный способ резки для чугуна.

Техника безопасности

Осуществление резки металла с помощью газовой установки лучше доверить опытному специалисту, поскольку при неаккуратном обращении последствия могут быть достаточно печальными.

Техника безопасности предполагает выполнения следующих условий:

Расход ацетилена и кислорода при резке металлаУстройство газовой горелки

  • хорошая вентиляция в помещении, где будут осуществляться работы;
  • на расстоянии 5 метров не должно быть баллонов с газом и прочими горючими веществами;
  • работы должны вестись в защитной маске или специальных очках, а также в огнеупорной одежде;
  • направлять пламя необходимо в противоположную сторону от источника газа;
  • шланги в процессе эксплуатации прибора нельзя перегибать, наступать на них, зажимать ногами;
  • если делается перерыв, то следует полностью погасить пламя у горелки и закрутить газовые вентили баллонов.

Соблюдение этих простых условий обеспечит безопасную и эффективную работу по резке металла газовой установкой.

Видео: Работа резака, обучение резки металла

Резка металла газом

Уважаемые заказчики, минимальная сумма заказа от 10000 рублей.

Газовая резка металла (кислородная/автогенная) – процесс разрезания стальных и металлических изделии/заготовок кислородным потоком, который подается из специального аппарата. Суть процедуры раскроя заключается в горении металла, с помощью газовой смеси и кислорода, подаваемых на обрабатываемый элемент. Предварительно изделие нагревается до 1300 градусов открытым пламенем, затем подается кислородная струя, разрезающая металл в соответствии со схемой. Современная технология газовой резки позволяет производить раскрой листа любой конфигурации толщиной до 300 мм, в отдельных случаях до 1000 мм. Расход ацетилена и кислорода при резке металла Копьевая резка — с помощью данной операции производится обработка нержавейки, чугуна и низкоуглеродистой стали больших диаметров. Суть резки заключается в том, что копье разогревается до температуры плавления и прижимается к разрезаемой заготовке. Метод распространен в области машиностроения и металлургии.

Кислородно-флюсовая резка используется для работы с высоколегированными хромистыми и хромоникелевыми сплавами. Данный способ характеризуется тем, что в струю газа (кислорода) начинает вводится порошкообразный флюс, он служит дополнительным источником тепла.

Воздушно-дуговая резка основана на расплавлении металла посредством электрической дуги. При использовании данного метода газ подается вдоль всего электрода.

Резка пропаном выполняется при необходимости раскроя титана, низколегированных и низкоуглеродистых стальных сплавов. Оборудование данного типа не может раскроить металл толще 300 мм.

Толщина материала, см Пробивание, сек. Ширина реза, см Расход пропана, м3 Расход кислорода, м3
0,4 От 5 до 8 0,25 0,035 0,289
1,0 От 8 до 13 0,3 0,041 0,415
2,0 От 13 до 18 0,4 0,051 0,623
4,0 От 22 до 28 0,45 0,071 1,037
6,0 От 25 до 30 0,5 0,071 1,461

При расчете стоимости в рассмотрение принимается: толщина металла, максимальный размер детали, ширина реза, кромка, особенности конфигурации, исходный материал – черный или цветной металл, а также предусмотрена резка под углом. Как правило, формула для расчета принимает во внимание прямой рез, если же она осуществляется по окружности/сектору, тогда используется повышающий коэффициент 2.0. Стоимость одного отверстия = 0,25 стоимости реза 1 п.м. металла. Расход ацетилена и кислорода при резке металла

Рабочий диапазон, мм Резательное сопло NX Кислород (давление, bar) Горючий газ (давление, bar) Кислород (потребление, m3/h) Горючий газ (потребление, m3/h)
3-5 000 NX 1,0-2,0 0,5 1,5-2,0 0,20
5-10 00 NX 1,5-2,0 0,5 2,0-3,0 0,30
10-15 0 NX 2,0-3,0 0,5 3,0-3,5 0,35
15-25 1 NX 2,5-3,5 0,5 3,5-4,5 0,40
25-50 2 NX 3,5-4,0 0,5 4,0-4,8 0,40
50-75 3 NX 3,0-4,5 0,5 5,0-6,5 0,40
75-150 4 NX 3,5-5,5 0,5 6,5-9,5 0,50
150-200 5 NX 4,5-5,5 0,5 10,0-14,0 0,60
200-300 6 NX 5,5-6,5 0,5 15,0-19,0 0,70

Газовая резка позволяет проводить фигурный раскрой листа. Используя газовый резак, можно получить ровный вертикальный край без рваных швов. Также повысить качество можно применяя трафаретную резку. Среди достоинств метода – мобильность оборудования, благодаря чему можно совершать одинаковые операции по шаблонным задачам.

