Самодельный импульсный блок питания

Во многих радиолюбительских конструкциях используются импульсные блоки питания (БП). Они отличаются небольшими размерами при значительной мощности. Такое уменьшение стало возможным благодаря высокой частоте.

На таких частотах можно получить на выходе большое напряжение при небольшом количестве витков. Например, чтобы получить напряжение 12 В при токе равном 1 А, требуется намотать всего пять витков.

Кроме того, импульсные БП имеют высокий коэффициент полезного действия, так как потери на трансформаторе очень небольшие.

Эти блоки питания имеют и недостатки: они создают высокочастотные помехи и предъявляют высокие требования к нагрузке. Последняя не должна быть больше или меньше той, на которую рассчитан блок питания.

Можно ли сделать импульсный блок питания своими руками?

Иногда покупка готового импульсного блока питания является экономически нецелесообразной. В таком случае, если вы разбираетесь в электронике и умеете паять, можете сами сделать импульсный БП.

Он пригодится для питания различного низковольтного электроинструмента, чтобы избежать расходования ограниченного ресурса дорогой аккумуляторной батареи.

Можно также сделать зарядное устройство для смартфона, ноутбука или других мобильных гаджетов.

Прежде чем приступить к изготовлению источника питания, нужно знать, где он будет использоваться. В зависимости от области его применения определяется мощность изделия. Мощность должна выбираться с запасом. Считается, что импульсный блок питания имеет самый высокий КПД при нагрузке 60-90%.

Кроме того, требуется выбрать схему источника питания, а также определить, должно ли на выходе быть стабильное напряжение и нужно ли для этого вводить обратную связь. Обратите внимание на его номинальные параметры: напряжение, ток и мощность.

Как работает импульсный блок питания

На вход импульсного блока питания подается переменное напряжение от электрической сети. Оно преобразуется в постоянное с помощью выпрямителя и фильтра.

В качестве фильтра используется конденсатор большой емкости. В качестве выпрямителя используется однополупериодная или двухполупериодная схема.

Ниже приведены типовые схемы, но в нашем случае мы не берем во внимание то, что на них изображена обмотка трансформатора.

Самодельный импульсный блок питанияСхемы выпрямителей

Затем выпрямленное напряжение приходит на высокочастотный преобразователь, который генерирует электрические колебания с частотой в диапазоне от 20 кГц до 50 кГц. После этого напряжение понижается трансформатором до требуемого и снова выпрямляется, сглаживаясь конденсатором.

Такое отфильтрованное и выпрямленное постоянное напряжение используется для питания бытовой техники. Кроме того, с выхода БП идёт цепь обратной связи для регулирования выходного напряжения.

Самодельный импульсный блок питанияСхема работы импульсного блока питания

Для управления и стабилизации напряжения на выходе источника питания используется широтно-импульсная модуляция. Как показано на схеме, высокочастотный преобразователь приводится в действие генератором ШИМ и таким образом регулирует напряжение, подаваемое на понижающий трансформатор.

Обратная связь является отрицательной, то есть значения напряжения на ШИМ контроллере и на понижающем трансформаторе обратно пропорциональны друг другу. Так, при увеличении выходного напряжения растет также напряжение на контроллере.

Благодаря отрицательной связи уменьшается напряжение на понижающем трансформаторе, а значит, и на выходе блока питания.

Схемы импульсных БП

В зависимости от конструкции сетевого выпрямителя выделяют три разновидности схем импульсного блока питания:

  • для однополупериодной схемы требуется минимальное количество деталей, она проста в реализации, но имеет один недостаток – высокую пульсацию на выходе;
  • конструкция со средней точкой отличается низким уровнем пульсаций. Основной недостаток в том, что необходимо организовывать среднюю точку во входном трансформаторе;
  • мостовая схема имеет низкие показатели пульсации и не требует наличия средней точки. Для реализации такой схемы потребуется четыре транзистора.

Самодельный импульсный блок питанияРазновидности высокочастотного преобразователя

По конструкции высокочастотного преобразователя импульсные блоки питания делятся на две категории: однотактные и двухтактные. Двухтактные источники питания могут быть спроектированы по следующим схемам: с нулевой точкой (пушпульная), полумостовая и мостовая.

Кроме вышеперечисленных схем преобразователя, существует отдельная разновидность конструкций – это обратноходовые преобразователи. Их основными элементами являются накопительные дроссели. Работа в таких схемах происходит в два этапа.

Первый заключается в накоплении энергии, полученной от источника питания, в дросселе. Во время второго этапа запасенная энергия передается во вторичную цепь.

