Шаг зацепления зубчатого колеса это

Шестерня – это небольшое колесико с зубьями, которое крепится к специальной вращающейся оси. Поверхность у шестеренки в данном случае может быть как конической, так и цилиндрической.

Шаг зацепления зубчатого колеса это

Шестеренчатые передачи также имеют свою классификацию:

  1. Прямозубые. Наиболее распространенный вид шестеренок, у которых зубья зачастую располагаются в радиальных плоскостях.
  2. Скошенные. По-другому этот тип называется еще косозубым, а его использование в ходу у бензо- и электрических инструментов. По отношению к вращающейся оси они находятся под определенным углом.
  3. Червячные. Их еще называют спиральными шестернями, которые используются преимущественно для рулевого управления автомобилем.
  4. Винтовые. Они имеют зачастую форму цилиндра, а также расположены по всей линии винта. Располагаются такие шестеренки на валах, которые расположены перпендикулярно к вращающейся оси.

Данные разновидности являются наиболее распространенными, однако далеко не единственными, поэтому используемый вид напрямую соотносится с тем, какую функцию он должен будет выполнять.

При этом каждая шестеренка имеет определенное количество зубьев, что определяется ее назначением.

Разница между количеством используемых зубьев необходима, поскольку благодаря этому фактору появляется возможность регулировать обороты вала и крутящийся момент. Шестеренки также разделяются на ведущие и ведомые.

Ведущей называется та шестерня, к которой вращательный момент подводится снаружи, а ведомой – та, с которой она снимается.

Почему шестеренку называют так?

Технически это понятно. Изначально «шестерёнка» — самое маленькое колесо в зубчатой передаче. Меньше шести зубьев там не бывает даже в теории, захват не обепечивается. … В машиностроении ведомое колесо зубчатой передачи редуктора называется колесом».

Характеристики и применение

Зубья шестеренки находятся в радиальных плоскостях. Линия контакта прямозубых цилиндрических шестерней параллельна оси вращения.

  • В зависимости от необходимых нагрузочных характеристик и точности передаваемого вращения, подбирается модуль (расстояние между центрами зубов) от 1 до 6.
  • Используется в подвижных частях механизмов соместно с зубчатой рейкой.
  • Цилиндрическая зубчатая передача применяется во всех типах автоматических ворот, конвейерных линиях с повышенной нагрузкой, 3D принтерах, станках ЧПУ и многом другом.
  • Параметры модуля шестерни

Рассматриваемая характеристика обозначается литерой m, указывает на прочность зубчатых передач. Единица измеряется в миллиметрах (чем выше нагрузка на передачу, тем больше модульное значение). В расчете параметра используются следующие показатели:

  • диаметр делительной окружности;
  • шаг и число зубьев;
  • эвольвент (диаметр основной окружности);
  • аналогичная характеристика впадин темной шестеренки;
  • высота зуба темного и светлого колеса.

В машиностроительной отрасли расчеты ведутся по стандартным значениям для удобства изготовления и замены шестерен с числами от 1-го до 50-ти.

Что такое модуль на чертеже?

Модуль — это унифицированный элемент любых систем, состоящий из взаимозаменяемого комплекса деталей массового производства. Чертеж модуля выполняется на основании ГОСТ 2.109-73 — единая система конструкторской документации (ЕСКД).

Как найти модуль шестерни?

Как определить модуль косозубой шестерни.

  1. Измеряем диаметр:
  2. Диаметр окружности выступов (De) равен 28,6 мм.
  3. Считаем количество зубьев. Z=25.
  4. Делительный диаметр (De) делим на количество зубьев 25 +2. Равно 28,6 разделить на 27=1,05925925925926.
  5. Округляем до ближнего модуля. Получается модуль 1.

Как узнать высоту зуба шестерни?

Высота зуба:

h = ha + hf, где ha – высота головки зуба, ha = m; hf – высота ножки зуба, hf = 1,25m.

Как найти делительный диаметр шестерни?

Диаметр делительной окружности d является одним из основных параметров, по которому производят расчет зубчатого колеса: d = m × z, где z – число зубьев; m – модуль.

Как обозначается делительный диаметр?

Окружность, являющаяся начальной при зацеплении с рейкой – делительная; её диаметр обозначается d (рис. 2). Для колес без смещения делительные окружности совпадают с начальными. Толщина зуба по делительной окружности S равна ширине впадины между двумя зубьями е.

Формула расчета параметров прямозубой передачи

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.

Шаг зацепления зубчатого колеса этоРасчет модуля зубчатого колеса

Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:

проведя преобразование, получим:

Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

  1. размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:
  2. выполнив преобразование, находим:
  3. Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным
  4. где h’- высота головки.
  5. Высоту головки приравнивают к m:
  6. Проведя математические преобразования с подстановкой, получим:
  7. Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:
  8. где h“- высота ножки зубца.
  9. Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:

Шаг зацепления зубчатого колеса это

  • Устройство зубчатого колеса
  • Выполнив подстановку в правой части равенства, имеем:
  • что соответствует формуле:
  • и если выполнить подстановку, то получим:
  • Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.
  • Следующий важный размер, толщину зубца s принимают приблизительно равной:
  • для отлитых зубцов: 1,53m:
  • для выполненных путем фрезерования-1,57m, или 0,5×t

Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины

  • для отлитых зубцов: sв=πm-1,53m=1,61m:
  • для выполненных путем фрезерования- sв= πm-1,57m = 1,57m

Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:

  • усилия, прикладываемые к детали при эксплуатации;
  • конфигурация деталей, взаимодействующих с ней.

Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.

Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.

Что такое модуль зубчатого колеса?

m — модуль колеса. Модулем зацепления называется линейная величина в π раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к π, то есть модуль — число миллиметров диаметра делительной окружности приходящееся на один зуб.

Чему равен модуль нормального зубчатого колеса?

Модуль зубчатого колеса, геометрический параметр зубчатых колёс. Для прямозубых цилиндрических зубчатых колёс модуль m равен отношению диаметра делительной окружности dд к числу зубьев z или отношению шага t по делительной окружности к числу: m = dд/z = ts/p.

Какие бывают зубчатые колеса?

Виды зубчатых колес, шестерен

  • Поперечный профиль зуба Обычно шестерни имеют профиль зубьев с эвольвентной боковой формой. …
  • Продольная линия зуба Прямозубые шестерни …
  • Шестерни с внутренним зацеплением …
  • Винтовые шестерни …
  • Секторные шестерни …
  • Шестерни с круговыми зубьями

Прямозубые и косозубые колесики

Модуль и диаметр шестерни прямозубого типа — один из самых востребованных видов. Зубцы размещаются в радиальных плоскостях, а площадь контакта пары колес параллельна оси вращения. Аналогичным образом располагаются оси обеих шестерен.

Косозубые колесики представляют собой усовершенствованную вариацию вышеуказанной модификации. Зубцы находятся под определенным углом к вращательной оси.

Зацепление осуществляется плавней и тише, что позволяет эксплуатировать элементы в малошумных приспособлениях, гарантируя передачу большего крутящего момента на высокой скорости. К минусам относят увеличенную площадь контакта зубцов, провоцирующую повышенное трение и нагрев деталей.

Это чревато ослаблением мощности и повышенным расходом смазки. Кроме того, механическое воздействие вдоль оси шестерни требует использования упорных подшипников для монтажа вала.

Шаг зацепления зубчатого колеса это

Шевронные модификации и аналоги с внутренним зацеплением

Шевронные шестерни позволяют справиться с проблемами механической осевой силы. В отличие от прямых и косозубых версий, зубья выполнены в виде литеры V.

Осевое воздействие двух половин приспособления компенсируется взаимодействием, что дает возможность избежать применения упорных подшипников на валу.

Указанная модель самостоятельно устанавливается по оси, один из рабочих редукторов монтируется на цилиндрических укороченных подшипниках (плавающие опоры).

Модуль шестерни с внутренним зацеплением оснащается зубцами, имеющими нарезку внутри. Эксплуатация детали предполагает односторонние обороты ведущего и ведомого колеса.

В такой конструкции меньше затрат уходит на трение, что способствует повышению КПД.

Подобные приспособления применяются в механизмах, ограниченных по габаритным размерам, а также планетарных передачах, специальных насосах и танковых башенках.

Винтовые, круговые, секторные версии

Модуль шестерни винтового типа представляет собой цилиндр с зубцами, которые размещены по винтовому направлению. Подобные элементы устанавливаются на непересекающиеся валы, расположенные перпендикулярно по отношению друг к другу. Угол совмещения составляет 90 градусов.

Секторное зубчатое колесо — часть любой шестерни, применяемая в передачах, где не нужно вращение основного элемента на полный оборот. Такая деталь дает возможность сэкономить ценное пространство в размерах полноценного аналога.

Шестерни по модулю и количеству зубьев с круговым расположением отличаются контактным соприкосновением в одной точке зацепления, расположенной параллельно основным осям. Второе название механизма — передача Новикова.

Она обеспечивает хорошие ходовые характеристики, плавную и бесшумную работу, повышенную зацепляющую способность. При этом коэффициент полезного действия таких деталей немного ниже аналогов, а процесс изготовления существенно сложнее.

Указанные детали имеют значительно ограниченную отрасль эксплуатации ввиду своих особенностей.

Шаг зацепления зубчатого колеса это

Конические шестерни

Шаг зацепления зубчатого колеса это

Конические шестерни имеют различные виды, отличаются они по форме линий зубьев, с прямыми, с криволинейными, с тангенциальными, с круговыми зубьями. Применяются конические зубчатые передачи в машинах для движения механизма, где требуется передать вращение с одного вала на другой, оси которых пересекаются. Например, в автомобильных дифференциалах, для передачи момента от двигателя к колесам.