  • ● быстрота и универсальность
  • ● оптимальная стоимость и высокое качество
  • ● любой уровень сложности
  • ● любая конфигурация реза
  • ● возможность работы с металлом разной толщины

Расход ацетилена и кислорода при резке металла Деформация — обычное явление, если на металл оказывается термическое воздействие. Исправить дефекты можно с помощью вальцовки, обжига, предварительного закрепления изделия, также не стоит превышать допустимую скорость обработки. ● Резка начинается с точки, от которой должен идти разрез. ● Эта точка разогревается до температуры 1000-1300 С. После воспламенения материала пускается узконаправленная струя кислорода. ● Резак плвно ведется по линии (угол — 84-85 градусов), сторона — противоположная от резки. ● Когда линия раскроя достигнет 20 мм, угол наклона меняется на 20-30 градусов. Расход ацетилена и кислорода при резке металла Расход ацетилена и кислорода при резке металла ● квалификации мастера ● технических характеристик оборудования ● вида и толщины разрезаемой детали

● глубины и ширины реза

Расход кислорода при резке металла: нормы расхода пропана

Себестоимость процесса резки металла определяет расход кислорода и
пропана, суммируемый с оплатой труда  резчика. Причем расход окислителя и
топлива зависит от технологии термического разделения металлов.

Поэтому мы начнем нашу статью с описания способов резки и дальше рассмотрим расход кислорода при резки труб.

На сегодняшний день в промышленности используются три типовых
технологии термического разделения металлических заготовок:

  • Кислородная резка.
  • Плазменная резка.
  • Лазерная резка.

Первая технология – кислородная резка – используется при разделении
заготовок из углеродистой и низколегированной стали.

Кроме того, кислородным
резаком можно подравнять края кромок уже отрезанных заготовок, подготовить зону
раздела стыка перед сваркой и «подчистить» поверхность литой детали.

Расход
рабочих газов, в данном случае, определяется тратой и топлива (горючего газа),
и окислителя (кислорода).

Вторая технология – плазменная резка – используется при разделении сталей
всех типов (от конструкционных до высоколегированных), цветных металлов и их
сплавов. Для плазменного резака нет недоступных материалов – он режет даже
самые тугоплавкие металлы.

Расход ацетилена и кислорода при резке металла

Причем качество разделочного шва, в данном случае, значительно выше, чем у
конкурирующей технологии.  При определении объемов рабочих газов,  в
данном случае, важен расход кислорода — при резке металла плазмой за горение
материала отвечает именно окислитель. А сама плазма используется, как
катализатор процесса термического окисления металла.

Читайте также:  Схема редуктора шуруповерта интерскол

Третья технология – лазерная резка – используется для разделения
тонколистовых заготовок. Соответственно, объемы расходуемых газов, в данном
случае, будут существенно меньше, чем у кислородной и плазменной резки, которые
рассчитаны на работу с крупными, толстостенными заготовками.

Нормы расчета горючих газов и окислителя

Нормы расхода пропана и кислорода или ацетилена и кислорода или
только окислителя рассчитываются следующим образом:

  • Норматив расхода топлива или окислителя на погонный метр разреза (H) умножается на длину разделочного шва (L).
  • После этого к полученной сумме прибавляют произведение все того же норматива расхода (H) на коэффициент потерь (k), связанных с продувкой и настройкой резака.

В итоге, расход кислорода при сварке (или расход горючего газа) считается по формуле:

                                        P = HL x Hk

Причем коэффициент k принимают равным 1,1 (для
мелкосерийного производства или штучной резки, когда требуется часто включать и
выключать резак) или 1,05 (для крупносерийного производства, когда резак
работает почти без перерывов).