На первом шаге ключ замкнут, и напряжение источника питания прикладывается к дросселю (первичной обмотке трансформатора).

В результате ток в первичной цепи возрастает, а вместе с ним и магнитный поток. Ток во вторичной цепи отсутствует, так как диод препятствует его росту. На второй стадии ключ размыкается, и ток, проходящий через первичную обмотку, пропадает. Однако магнитный поток не может мгновенно исчезнуть, и во вторичной цепи индуцируется ЭДС, направленное в обратную сторону.

Затем начинает протекать ток, который открывает диод. В результате энергия запасается на конденсаторе и поступает на нагрузку. На первом этапе на нагрузку подается энергия, запасенная конденсатором во время второго этапа.

Рассматривая схемы, обратите внимание на точки около обмоток трансформатора — это точки начала обмоток, и для обратноходового преобразователя характерно именно такое подключение элементов.

Самодельный импульсный блок питанияЭтапы работы обратноходового источника питания

Как собрать: пошаговая инструкция

Для тех, кто хочет собрать импульсный блок питания своими руками, приведем несколько схем сборки.

Самый простой вариант маломощного импульсного блока питания

Рассмотрим схему импульсного блока питания мощностью до 2 Вт. Выпрямитель и фильтр в нем собраны на резисторе R1 (от 25 до 50 Ом), диоде VD1 и конденсаторе С1 (20,0 мкФ, 400 В).

В качестве высокочастотного преобразователя выступает автогенератор, собранный на транзисторе VT1, трансформаторе TR1, частотозадающей цепи резисторе R2 (470 кОм) и конденсаторе С2 (3300 пкФ, 1000 В).

Напряжение, снимаемое с выходной обмотки трансформатора, выпрямляется диодом VD2 и сглаживается электролитическим конденсатором С3 (47 пФ, 50 В).

Самодельный импульсный блок питанияИмпульсный БП на одном транзисторе

В качестве сердечника для трансформатора подойдет любой от нерабочего трансформатора, использовавшегося в зарядке мобильного телефона или в другом маломощном источнике питания. Намотка происходит в следующем порядке:

  • сначала мотаем 200 витков первичной обмотки медным проводом сечением 0,08-0,1 мм;
  • изолируем первичную обмотку и мотаем 5 витков базовой обмотки тем же проводом;
  • производим намотку вторичной обмотки. Диаметр провода – 0,4 мм. Количество витков зависит от того, какое напряжение нужно получить на выходе из расчета один виток на один вольт.

Внимание! Между половинками магнитного сердечника должен присутствовать небольшой немагнитный зазор. Обычно он уже есть на сердечниках, взятых с трансформаторов зарядных устройств смартфонов. Если его нет, положите слой бумаги между половинками сердечника.

Готовый трансформатор стягиваем изолентой или скотчем.

Самодельный импульсный блок питанияГотовый трансформатор в сборе

Однотактный, обратноходовый импульсный блок питания

Рассмотрим однотактный блок питания, сделанный по автогенераторной схеме с самовозбуждением. Напряжение на выходе – 16 В, мощность устройства – 15 Вт.

На входе устройства переменное напряжение электрической сети выпрямляется при помощи диодного моста, собранного на диодах D1-D4 (можно использовать любые диоды, рассчитанные на напряжение 400 В и ток 0,5 А, например, N4007). За сглаживание пульсаций отвечает конденсатор С1 (20 мкФ, 400 В). Для предотвращения броска тока при включении служит резистор R1 (25-50 Ом).

Начальное смещение на базе транзистора Т1 (можно использовать 13003 или 13005) устанавливается резистором R2 (470 кОм) и диодом D6 (N4007). Чтобы сгладить скачки напряжения, возникающие при закрытии Т1, в схему включены такие элементы, как: конденсатор С2 (3300 пФ 1000 В), диод D5 (N4007) и резистор R3 (30 кОм 1 Вт либо можно использовать два резистора по 15 кОм).

Импульсы положительной обратной связи, необходимые для поддержания режима автоколебаний, через резистор R4(150 Ом) и конденсатор С3(47 пФ, 50 В) подаются на базу Т1. Цепочка состоящая из Т2, R5 (1,5 кОм), Д9 (стабилитрон КС515), нужна для стабилизации напряжения.

Высокочастотный преобразователь собран по обратноходовой схеме. Когда Т1 открыт, энергия накапливается на трансформаторе, при этом диод D7 (КД213 использовать совместно с радиатором площадью 10 см2) находится в закрытом состоянии.

После закрытия транзистора Т1 происходит отдача запасенной магнитной энергии, диод D7 открывается, во вторичной цепи появляется ток, конденсатор С6 (100,0 мкФ, 25 В) заряжается.