Читайте также:  Как приварить лист металла чтобы не повело

Зубчатая рейка

Шаг зацепления зубчатого колеса это

Зубчатая рейка является частью зубчатого колеса с бесконечным радиусом делительной окружности. Вследствие этого ее окружности представляют собой прямые параллельные линии. Эвольвентный профиль зубчатой рейки тоже имеет прямолинейное очертание. Это свойство эвольвенты является наиболее важным при изготовлении зубчатых колёс. Передачу с применением зубчатой планки (рейки) называют — реечная передача (кремальера), она используется для преобразования вращательного движения в поступательное и наоборот. Состоит передача из зубчатой рейки и прямозубого зубчатого колеса (шестеренки). Применяется такая передача в зубчатой железной дороге.

Звездочка

Шестерня-звезда — это основная деталь цепной передачи, которая используется совместно с гибким элементом — цепью для передачи механической энергии.

Коронная шестерня

Коронная шестерня – это особый тип шестерен, их зубья находятся на боковой поверхности. Такая шестерня работает, как правило, в паре с прямозубой или с барабаном (цевочное колесо), состоящим из стержней. Такая передача используется в башенных часах.

В чем заключаются сходства между шестерней и зубчатым колесом

Между шестерней и зубчатым колесом можно отметить несколько схожих моментов:

  • Как и шестерня, зубчатое колесо может быть как ведомым, так и ведущим элементом в общей системе.
  • У шестерни и у зубчатого колеса форма может быть как цилиндрической, так и конической, все зависит от той функции, которую конкретная деталь выполняет.
  • При помощи шестеренки и зубчатого колеса можно маневрировать на почве скорости вращательного элемента, либо уменьшая ее, либо увеличивая.
  • Шестеренки и зубчатые колеса одинаково эффективно можно использовать на электрических и бензоинструментах, однако больше всего используют именно шестеренки, так как они обеспечивают устойчивость механизма.
  • Шестеренка и зубчатое колесо могут использоваться для запуска вращательных осей.

Внешние сходства между шестеренкой и зубчатым колесом обоснованы также еще тем, что зачастую эти два элемента могут выполнять схожие функции и быть взаимозаменяемыми в определенных системах и механизмах.

Когда применяют цилиндрические зубчатые передачи?

Цилиндрической зубчатой передачей называется передача с параллельными осями. Косозубые передачи применяют при окружных скоростях м/с; шевронные передачи – преимущественно в тяжело нагруженных передачах. … Кинематика и геометрия цилиндрические зубчатых колес.

Подытожим

Расчетные чертежи и схемы для шестеренок различных конфигураций преимущественно совпадают для косых и прямозубчатых версий. Основные различия возникают при расчетах на прочность.

В графических отображениях применяются характеристики, ориентированные на типовые габаритные размеры шестеренок.

Среди представленного ассортимента на рынке вполне реально подобрать зубчатое колесо с необходимыми характеристиками и прочностными показателями.

  • https://mehmanxona.ru/tehnologii/vidy-shesterenok.html
  • https://novoe-info.ru/chto-takoe-modul-shesterni/
  • https://MechPrivod.com/market/zubchataya_shesterenka/shesterenka_zubchataya_cilindricheskaya/
  • https://novoe-info.ru/kak-nayti-modul-zubchatogo-kolesa/
  • https://doctordent.su/pulpit/kak-opredelit-modul-zuba-shesterni-po-diametru.html
  • https://FB.ru/article/429020/modul-shesterni-vidyi-opredelenie-standartnyie-pokazateli

Формула расчета модуля шестерен

Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня».

За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки.

Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.

Шаг зацепления зубчатого колеса это

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.

Для расчета этого параметра применяют следующие формулы:

Шаг зацепления зубчатого колеса это

  • Параметры зубчатых колес
  • Модуль зубчатого колеса можно рассчитать и следующим образом:
  • где h — высота зубца.
  • где De — диаметр окружности выступов,а z — число зубьев.

Что же такое модуль шестерни?

это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

Формула расчета параметров прямозубой передачи

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.

Шаг зацепления зубчатого колеса это

  1. Расчет модуля зубчатого колеса
  2. Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:
  3. проведя преобразование, получим:

Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

  • размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:
  • выполнив преобразование, находим:
  • Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным
  • где h’- высота головки.
  • Высоту головки приравнивают к m:
  • Проведя математические преобразования с подстановкой, получим:
  • Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:
  • где h“- высота ножки зубца.
  • Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:

Шаг зацепления зубчатого колеса это

  1. Устройство зубчатого колеса
  2. Выполнив подстановку в правой части равенства, имеем:
  3. что соответствует формуле:
  4. и если выполнить подстановку, то получим:
  5. Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.
  6. Следующий важный размер, толщину зубца s принимают приблизительно равной:
  • для отлитых зубцов: 1,53m:
  • для выполненных путем фрезерования-1,57m, или 0,5×t

Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины

  • для отлитых зубцов: sв=πm-1,53m=1,61m:
  • для выполненных путем фрезерования- sв= πm-1,57m = 1,57m

Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:

  • усилия, прикладываемые к детали при эксплуатации;
  • конфигурация деталей, взаимодействующих с ней.

Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.

Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.

Читать еще:  Чем можно отчистить ржавчину на металлической поверхности

Исходные данные и замеры

На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.

Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.

  • Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.
  • Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.

Результаты расчетов

  1. Для более крупных потребуются измерения и вычисления.

