Схема подключения симисторного регулятора

Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.

Схема мощного симисторного регулятора мощности

Схема подключения симисторного регулятора

Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.

Схема подключения симисторного регулятора

В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?

Схема подключения симисторного регулятора

В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.

Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.

Схема подключения симисторного регулятора

Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А.

Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами.

Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.

Схема подключения симисторного регулятора

Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше.  И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.

Схема подключения симисторного регулятора

Для сведения, медный провод сечением 2.5мм2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.

Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.

Схема подключения симисторного регулятора

Схема подключения симисторного регулятора

Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов.

Температура достигла 900С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу.

Иначе получим настоящую печь.

  • Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.
  • Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.
  • Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.

Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.

Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.

О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.

Схема подключения симисторного регулятора

Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.

Схема подключения симисторного регулятора

В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм2.

Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.

  1. Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.

Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».

Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.

  • Выводы симистора, при его монтаже, рекомендуется делать как можно короче.
  • Вывод.
  • Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…
  • Печатная плата регулятора мощности СКАЧАТЬ

Способы и схемы управления тиристором или симистором

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях.

Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах.

Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Содержание статьи

Схема подключения симисторного регулятора

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Схема подключения симисторного регулятора

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Схема подключения симисторного регулятора

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

  • Падение напряжения при максимальном токе анода (VT или Uос).
  • Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
  • Обратное напряжение (VR(PM) или Uобр).
  • Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
  • Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
  • Обратный ток (IR) — ток при определенном обратном напряжении.
  • Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
  • Постоянное отпирающее напряжение управления (VGT или UУ).
  • Ток управления (IGT).
  • Максимальный ток управления электрода IGM.
  • Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Схема подключения симисторного регулятора

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Схема подключения симисторного регулятора

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение.

То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток.

Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Схема подключения симисторного регулятора

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

Читайте также:  Рейтинг электрочайников из нержавеющей стали

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Схема подключения симисторного регулятора

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Схема подключения симисторного регулятора

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Схема подключения симисторного регулятора

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

Схема подключения симисторного регулятора

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны.

Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт.

Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Интересно:

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими.

Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно.

Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее.

Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях.

Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Алексей Бартош

Схемы регулятора скорости двигателя пылесоса

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой.

Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод.

Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

https://www.youtube.com/watch?v=r4viJT7Nsuk\u0026t=39s

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль.

Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

  Проверка диэлектрических средств защиты

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный. Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2;
  • сопротивление R3.

Ток, протекающий через потенциометр R2 и, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Схема регулятора мощности на симисторе.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и D2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4.

Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт. Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм;
  • потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие.

Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Материал по теме: Как подключить конденсатор

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.
Читайте также:  Как паять бурой медь

Симисторная схема регулятора мощности

Регулировка мощности

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора.

Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте.

В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

https://www.youtube.com/watch?v=r4viJT7Nsuk\u0026t=63s

Будет интересно➡ Как проверить трансформатор при помощи мультиметра

  7 способов прокладки волоконно-оптического кабеля

Принцип работы регулятора

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой.

Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод.

Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

https://www.youtube.com/watch?v=r4viJT7Nsuk\u0026t=39s

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль.

Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной. Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%.

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

  • Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.
  • Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В
  • Обозначения:
  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода).

Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Какие элементы понадобятся

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600, 4-12А.
  • Диоды VD1, VD2 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Данная схема наиболее распространена и универсальна, существует множество ее вариаций.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

https://www.youtube.com/watch?v=r4viJT7Nsuk\u0026t=82s

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

  1. Схема регулятора мощности для индуктивной нагрузки
  2. Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.
  3. Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности
  4. Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Регулятор мощности SL-1800

Регулятор мощности SL-1800 можно встретить во многих недорогих китайских пылесосах.

Ремонт этого регулятора, не смотря на кажущуюся простоту схемотехники, невозможен – найти микросхему управления симистором практически невозможно. Силовая часть регулятора мощности SL-1800 выполнена на микросхеме регуляторе 501B-8P и симисторе BTA16-600B.

Тут только два варианта событий: – купить плату регулятора в сборе, стоит она в районе 2000-2500 руб., что иногда составляет половину стоимости нового пылесоса. — собрать простейший регулятор мощности взамен оригинального регулятора.

Такое творчество обойдется только запчастями в 200-250 руб.

Простейший регулятор мощности (коллекторный двигатель, лампа, нагреватель)

Важно. Перед заменой по любому из вариантов, убедиться, что щетки коллекторного двигателя изношены не более 50%, в противном случае есть шанс повторного ремонта

Тут следует добавить, стоимость работ по замене/диагностике составит еще 600 руб. , что может свести целесообразность ремонта к бесполезной трате времени.

Читайте также:  Пресадка кедра осенью и весной на участок, подкормка

Однако если ремонт делается «для себя» и владение паяльником не вызывает благоговейный ужас, то можно взяться за восстановление работоспособности.