Читайте также:  Несколько правил здорового позвоночника

Конденсаторы С4 (2200 пФ) и С5 (0,1 мкФ) нужны для уменьшения помех.

Самодельный импульсный блок питанияСхема однотактного, обратноходового импульсного блока питания

Стабилизация выходного напряжения происходит по схеме, описанной далее. При включении прибора в сеть запускается генератор. На вторичной обмотке появляется напряжение. Конденсатор С6 (100,0 мкФ, 25 В) заряжается. Когда напряжение на нем превысит 16,3 В открывается стабилитрон D9 (КС515).

Транзистор Т2 (КТ603) открывается и закорачивает эмиттерный переход Т1. Транзистор Т1 закрывается, генератор перестает работать, и конденсатор С6 начинает разряжаться. Когда напряжение на С6 становится меньше 16,3 вольт, стабилитрон D9 закрывается и закрывает Т2.

Благодаря этому Т1 открывается и работа генератора возобновляется.

Первичная обмотка w1 трансформатора намотана проводом 0,25 мм и имеет 179 витков. В базовой обмотке w2 присутствуют два витка, намотанных тем же проводом. Вторичная обмотка w2 состоит из 14 витков провода 0,6-0,7 мм.

Лампочки можно взять любые маломощные, рассчитанные на напряжение от 24 до 36 В и ток от 100 до 200 мА.

Мощный импульсный источник питания

Рассмотрим импульсный БП с выходной мощностью 300 Вт.

Генератором в данной конструкции является интегральная микросхема TL494. Управляющие сигналы с выхода этой ИС подаются поочередно на МОП (MOSFET) транзисторы VT1 и VT2 (IRFZ34). Импульсы с этих транзисторов через трансформатор, формирователь импульсов приходят на мощные транзисторы VT3 и VT4 (IRFP460). Преобразователь сделан на мощных транзисторах VT3 и VT4 по полумостовой схеме.

Самодельный импульсный блок питанияСхема мощного блока питания

Все четыре обмотки трансформатора TR1 намотаны проводом 0,5 мм и содержат по 50 витков. В трансформаторе TR2 первая обмотка состоит из 110 витков провода диаметром 0,8 мм. Количество витков обмотки номер два зависит от желаемого напряжения на выходе, из расчета один виток на два вольта. Обмотка три наматывается 12 витками провода диаметром 0,8 мм.

Проверка конструкции

Перед первым включением БП нужно проверить. В первую очередь проверяется монтаж, например, могли остаться следы от пайки, несмытый флюс. Какой-либо компонент, установленный на плате, может оказаться неисправным.

Если с монтажом все в порядке, можно приступать ко второй стадии проверки с помощью лампочки. В качестве лампочки можно использовать любую лампу накаливания. Для этого подключаем изготовленный нами источник питания последовательно с лампочкой, как показано на рисунке ниже.

Самодельный импульсный блок питанияСхема проверки с помощью лампочки.

Если лампочка не светится, значит, в цепи БП есть обрыв. Нужно проверить дорожки платы, дроссель, диодный мост.

Лампочка постоянно горит. В блоке питания короткое замыкание. Причина может быть в пробое конденсаторов, транзисторов. Нужно также проверить дорожки печатной платы, выходные цепи трансформатора.

Если лампочка вспыхнула и погасла, значит, БП исправен, конденсаторы зарядились.

Самодельный импульсный блок питания с регулировкой напряжения и тока. — DRIVE2

Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.

Как мне кажется блок питания мега простой и отлично подойдет для начинающего радиолюбителя.Блок питания может быть построен на различные диапазоны напряжения и тока все зависит от конкретных задач.Сегодня мы рассмотрим блок питания на самый популярный диапазон 0-30 вольт/0-10 амер. Выбор такого диапазона также обусловлен применением китайского вольтамперметра с диапазоном по току до 10а.

Самодельный импульсный блок питания

Условно блок питания можно разделить на 3 части:

  1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:

Самодельный импульсный блок питания

 2 Модуль управления.

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:

Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.При использовании ЛУТ плату управления я как правило собираю на отдельной платке:

Самодельный импульсный блок питанияСамодельный импульсный блок питания

3 Силовая часть.Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.

Входной фильтр, выпрямитель, конденсаторы из компьютерного блока питания.Начинающего радиолюбителя может испугать трансформатор управления силовыми ключами, его придётся изготовить самостоятельно.

Но не спешите с выводами, уверяю вас сделать его очень просто.Понадобится ферритовое колечко R16*10*4.5 и три отрезка по 1 метру провода МГТФ 0.07кв.мм. Просто наматываем на кольце 30 витков в 3 провода.