  2. Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:
  3. Последовательность действий следующая:
  • измерить диаметр штангенциркулем;
  • сосчитать зубцы;
  • разделить диаметр на z+2;
  • округлить результат до ближайшего целого числа.

Шаг зацепления зубчатого колеса это

Зубец колеса и его параметры

Данный метод подходит как для прямозубых колес, так и для косозубых.

Расчет параметров колеса и шестерни косозубой передачи

Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.

Лекции

Шаг зацепления зубчатого колеса это

Рис. 14. Зубчатый венец бандажированного колеса

Материалы и методы обработки зубчатых колес

Материал зубчатых колес должен обладать определенными технологическими и физическими свойствами. Например, он должен хорошо обрабатываться в холодном и горячем состоянии, иметь хорошую склонность к термообработке, обеспечить достаточную прочность при изгибе, высокую прочность поверхностного слоя зубьев и высокое сопротивление истиранию.

  • Для изготовления зубчатых колес применяют следующие материалы:
  • — сталь углеродистую обыкновенного качества марок Ст5, Ст6; качест­венную сталь марок 35, 40, 45, 50, 55; легированную сталь марок 12ХНЗА, 30ХГС, 40Х, 35Х, 40ХН, 50Г; сталь 35Л, 45Л, 55Л;
  • — серый чугун марок СЧ10, СЧ15, СЧ20, СЧ25, СЧ30, СЧ40, высокока­чественный чугун марок ВЧ50-2, ВЧ45-5;

— неметаллические материалы (текстолит марок ПТК, ПТ, ПТ-1, лигнофоль, бакелит, капрон и др.).

С повышением несущей способности передач, лимитируемой твердостью активных поверхностей зубьев и их прочностью на изгиб, снижаются масса и габаритные размеры зубчатых колес. Наименьшие размеры имеют передачи со стальными зубчатыми колесами.

Так как одним из важнейших условий совершенствования машин является изыскание всех возможных путей к снижению их массогабаритных показателей, то поэтому именно сталь, является основным материалом для зубчатых колес и единственным – для колес высоконагруженных передач.

  1. Серый чугун рекомендуется применять для:
  2. — тихоходных, преимущественно крупных открытых передач, габариты которых не ограничены какими-либо требованиями;
  3. — редко работающих, сменных колес.

Основной недостаток чугуна — пониженная прочность по напряжению изгиба. Однако чугун хорошо противостоит усталостному выкрашиванию и заеданию в усло­виях скудной смазки. Зубья чугунных колес хорошо прирабатываются. Он не дорог и обладает хорошими литейными свойствами, хорошо обрабатывается.

Читайте также:  Самодельная плавильная печь для алюминия

Разработан­ные новые сорта модифицированного чугуна позволяют чугун­ному литью конкурировать со стальным литьем также и в за­крытых передачах. Для изготовления зубчатых колес применя­ют серый и модифицированный чугун, а также магниевый чугун с шаровидным графитом (см. ГОСТ 1412-85).

Модифицированный и высокопрочный чугун рекомендуется применять при окружных скоростях V350 НВ (вторая группа материалов) твердость вы­ражается обычно в единицах Роквелла — HRC (1HRC = 10 HB).

Специальные виды термообработки позволяют получить твердость Н=(50…60) HRC. При этом допускаемые контактные напряжения увеличиваются до двух раз, а нагрузочная способность передачи—до четырех раз по сравнению с нормализованными или улучшенными сталями. Возрастают также износостойкость и стойкость против заедания.

Для стальных зубчатых колес в основном назначают следующие виды термической обработки их зубьев: улучшение и закалку с нагревом ТВЧ (токами высокой частоты). Из видов химико-термической обработки зубьев колес основное применение получили цементация, нитроцементация (газовое цианирование), реже – азотирование.

Нормализация — позволяет получить лишь низкую нагрузочную способность. Используют для поковок и отливок из среднеуглеродистых сталей; сохраняет точность при механической обработке; передачи хорошо и быстро прирабатываются. Редукторы больших размеров, индивидуальное производство, малонагруженные передачи.

Объемная закалка — наиболее простой способ получения высокой твердости зубьев. При этом зуб становится твердым по всему объему. Для объемной закалки используют углеродис­тые и легированные стали со средним содержанием углерода 0,35…0,5% (стали 45, 40Х, 40ХН и т. д.). Твердость на поверхности зуба 45…55 HRC.

Недостатки объемной закалки: коробление зубьев и необ­ходимость последующих отделочных операций, понижение изгибной прочности при ударных нагрузках (материал приоб­ретает хрупкость); ограничение размеров заготовок, которые могут воспринимать объемную закалку.

Последнее связано с тем, что для получения необходимой твердости при закалке скорость охлаждения не должна быть ниже критической. С увеличением размеров сечений детали скорость охлаждения падает, и если ее значение будет меньше критической, то получается так называемая мягкая закалка.

Мягкая закалка дает пониженную твердость.

Объемную закалку во многих случаях заменяют поверх­ностными термическими и химико-термическими видами об­работки, которые обеспечивают высокую поверхностную тве­рдость (высокую контактную прочность) при сохранении вязкой сердцевины зуба (высокой изгибной прочности при ударных нагрузках).