Но все это теория, на практике все оказывается несколько проще, вот уже второй пылесос попадает в руки с одной неисправностью, возможно — это типовая неисправность

Неисправность со слов заказчика.

Согласно шильдика «пациента», мощность пылесоса не превышает 1800 Вт.

  Как_распределяется_по_проводнику_сообщенный_ему_заряд

Пылесос Zanussi ZANS710 не включается или включается, но во время работы самопроизвольно выключается.

Первичная диагностика. Проверяем щетки коллекторного двигателя — щетки в идеальном состоянии, неисправна плата регулятора мощности.

Пылесос Zanussi ZANS710 в разобранном состоянии.

Ремонт. Так как подобная неисправность уже встречалась на другом пылесосе, то первым делом проверяем электролитический конденсатор Е1(220мкФ*16В), который имеет тенденцию обламываться от вибрации под собственным весом. Этот случай не стал исключением, несмотря на полную исправность конденсатора Е1(220мкФ*16В), его все таки заменяем, работоспособность пылесоса восстановлена.

Источник

Фазоимпульсный регулятор мощности схема

Существует огромной количество классических тиристорных и симисторных схем регуляторов, но этот регулятор выполнен на современной элементной базе и кроме того являлся фазовым, т.е. пропускает не всю полуволну сетевого напряжения, а только некоторую её часть, тем самым и осуществляется ограничение мощности, т.к открытие симистора происходит только при нужном фазовом угле.

Источник: www.texnic.ru

Симисторный диммер с фазоимпульсным регулированием

Радиолюбители уже не один десяток лет собирают различные варианты тиристорного регулятора мощности. Этот узел, будучи включённым между сетью переменного тока напряжением 220 В и нагрузкой, позволяет в определённых пределах изменять мощность, выделяемую в нагрузке.

Если нагрузкой служил бытовой осветительный прибор, такой узел называли темнителем, если паяльник — регулятором температуры его жала. Ныне из-за рубежа пришло не только новое название этих устройств — дим-меры, но поступили в продажу и они сами.

По мнению автора публикуемой ниже статьи, эти диммеры далеки от совершенства.

Диммер — это тиристорный регулятор мощности, предназначенный, в частности, для регулирования яркости свечения ламп накаливания в бытовых электроосветительных приборах (люстрах, бра, торшерах и т. п.). Его можно встраивать в настенные выключатели в жилых помещениях.

Анализ схем промышленно выпускаемых диммеров (в основном китайского производства) показал, что фазо-сдвигающая цепь в них питается неста-билизированным напряжением.

Это приводит к тому, что момент открывания динистора в каждом полупериоде, а значит, и симистора, зависит от напряжения сети, что, в свою очередь, является причиной заметных перепадов мощности нагрузки диммера при колебаниях напряжения сети. Это ограничивает сферу применения подобных устройств.

В «Радио» было опубликовано описание регулятора мощности [1], в котором указанный недостаток прёодолён. Но, к сожалению, этот регулятор рассчитан на работу с нагрузками, мощность которых не превышает 100 Вт.

Попытка приспособить его к работе с более мощными лампами путём замены тринистора VS1 и диода VD2 [2] оказалась неудачной — на минимальной яркости лампы неприятно мерцают из-за однополупе-риодного выпрямления сетевого напряжения диодом VD2.

Выручить в этой ситуации мог бы диодный мост, включённый на входе регулятора (диод VD2 придётся изъять), но разместить мощные диодный мост и тринистор в стандартной нише выключателя проблематично, не говоря уже об отсутствии в зоне монтажа активной конвекции воздуха. Наличие в цепи нагрузки пяти элементов надёжности устройству тоже не добавляет.

К тому же лампы в светильниках, перегорая, часто вызывают замыкание цепи, хоть и кратковременное, но вполне достаточное для выведения из строя переключательного элемента. Каждый раз заменять этот элемент и выпрямительный мост весьма накладно как в плане трудозатрат, так и денежных расходов.

Фазоимпульсные регуляторы мощности с мощным симистором в качестве переключательного элемента отличают более высокий КПД и малое число элементов в цепи нагрузки, но из-за особенностей управления эти устройства зачастую схемно довольно громоздки [3]. Попытка объединить достоинства упомянутых схемных решений привела к устройству, схема которого показана на рис. 1. Оно, в отличие от описанного в [4], не требует применения импульсного трансформатора.

На транзисторах VT1 и VT2 собран аналог динистора, в который введён диод VD1. Это позволило использовать транзистор VT2 в роли замыкателя диагонали теперь уже маломощного выпрямительного моста VD3-VD6, включённого в цепь управляющего электрода симистора VS1.

В начале полупериода напряжения сети оба транзистора, диод VD1 и сими-стор закрыты, а конденсатор С1 разряжен.

Увеличивающееся напряжение создаёт ток через резисторы R9, R8, диоды моста, резистор R7 и стабилитрон VD2. Падения напряжения на резисторе R9 пока недостаточно для открывания симистора.