Определение норматива расхода газов

Расход ацетилена и кислорода при резке металла

  • Для точного определения объемов расходуемых газов необходимо определить
    основу формулы  — норму, которой определяется расход газа на погонный метр
    прорезаемого металла, обозначаемую в формуле литерой «H».
  • Согласно общим рекомендациям нормированный расход равняется частному от
    допустимого расхода разделяющего аппарата (p) (кислородного,
    плазменного или лазерного резака) и скорости резания металла (V).
  • То есть формула, по которой рассчитывается нормированный расход
    кислорода на резку металла (Н),
    а равно и любого другого газа, участвующего в процессе термического разделения,
    выглядит следующим образом:

                                             Н = р/V

Искомый результат подставляют в первую формулу и получают конкретное
значение расходуемого объема.

Таблица расхода кислорода при резке труб

Труба (наружный диаметр × толщина стенки), мм Расход кислорода, м3
Ø 14 × 2,0 0,00348
Ø 16 × 3,5 0,00564
Ø 20 × 2,5 0,00566
Ø 32 × 3,0 0,0102
Ø 45 × 3,0 0,0143
Ø 57 × 6,0 0,0344
Ø 76 × 8,0 0,0377
Ø 89 × 6,0 0,0473
Ø 108 × 6,0 0,0574
Ø 114 × 6,0 0,0605
Ø 133 × 6,0 0,0705
Ø 159 × 8,0 0,119
Ø 219 × 12,0 0,213
Ø 426 × 10,0 0,351
Ø 530 × 10,0 0,436

Определение значения допустимого расхода и скорости резания

Используемые во второй формуле операнды p (допустимый расход) и V
(скорость резания) зависят от множества факторов.

В частности значение допустимого расхода определяется паспортными данными
сварочного аппарата. По сути p равно максимальной пропускной способности
форсунки резака в рабочем режиме.

А вот скорость резания – V– определяется исходя из глубины шва,
ширины режущей струи окислителя или плазмы, типа разделяемого материала и целой
серии косвенных параметров.

В итоге, значение допустимого расхода извлекают из паспорта «резака», а
скорость резания находят в справочниках, которые содержат специальные таблицы
или диаграммы, связывающие все вводные данные.

И согласно справочным данным допустимый расход кислорода равняется 0,6-25
кубическим метрам в час. А максимальная скорость резания – 5-420 м/час. Причем
для лазерной резки характерен минимальный расход (0,6 м3/час) и максимальная
скорость (420 м/час): ведь такой резак разделит только 20-миллиметровую
заготовку.

А вот плазменный резак «сжигает» до 25 м3/час кислорода и 1,2 м3/час
ацетилена. При этом он разделяет даже 30-сантиметровые заготовки, делая разрез
на скорости в 5 метров в час.

Словом, в таких расчетах все относительно: чем больше скорость, тем меньше глубина и чем больше расход, тем меньше скорость.

Расход ацетилена и кислорода при сварке труб

До, во время и после установки волоконно-лазерных станков у нас всегда возникает много вопросов о расходе газа при резке металлов. Ниже мы даем некоторую справочную информацию и советы для правильной подачи газа и использования вспомогательных газов.

  • Азот и кислород лазерного качества, используемые при резке металлов, должны, прежде всего, быть доступны для машины при правильном давлении.
  • Для кислорода должно быть не менее 8 бар (800 кПа), регулируемое от 5 до 10 бар.
  • для азота должно быть доступно до 20 бар (2 мПа), регулируемое от 10 до 20 бар.
  • Сколько газа в конечном итоге потребляет машина, зависит от многих факторов, таких как:

диаметры сопел, используемые при резке

Чем больше отверстие в режущем сопле, тем больше литров газа требуется в единицу времени для поддержания того же ДАВЛЕНИЯ. Если диаметр сопла удваивается, потребление газа будет в квадрате выше и поэтому будет потреблять в 4 раза больше газа.

давление газа, используемого при резке

Более высокое давление часто приводит к более чистой режущей выемке, но это также потребляет больше газа.

Расход кислорода и пропана на резку металла

Расход кислорода и пропана на резку металла

Себестоимость процесса резки металла определяет расход кислорода и пропана, суммируемый с оплатой труда резчика. Причем расход окислителя и топлива зависит от технологии термического разделения металлов. Поэтому мы начнем нашу статью с описания способов резки.