Улучшение (закалку с высоким отпуском) — в современном проектировании используют, как правило, в единичном и мелкосерийном производстве передач, к габаритам и массе которых не предъявляют жесткие требования, а также в тех случаях, когда контактная прочность зубьев колес не оказывает влияния на размеры проектируемого привода (например, в некоторых типах планетарных передач). При улучшении зубчатые колеса изготавливают из качественных углеродистых (40, 45, 65Г) и легированных сталей (40Х, 40ХН, 35ХМ, 45ХН, 35ХГСА и т.п.). Твердость улучшенных колес ограничивают технологическими условиями с целью обеспечения достаточной стойкости режущего инструмента: у небольших (da 5 мм). При малых модулях опасно прокаливание зуба насквозь, что делает зуб хрупким и сопровождается его короблением. При относительно тонком поверхностном закаливании зуб искажа­ется мало. И все же без дополнительных отделочных операций трудно обеспечить степень точности выше 8-й. Закалка ТВЧ требует специального оборудования и строгого соблюдения режимов обработки. Стоимость обработки ТВЧ значительно возрастает с увеличением размеров колес. Твердым поверхностным слоям (толщиной 0,25…0,4 модуля) при такой термообработке соответствует вязкая сердцевина зубьев, что повышает сопротивление ударным нагрузкам и обеспечивает высокую выносливость зубьев при изгибе. Закалка ТВЧ дает возможность полностью автоматизировать термическую обработку и включать ее (что особенно важно) в поточные линии по обработке зубчатых колес.

Закалку ТВЧ осуществляют на специальных станках и установках довольно значительной стоимости. В связи с этим, ее целесообразно применять только при среднесерийном, крупносерийном и массовом типах производства зубчатых колес.

При поверхностной закалке нагреву подвергают только наружные слои металла, поэтому зубчатые колеса не получают значительных деформаций (коробления) зубчатых венцов.

В связи с этим, если  к передаче не предъявляют особые требования по точности вращения и уровню шума (степень точности передачи не выше 7-й по ГОСТ 1643-81), то зубья после их закалки ТВЧ можно не подвергать отделочным операциям.

Однако это понижает точность передачи на одну степень.

Закалку ТВЧ производят 3-я способами: 1) со сквозным нагревом зубьев; 2) с нагревом только их работающих поверхностей, так называемая закалка «по зубу» (рис. 14.1,а); 3) с одновременным нагревом рабочих поверхностей и впадины (выкружки) зубьев, так называемая закалка «по впадине» (рис. 14.1,б).

Шаг зацепления зубчатого колеса это

Рис. 14.1. Схемы закалки ТВЧ зубчатых колес

Закалку ТВЧ со сквозным нагревом зубьев применяют только для зубьев, имеющих малый модуль (m≤3 мм). При этом способе закалки все зубья сразу нагревают в кольцевом индукторе, а затем охлаждают водяным душем или погружением зубчатого колеса в масло. Зубья прокаливаются насквозь. На некоторую глубину (0,1…1,0) m закаливается и часть обода колеса, прилегающая к зубьям.

Способ поверхностной закалки «по зубу» (рис. 14.1,а) требует менее сложного индуктора, более производителен и менее энергоемок по сравнению с закалкой «по впадине» (рис. 14.1,б).

Однако при поверхностной закалке только боковых сторон зубьев без охвата их выкружки в конечных участках закаленного слоя возникают остаточные напряжения растяжения, резко снижающие прочность зубьев при  изгибе.

Поверхностную закалку «по зубу» и по «впадине» осуществляют одновременным или непрерывно–последовательным способом.

Одновременный способ закалки применяют для колес с модулем не более 16 мм при длине зуба не свыше 200 мм. При этом способе одновременно нагревают всю поверхность, подлежащую закалке, а затем целиком охлаждают. Например, при закалке «по впадине» одновременным способом индуктор «1» (рис. 14.

2) вводят между зубьями с зазором между индуктором  и нагреваемой поверхностью. При этом нагревается впадина и обе соседние поверхности по всей длине зуба. Спрейеры подстуживания «2» непрерывно охлаждают наружные поверхности нагреваемых зубьев во избежание отпуска ранее закаленных поверхностей.

По окончании нагрева, продолжающегося несколько секунд, индуктор «1» выводят из впадины, и после паузы (для выравнивания температуры) из закалочных спрейеров нагретая поверхность охлаждается водой в течение времени, обеспечивающего закалку с самоотпуском.

По окончании закалки зубчатое колесо «4» поворачивают на один зуб, индуктор вводят в очередную впадину между зубьями и процесс повторяют.

Шаг зацепления зубчатого колеса это

Рис. 14.2. Схема закалки зуба «по впадине» при одновременном нагреве

Непрерывно-последовательный способ поверхностной закалки применяют для колес с модулем свыше 16 мм или шириной зуба свыше 200 мм.

При этом способе поверхность, подлежащая закалке, нагревается и закаливается, не вся сразу, а последовательно, участок за участком.