Дроссель L1 мотается на ферритовом кольце из того же компьютерного бп, предварительно сматываем с него все обмотки и наматываем медный провод длинной 1.5-2м сечением 2мм, это позволит уложится в указанные параметры(это для тех у кого нечем промерять индуктивность).

Также в большинстве нормальных компьютерных бп есть второй дроссель на ферритовом стержне, его в большинстве случаев можно оставить как есть в качестве L2.Силовой трансформатор тоже можно использовать как есть, но тогда выходное напряжение будет около 20 вольт.Для 30 вольт вторичную обмотку придется перемотать.

Когда мне нужно снять большие токи я предпочитаю использовать ферритовые кольца.

Расчет для нашего блока питания 30 вольт 10 ампер.Трансформатор-донор из компьютерного бп оказался 39/20/12:

Самодельный импульсный блок питания

Все основные компоненты размещаются на пп стандартных размеров под корпус компьютерного блока питания:

Кстати после сборки платы управления и намотки трансформатора GDT их можно проверить даже если у вас нет осциллографа.

При отсутствии ошибок при монтаже и исправных компонентах схема практически не нуждается в настройке.

Для управления вентилятором я как правило использую схему управление по температуре на lm317

Самодельный импульсный блок питания

или термостаты KCD 9700.Иногда и то и другое сразу.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).

Самодельный импульсный блок питания

Вот и корпус будущего бп уже практически готов:

Самодельный импульсный блок питания

  • Добавлю ещё версию модуля управления попроще и помощнее, но слегка по дороже
  • Необходимые файлы для повторения

Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения.

Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств.

Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В.

Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме.

Их принцип работы можно найти на нашем сайте.

Самодельный импульсный блок питанияУпрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию.

Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм.

Читайте также:  Пылесос для циркулярной пилы

Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Самодельный импульсный блок питанияПонижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Самодельный импульсный блок питанияРисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц.

Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток.

Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Самодельный импульсный блок питанияПример миниатюрных импульсных БП

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Самодельный импульсный блок питанияСтруктурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя.

Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств;
    Самодельный импульсный блок питанияЗарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Самодельный импульсный блок питанияИмпульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Самодельный импульсный блок питанияПринципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Telegram канал @asutpp_ru

Мощный импульсный блок питания на 12 В своими руками

Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.

Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.

Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.

Самодельный импульсный блок питания

Детали

  • Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
  • Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
  • Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
Читайте также:  Как быстро убрать синяк с глаза

Выходной 35 вольт 470 – 1000 мкФ.

Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 — 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В.

Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.

В архиве можно скачать схему и плату:

Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.

Схема импульсного блока питания на 12 В

Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах.

Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.

В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку.

Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В.

Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт.

Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.

Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ.

При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом.

Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт.

Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.

Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен.

Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника.

Сматываем все базовые обмотки, наматывать будем свои.

Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

Проверка блока

Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.

Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.

В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.

Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д.

При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые.

Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.

Смотрите видео

Простые импульсные блоки питания » Журнал практической электроники Датагор

Несколько раз меня выручали блоки питания, схемы которых стали уже класическими, оставаясь простыми для любого, кто хоть раз уже что-то электронное в своей жизни паял.Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…

Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.

Содержание / Contents

Описание работы схемы, коль она классическая, приводить особого смысла нет. Замечу лишь, что я отказался от использования в качестве схемы запуска от транзистора, работающего в режиме лавинного пробоя, т.к. однопереходные транзисторы типа КТ117 работают в узле запуска гораздо надежнее. Запуск на динисторе мне тоже нравится.

На рисунке представлены: а) цоколёвка старых транзисторов КТ117 (без язычка), б) современная цоколёвка КТ117, в) расположение выводов на схеме, г) аналог однопереходного транзистора на двух обычных (подойдут любые транзисторы верной структуры — структуры p-n-p (VT1) типа КТ208, КТ209, КТ213, КТ361, КТ501, КТ502, КТ3107; структуры n-p-n (VT2) типа КТ315, КТ340, КТ342, КТ503, КТ3102) Ошибка. Диод VD1 включить наоборот!Схема на полевых транзисторах несколько сложнее, что вызвано необходимостью защиты их затворов от перенапряжения.Ошибка. Диод VD1 включить наоборот!

Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, — 150Вт.

Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.

Из особенностей — выключение блоков питания производится замыканием обмотки II коммутирующего трансформатора. При этом нижний по схеме транзистор запирается и происходит срыв генерации. Но, кстати, срыв генерации происходит именно по причине «закорачивания» обмотки.

Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, — вторично.

Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.

Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]