Технологии резки металлов

На сегодняшний день в промышленности используются три типовых технологии термического разделения металлических заготовок:

  • Кислородная резка.
  • Плазменная резка.
  • Лазерная резка.

Первая технология – кислородная резка – используется при разделении заготовок из углеродистой и низколегированной стали.

Кроме того, кислородным резаком можно подравнять края кромок уже отрезанных заготовок, подготовить зону раздела стыка перед сваркой и «подчистить» поверхность литой детали.

Расход рабочих газов, в данном случае, определяется тратой и топлива (горючего газа), и окислителя (кислорода).

Вторая технология – плазменная резка – используется при разделении сталей всех типов (от конструкционных до высоколегированных), цветных металлов и их сплавов. Для плазменного резака нет недоступных материалов – он режет даже самые тугоплавкие металлы.

Причем качество разделочного шва, в данном случае, значительно выше, чем у конкурирующей технологии. При определении объемов рабочих газов, в данном случае, важен расход кислорода — при резке металла плазмой за горение материала отвечает именно окислитель. А сама плазма используется, как катализатор процесса термического окисления металла.

Третья технология – лазерная резка – используется для разделения тонколистовых заготовок. Соответственно, объемы расходуемых газов, в данном случае, будут существенно меньше, чем у кислородной и плазменной резки, которые рассчитаны на работу с крупными, толстостенными заготовками.

Нормы расчета горючих газов и окислителя

Нормы расхода пропана и кислорода или ацетилена и кислорода или только окислителя рассчитываются следующим образом:

  • Норматив расхода топлива или окислителя на погонный метр разреза (H) умножается на длину разделочного шва (L).
  • После этого к полученной сумме прибавляют произведение все того же норматива расхода (H) на коэффициент потерь (k), связанных с продувкой и настройкой резака.

В итоге, расход кислорода при сварке (или расход горючего газа) считается по формуле:

Причем коэффициент k принимают равным 1,1 (для мелкосерийного производства или штучной резки, когда требуется часто включать и выключать резак) или 1,05 (для крупносерийного производства, когда резак работает почти без перерывов).

Определение норматива расхода газов

  1. Для точного определения объемов расходуемых газов необходимо определить основу формулы — норму, которой определяется расход газа на погонный метр прорезаемого металла, обозначаемую в формуле литерой «H».

  2. Согласно общим рекомендациям нормированный расход равняется частному от допустимого расхода разделяющего аппарата (p) (кислородного, плазменного или лазерного резака) и скорости резания металла (V).

  3. То есть формула, по которой рассчитывается нормированный расход кислорода на резку металла (Н), а равно и любого другого газа, участвующего в процессе термического разделения, выглядит следующим образом:
  4. Искомый результат подставляют в первую формулу и получают конкретное значение расходуемого объема.

Таблица расхода кислорода при резке труб

Труба (наружный диаметр × толщина стенки), мм Расход кислорода, м 3
Ø 14 × 2,0 0,00348
Ø 16 × 3,5 0,00564
Ø 20 × 2,5 0,00566
Ø 32 × 3,0 0,0102
Ø 45 × 3,0 0,0143
Ø 57 × 6,0 0,0344
Ø 76 × 8,0 0,0377
Ø 89 × 6,0 0,0473
Ø 108 × 6,0 0,0574
Ø 114 × 6,0 0,0605
Ø 133 × 6,0 0,0705
Ø 159 × 8,0 0,119
Ø 219 × 12,0 0,213
Ø 426 × 10,0 0,351
Ø 530 × 10,0 0,436
Читайте также:  Как работает амперметр в автомобиле

Определение значения допустимого расхода и скорости резания

Используемые во второй формуле операнды p (допустимый расход) и V (скорость резания) зависят от множества факторов.

В частности значение допустимого расхода определяется паспортными данными сварочного аппарата. По сути p равно максимальной пропускной способности форсунки резака в рабочем режиме.

А вот скорость резания – V– определяется исходя из глубины шва, ширины режущей струи окислителя или плазмы, типа разделяемого материала и целой серии косвенных параметров.

В итоге, значение допустимого расхода извлекают из паспорта «резака», а скорость резания находят в справочниках, которые содержат специальные таблицы или диаграммы, связывающие все вводные данные.