Индуктор с определенной скоростью перемещается так, что поверхность, нагретая в индукторе, тотчас попадает под водяной душ и закаливается.

Цементациейзубьев называют процесс насыщения углеродом их поверхностных слоев с последующей закалкой и низким отпуском до твердости на поверхности Н = 56…62 НRC (HRC – твердость по Роквеллу, шкала «С»). Толщина диффузионного слоя при модуле m≤20 мм находится в пределах (0,28m0,007m2) ± 0,2 мм.

Сердцевина зуба также получает высокие механические свойства, имея твердость до Hсерд.= 32…45 HRC. Все это обеспечивает большую несущую способность поверхностных слоев зубьев и весьма высокую прочность зубьев на изгиб. Однако дефекты обычного зубошлифования могут снизить изгибную выносливость зубьев в 1,3…

1,5 раза, а при прижогах – до 2 раз.

Значительная величина твердости сердцевины и сравнительно большая толщина упрочненного слоя обуславливают высокую износостойкость, что особенно важно для открытых передач, а также значительную несущую способность зубьев, лимитируемую развитием глубинных (под упрочненным слоем) усталостных трещин.  

Для цементуемых зубчатых колес широко применяют низкоуглеродистые стали 15; 20 и безникелевые легированные стали 20Х; 18ХГТ; 25ХГТ; 15ХФ. Для колес ответственных передач, особенно работающих с переменными и ударными нагрузками, используют хромоникелевые стали 12ХНЗА; 20ХНМ; 18Х2Н4МА; 20Х2Н4А.

Процесс термообработки цементированных зубчатых колес связан со значительными искажениями формы зуба, что требует проведения отделочных операций зубьев даже при 8-й степени их точности.

В процессе зубошлифования на переходных участках и во впадинах зубьев могут возникать вредные напряжения растяжения, а также концентрация напряжений в местах выхода шлифовального круга, если шлифованию подвергают только боковые поверхности зубьев.

Эти негативные последствия могут быть в некоторой степени компенсированы последующей обдувкой дробью или нарезкой зубьев специальными фрезами с протуберанцами, с помощью которых формируется впадина зуба, исключающая ее шлифование в процессе снятия припуска с боковых поверхностей зубьев.

Для поверхностного насыщения зубьев углеродом колеса нагревают в богатых углеродом средах, называемых карбюризаторами. Применяют карбюризаторы трех видов: твердые, газовые и жидкие. В связи с этим, различают твердую, газовую и жидкостную цементации. Жидкостная цементация для зубьев колес практически не применяется, так как глубина цементованного слоя в этом случае не превышает 0,2…0,3 мм.

Основное применение находит газовая цементация, что обусловлено целым рядом ее преимуществ перед твердой: 1) изделия нагреваются значительно быстрее (например, для твердой цементации зубьев на глубину 0,5 мм требуется 4,5…5 ч, а при газовой цементации — 1,5…

2 ч), так как не требуется нагревать балласт — твердый карбюризатор, помещаемый в металлические ящики; 2) поверхности зубьев насыщаются углеродом с повышенной скоростью и весь цикл резко сокращается в связи с тем, что карбюризатор в процессе цементации непрерывно обновляется путем подачи в рабочее пространство печи свежего газа; 3) отпадает необходимость транспортировки и хранения угольного порошка, цементационных ящиков и т.п.; 4) есть полная  возможность автоматизации процесса.

Читайте также:  Китайский тестер как пользоваться

Однако для газовой цементации необходимо иметь сложное дорогостоящее оборудование, требуемое для получения и подготовки к работе цементирующего газа, а также специальные печи, в которых и проводится газовая цементация. Все это трудно обеспечить в условиях не только единичного и мелкосерийного производства, но даже при среднесерийном масштабе выпуска зубчатых колес.

При массовом поточном производстве весьма перспективно применение высокотемпературной газовой цементации с нагревом зубьев токами высокой частоты. Из-за нагрева до 1050…1080° С процесс цементации сокращается в 4…5 раз по сравнению с обычной газовой цементацией. При высокотемпературной газовой цементации используют стали, не склонные к росту зерна, например, 18ХГТ.

Однако при такой цементации для колес каждого размера необходим свой индуктор и специальная установка (вертикальная цементационная камера), рассчитанная на обработку колес только определенного конкретного размера. Это и обуславливает применение высокотемпературной цементации исключительно при массовом производстве колес.

В связи с тем, что цементация — это длительный дорогостоящий процесс, требующий еще и проведения длительных дорогостоящих отделочных операций зубьев, то ее обычно применяют при серийном и выше масштабах производства колес зубчатых передач в изделиях, где масса и габариты имеют решающее значение (транспорт, авиация, коробки скоростей станков и т.п.), а также в открытых передачах, работающих в условиях абразивного износа (дорожные, подъемно-транспортные машины и т.п.).

Нитроцементация (газовое цианирование) — это насыщение поверхностных слоев зубьев углеродом и азотом в газовой среде, состоящей из 70…75% углесодержащего газа (генераторного и т.п.) и 15…

20% аммиака с последующей закалкой и низким отпуском.

Газовое цианирование проводят в шахтных или камерных электрических печах с герметичными муфелями (ретортами), куда помещают зубчатые колеса, уложенные в нихромовые корзины, и по трубкам подводится и отводится рабочая газовая среда.

Нитроцементации подвергают зубчатые колеса из среднеуглеродистых сталей, например, 20Х; 35Х; 40Х; 25ХГМ; 25ХГТ; 30ХГТ и т.п. Твердость рабочих поверхностей зубьев HRC 57…63. Толщина упрочненного слоя составляет (0,13¼0,20) m , но не более 1,2 мм.

Скорость нитроцементации выше, чем у газовой цементации в 1,5…2 раза. Искажение формы зуба при нитроцементации существенно меньше, чем при цементации.

В соответствии с этим, для колес, имеющих точность не выше 7-й степени, можно не применять отделочных операций зубьев.

В связи с вышеизложенным, нитроцементацию все шире начинают применять при серийном и выше масштабе производства редукторных передач изделий, для которых габариты и вес имеют существенное значение (например, редукторы подъемно-транспортных машин).

Азотирование — насыщение поверхностного слоя зубьев азотом без последующей закалки, вследствие чего форма и размеры зубьев практически не искажаются. Поэтому азотированные зубья не шлифуют. Твердость азотируемого слоя особенно высокая (до 70 HRC), однако его толщина составляет всего (0,2..

.0,5) мм. В связи с этим, для азотированных зубьев характерным повреждением является развитие подслойных усталостных трещин. Степень коробления при азотировании мала.

Поэтому этот вид термообработки особен­но целесообразно применять в тех случаях, когда трудно выполнить шлифование зубьев (например, колеса с внутренними зубьями).

Малая толщина упрочненного слоя не позволяет применять азотированные колеса при ударных нагрузках из-за опасности растрескивания этого слоя, требует фильтрации масла, так как при загрязненной смазке, попадании абразива тонкий слой быстро изнашивается и передача выходит из строя.

Азотирование проводят в герметично закрытых муфелях (ретортах), заполненных веществом, содержащим азот (обычно аммиаком). При азотировании применяют стали 38ХМЮА, 35ХЮА, 30Х2Н2ВФА, 30ХН2МФА, 45Х2Н2МФЮА и др. Азотирование — очень длительный процесс, требующий до 40…60 ч, т.е. в 10…

12 раз больше, чем при цементации. Правда, возможно ускорение этого процесса до 2…3 раз применением ионного азотирования (азотирования в тлеющем разряде), азотирования при нагреве ТВЧ.

Заготовку зубчатого колеса, предназначенного для азотирова­ния, подвергают улучшению в целях повышения прочности сердцевины.

§ 5. ЗУБЧАТЫЕ ПЕРЕДАЧИ

Раздел: БИБЛИОТЕКА ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ Короткий путь http://bibt.ru

Адрес этой страницы' ?>

Зубчатые передачи широко применяют в транспортных, сельскохозяйственных машинах и в промышленном оборудовании. С их помощью изменяют по величине и направлению скорости движущихся частей станков и передают от одного вала к другому усилия и крутящие моменты. Крутящий момент равен произведению силы на плечо, кГм.

Шаг зацепления зубчатого колеса это

Рис. 116. Основные элементы зубчатого колеса

Элементы зубчатого колеса. В каждом зубчатом колесе (рис. 116) различают три окружности: делительную окружность, окружность выступов, окружность впадин, а следовательно, три соответствующих им диаметра.

Делительная, или начальная окружность зубчатого колеса делит зуб по высоте на две неравные части: верхнюю, называемую головкой зуба, и нижнюю, называемую ножкой зуба. Высоту головки обозначают h', а высоту ножки h». Диаметр этой окружности обозначается Dд.

Окружность выступов зубчатого колеса — это окружность, ограничивающая сверху профили зубьев колеса. Обозначают ее De.

Окружность впадин зубчатого колеса проходит по основанию впадин зубьев и обозначается Di.

Расстояние между серединами двух соседних зубьев, измеренное по дуге делительной окружности, называется шагом зубчатого зацепления и обозначается буквой t.

Величина элемента зубчатого колеса задается в долях модуля (m). Модуль показывает долю диаметра начальной окружности в миллиметрах, приходящуюся на один зуб, т. е,

Dд/z=m,

где z — число зубьев зубчатого колеса.

Если шаг, выраженный в миллиметрах, разделить на число π=3,14, то также получим модуль, т. е. m=t/π мм, а тогда шаг будет t=mπ.

Дуга делительной окружности S в пределах зуба называется толщиной зуба зубчатого колеса, дуга S' — шириной впадин. Размер b зуба по линии, параллельной оси колес, называется длиной зуба.

Радиальный зазор δ (см. рис. 118,б)-кратчайшее расстояние между вершиной зуба и основанием впадины сопряженного колеса.

Боковой зазор зубчатого колеса Сп (см. рис. 118, б)-кратчайшее расстояние между нерабочими профильными поверхностями смежных зубьев, когда их рабочие поверхности находятся в контакте.