И согласно справочным данным допустимый расход кислорода равняется 0,6-25 кубическим метрам в час. А максимальная скорость резания – 5-420 м/час. Причем для лазерной резки характерен минимальный расход (0,6 м3/час) и максимальная скорость (420 м/час): ведь такой резак разделит только 20-миллиметровую заготовку.

А вот плазменный резак «сжигает» до 25 м3/час кислорода и 1,2 м3/час ацетилена. При этом он разделяет даже 30-сантиметровые заготовки, делая разрез на скорости в 5 метров в час.

Словом, в таких расчетах все относительно: чем больше скорость, тем меньше глубина и чем больше расход, тем меньше скорость.

Как определить расход сварочной смеси?

Во время планирования бюджета для сварочных работ основное внимание уделяется комплектующим и расходным материалам.

В случае использования защитных газов важным показателем является расход сварочной смеси, особенно если речь идет о серийном и крупносерийном производстве.

И хотя на данный параметр могут оказывать влияние несколько факторов, все же осуществить приблизительные расчеты, и на их основе составить план заправки газовых баллонов, вполне реально.

От чего зависит потребление защитного газа

Основными показателями во время сварки, которые влияют на расход сварочных смесей, являются:

  1. Сила тока;
  2. Диаметр используемой проволоки;
  3. толщина свариваемого металла.

Газовая сварка

Газовая сварка представляет собой один из видов сварки плавлением. Источником теплоты является высокотемпературное пламя сжигаемых газов в горелке.

При производстве работ в качестве горючих газов наиболее часто применяются смеси кислорода и ацетилена, пропана и бутана, водород, либо природный газ.

Соединение кромок металла производится с помощью присадочной проволоки, или за счет расплавления отбортованных кромок (для толщины металла не больше 2 мм).

Газовая сварка позволяет соединять детали практически из всех металлов, причем такие материалы, как чугун, латунь, медь, свинец таким способом свариваются лучше, чем электродуговой сваркой. Другим преимуществом этого метода является отсутствие необходимости в источнике электрического тока, простота сварочного процесса.

Превалирующей областью применения газовой сварки является соединение низкоуглеродистых и среднеуглеродистых сталей толщиной до 4 мм, труб диаметром до 100 мм и толщиной стенки 3. 5 мм, чугунных деталей, деталей из цветных металлов различной толщины, наплавка на стальные и чугунные детали. Сваривание стали большей толщины производительнее электродуговым способом.

Рабочее место для проведения газовой сварки включает в свой состав кислородные баллоны с редукторами (для снижения давления баллонного газа), ацетиленовый генератор для кислородно-ацетиленовой сварки, предохранительные затворы, резиновые рукава для подачи газов, горелки, сварочные материалы: присадочную проволоку и флюсы; слесарные принадлежности и инструмент (средства индивидуальной защиты, ключи, зубила, молотки, металлические щетки и т.д.), приспособления для сборки, стол сварщика.

Кислород к посту сварщика может доставляться в газообразном виде в баллонах под давлением, либо в жидком виде, затем его преобразуют в газообразное состояние с помощью насосов с испарителями или газификаторов. При газовой сварке можно изменять тип пламени при помощи варьирования состава смеси горючих газов (рисунок 1). Нормальное пламя характеризуется соотношениями:

1) кислород:ацетилен=1,1. 1,2; 2) кислород:природный газ=1,5. 1,6; 3) кислород:пропан=3,5.

Окислительное пламя применяется при сваривании латунных деталей. Науглероживающее пламя связано с избытком ацетилена, оно применяется при сварке чугуна. Оба вида пламени используются также для пайки с применением твердосплавных припоев.

В начале работы угол наклона мундштука выставляют больше, а затем его уменьшают в соответствии со значениями на рисунке 2.

В конце шва угол уменьшают, чтобы не произошло пережога металла. При сваривании шва совершают поперечные колебания мундштуком (рис. 3) для равномерного прогрева и получения шва требуемой ширины.

При заварке швов в нижнем пространственном положении наиболее часто используются колебательные движения «полумесяцем». Движение мундштука могут быть двух типов — левым и правым (рисунок 4). В первом случае пламя горелки направлено на не сваренные кромки деталей, во втором — на уже сваренный участок шва.

Правое направление дает более качественный шов, оно экономичнее и производительнее при сварке деталей, у которых толщина выше 5 мм. Присадочную проволоку держат под углом примерно 45 град. в направлении, противоположном перемещению мундштука.