  • С модулем связаны все элементы зубчатого колеса:
  • высота головки зуба h' = m;
  • высота ножки зуба h» =1,25 m;
  • высота всего зуба h= h'+h»=m+1,25m = 2,25m.
  • Зная число зубьев z, с помощью модуля можно определить диаметр делительной окружности зубчатого колеса.
  • Dд=mz.
  • Диаметр окружности выступов (диаметр заготовки зубчатого колеса) вычисляют по формуле:
  • De=Dд+2h'=zm+2m=(z+2)m.

Формулы, с помощью которых можно определить параметры цилиндрических зубчатых колес в зависимости от модуля и числа зубьев z, приведены в табл. 8.

Таблица 8 Формулы для расчета параметров цилиндрических зубчатых колес

Параметры Обозначения Формулы
Наружный диаметр De
  1. (z+2)m;
  2. Dд+2m;
  3. (z2+2)(t/π)
Диаметр начальной окружности mz; De-2m
Модуль m t/π; Dд/z; De/(z+2)
Шаг зацепления t mπ; (πDд)/z
Высота зуба (глубина впадины) h 2,25m; h'+h»
Высота головки зуба h' m; t/π
Высота ножки зуба 1,25m; h-h'
Измеренные по начальной окружности: Толщина зуба S t/2; (πm)/2
Измеренные по начальной окружности: Ширина впадины S' t/2; (πm)/2
Межцентровое расстояние A ((z1+z2)/2) m
Радиальный зазор δ 0,25m; h»-h'
  • Для зубчатых колес применяются углеродистые и легированные стали с содержанием углерода от 0,2 до 0,6%.
  • Для литых колес применяют литейные стали марок 35Л, 50Л, а также легированные литейные стали — 40ХЛ, 30ХГСЛ, 40ХНЛ и др.
  • Для изготовления зубчатых колес применяют серый чугун марок СЧ 28-48; СЧ 32-52; СЧ 35-56 и модифицированный чугун МСЧ 32-52 и МСЧ 35-56.

Из неметаллических материалов для изготовления одного из зубчатых колес пары применяют текстолит, лигнофоль, нейлон, искусственную кожу и фибру. Второе колесо выполняют из стали или чугуна с твердостью рабочей поверхности не более НВ 250.

Перейти вверх к навигации

11_3. Зацепления зубчатые

ЭЛЕМЕНТЫ ЦИЛИНДРИЧЕСКОГО ЗУБЧАТОГО КОЛЕСА

Диаметр делительной окружности

.

УСЛОВНОЕ ИЗОБРАЖЕНИЕ ЗАЦЕПЛЕНИЙ ЗУБЧАТЫХ [ГОСТ 2.402-68]

ЗАЦЕПЛЕНИЕ ЗУБЧАТЫМИ ЦИЛИНДРИЧЕСКИМИ КОЛЕСАМИ (ВНЕШНЕЕ)

Служит для передачи вращения при параллельных осях валов.

ГОСТ 9563-60* предусматривает два ряда модулей

m=0,05Е100 мм.

Ряд 1: Е; 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; Е

Ряд 2:Е; 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2

,75; 3,5; 4,5; 5,5; 7; 9; 11; 14;Е

  • Примечание.
  • Ряд 1 следует предпочитать ряду 2.

    ЗАЦЕПЛЕНИЕ РЕЕЧНОЕ


    Служит для преобразования вращательного движения в возвратно-поступательное.

    ГОСТ 9563-60* предусматривает два ряда модулей

    m = 0,05Е100 мм.

    Ряд 1: Е;

    0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; Е

    Ряд 2:Е; 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14;Е

  • Примечание.
  • Ряд 1 следует предпочитать ряду 2.

    ЧЕРВЯЧНАЯ ПЕРЕДАЧА С ЦИЛИНДРИЧЕСКИМ ЧЕРВЯКОМ

    Служит для передачи вращательного движения между валами со скрещивающимися осями.

    ГОСТ 19672-74* устанавливает два ряда значений модулей

    m (мм).

    Ряд 1: Е; 1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; Е

    Ряд 2: Е; 1,5; 3; 3,5;

    6; 7; Е

    Коэффициенты диаметра червяка

    q должны соответствовать рядам:

    Ряд 1: 8; 10; 12,5; 16; 20;Е

    Ряд 2: 7,1; 9; 11,2; 14; 18; 22,4.

  • Примечание.
  • Ряд 1 следует предпочитать ряду 2.

    ЗАЦЕПЛЕНИЕ ЗУБЧАТЫМИ КОНИЧЕСКИМИ КОЛЕСАМИ

    Служит для передачи вращения при пересекающихся осях валов.

    ПРАВИЛА ВЫПОЛНЕНИЯ СОСТАВНЫХ ЧАСТЕЙ ЗУБЧАТЫХ ЗАЦЕПЛЕНИЙ

    ЦИЛИНДРИЧЕСКОЕ ЗУБЧАТОЕ КОЛЕСО [ГОСТ 2.403-75*]

    Ссылка на основную публикацию
    Adblock
    detector