По окончании шва присадочную проволоку не убирают из сварочной ванны, чтобы не произошло окисления металла.

Технологический процесс газовой сварки включает операции подготовки кромок, сборку перед сваркой в приспособлениях, кондукторах или на прихватках, сварку и зачистку шва, предварительную или последующую термообработку.

Способы разделки кромок под стыковые швы показаны в таблице 1. Газовая сварка нахлесточных и тавровых швов производится для металла толщиной не больше 3 мм, угловые швы обычно варят без присадочной проволоки, оплавлением кромок.

Длину прихваток и расстояние между ними можно выбрать по таблице 2.

Способы сваривания

Существует два вида сварки: «на себя» и «от себя». В первом случае горелка движется первой, разогревая до необходимой температуры сварочную ванну, а за ней присадочная проволока.

При этом необходимо, чтобы пламя горелки подавалось в зону сваривания под углом 45°.

Горелка должна двигаться кругами или полукругами вдоль шва, присадка должна поспевать за пламенем и двигаться внутрь сварной зоны.

Во втором случае, наоборот, перед горелкой движется присадочный стержень. Обычно таким способом сваривают заготовки из толстого металла.

Потому что сам процесс расплавления основного металла и присадки происходит одновременно, и смешанный расплавленный металл полностью заполняет сварную ванну.

Но самое важное при таком способе соединения необходимо добиться равномерного смешивания двух металлов. Если взаимное проникновение будет слабым, то и шов получится некачественным.

Кстати, взаимопроникновение металлов, по-научному пенетрация, может выглядеть чисто внешне некрасиво, но при этом прочность соединительного шва будет максимально высоким.

И, наоборот, красивый шов не обеспечивает высокое качество сварного соединения. В этом случае красота может оказаться обманчивой.

Но чтобы результат был гарантированно качественным, необходимо устанавливать зазор между заготовками по минимуму, а также проводить предварительные прихватки с той же целью – уменьшение зазора.

Технология газовой сварки и резки

Газовую ручную сварку применяют для соединения тонкостенных (до 3,5 мм)

стальных труб с условным проходом до 80мм, где не может быть использована электродуговая сварка.

Ограниченность применения газовой сварки объясняется тем, что механические свойства сварного шва при газовой сварке ниже, чем при электродуговой.

При газовой сварке наплавленный металл сварного шва в исходном состоянии имеет меньшее удлинение и меньшую ударную вязкость, чем основной металл.

Технология газовой сварки заключается в том, что кромки свариваемых деталей нагреваются газокислородным пламенем и расплавляются, зазор между ними заполняется металлом присадочной проволоки, вводимой в зону нагрева. Газовое пламя расплавляет участок, шириной в 2,5—3 раза превышающий глубину. Проплавление на глубину более 4—5 мм

затруднено из-за избытка жидкого металла. Поэтому при сварке труб с толщиной стенки более 4мм делают скос кромок. Легче и быстрее осуществляется сварка в нижнем положении шва. При газовой сварке труб из углеродистой стали применяют сварочную проволоку Св-08А, Св-08ГА или Св-08ГС,

Процесс кислородной резки основан на сгорании некоторого объема обрабатываемого металла в струе кислорода и удалении этой струей образующихся окислов (шлаков).

Кислородной резке могут подвергаться металлы, температура воспламенения которых в кислороде ниже температуры их плавления.

В наибольшей степени этому условию удовлетворяет малоуглеродистая сталь, температура воспламенения которой около 1350° С, а температура плавления 1500° С. Чугун, большинство высоколегированных сталей и цветных металлов не удовлетворяют этому условию.

Кислород поставляют в стальных баллонах, окрашенных в голубой цвет, емкостью 40 л под давлением 150 кгс/см 2 .

Вес баллона 67кг. Ацетилен поставляют в баллонах под давлением 16 кгс/см 2 ,

или получают на месте в ацетиленовых генераторах из карбида кальция. Из 1кг карбида кальция получают 230— 280 л ацетилена. Емкость ацетиленовых баллонов 40 и 50

  • л,
  • мм,
  • кг.

диаметр 219 вес 52 и 64 Баллоны окрашивают в белый цвет с надписью «ацетилен».

Ссылка на основную публикацию
Adblock
detector