Стабилитрон VD2, включённый последовательно с балластным резистором R7, ограничивает напряжение между точками А и Б на уровне 12 В.

Через резисторы R3, R4 начинает заряжаться конденсатор С1. Как только напряжение на нём превысит напряжение на резисторе R6, начнёт открываться транзистор VT1. Падение напряжения на резисторе R2 приоткроет транзистор VT2, из-за чего начнёт уменьшаться напряжение на его коллекторе.

В результате этого начинает уменьшаться напряжение на резисторе R6. Возникает положительная ОС, действие которой приводит к лавинообразному открыванию обоих транзисторов аналога динистора.

Как только падение напряжения на транзисторе VT2 станет меньше, чем на резисторе R6, откроется диод VD1, ещё более ускоряя открывание аналога динистора и снижая тем самым мощность, рассеиваемую на транзисторе VT2.

Оба транзистора в конце процесса входят в насыщение.

Выходная диагональ диодного моста VD3-VD6 оказывается замкнутой, ток через резисторы R8 и R9 увеличивается и открывается симистор VS1, подключая нагрузку к сети на оставшуюся часть полупериода. Скорость зарядки конденсатора С1, а значит, и момент открывания транзистора VT1 зависят от положения движка переменного резистора R4, которым и регулируют мощность, выделяющуюся в нагрузке.

Если сопротивление цепи R3R4 окажется настолько большим, что конденсатор не успеет зарядиться до напряжения, необходимого для открывания аналога динистора, он останется закрытым. Но в конце полупериода конденсатор С1 всё равно разрядится транзистором VT1 вследствие того, что напряжение на резисторе R6 к этому моменту уменьшится до нулевого.

Такая привязка момента начала зарядки конденсатора С1 к началу полупериода необходима для того, чтобы исключить эффект «гистерезиса», который может возникнуть при регулировании мощности резистором R4. Этот эффект проявляется в «затягивании» регулировочной характеристики: при повороте ручки регулятора из положения минимальной мощности на малый угол мощность в нагрузке увеличивается скачком.

Резистор R1 ограничивает ток разрядки на безопасном для транзисторов уровне, растягивая разрядный импульс во времени для более уверенного открывания симистора, a R8 ограничивает ток через его управляющий электрод.

Резистор R2 предотвращает самопроизвольное срабатывание аналога динистора из-за увеличения тока коллектора транзистора VT2 при его разогревании.

Резистор R9 удерживает си-мистор закрытым (если он ещё не был открыт) на пиках сетевого напряжения.

Максимальная мощность нагрузки регулятора при обеспечении эффективного охлаждения симистора и транзистора уТ2 — 1 кВт

Большая часть деталей устройства смонтирована на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертёж платы представлен на рис. 2.

Все резисторы, кроме R4, — МЯТ; R4 — любой малогабаритный, умещающийся в отведённом ему пространстве. Поскольку все детали регулятора находятся под напряжением сети, необходимо при его установке и пользовании учитывать это обстоятельство.

В частности, ручка переменного резистора R4 должна быть изготовлена из изоляционного материала.

Резисторы R8, R9 распаивают на выводах симистора, устанавливаемого вне платы. Если мощность нагрузки превышает 600 Вт, симистор следует снабдить теплоотводом в виде пластины размерами 20x20x1 мм из меди. Конденсатор С1 — КМ-6, К73-17 или К73-9

Диоды КД105В можно заменить на КД105Г или другие на обратное напряжение не менее 400 В.

Транзистор КТ361В заменим любым из этой серии (с коэффициентом h2іе>50), а КТ538А — на КТ6135А или, в крайнем случае, на КТ940А, у которого ограниченный запас по напряжению коллектор-эмиттер (h21E>20).

Разъём Х1 — любой малогабаритный, с двумя контактами, рассчитанный на сетевое напряжение; можно использовать два одноконтактных. Подойдут также и винтовые соединительные зажимы.

Налаживания регулятор не требует, но, возможно, будет целесообразно подобрать точнее резистор R3 по достижению максимальной яркости ламп в крайнем левом (по схеме) положении движка резистора R4.

Собранную плату устанавливают в нишу предварительно демонтированного стенного выключателя. Снаружи нишу закрывают декоративной лицевой панелью, на которой закрепляют переменный резистор R4 — он будет служить и включателем освещения, и регулятором яркости. Устройство можно смонтировать также в подставке торшера или настольной лампы.

Нечаев И. Регуляторы температуры жала сетевых паяльников. — Радио, 1992, № 2, 3, с. 22-24.

2. Нечаев И. Регуляторы температуры жала сетевых паяльников (Наша консультация). — Радио, 1993, № 1, с. 45.

3. Бирюков С. Симисторные регуляторы мощности. — Радио, 1996, № 1, с. 44-46.

4. Сорокоумов В. Симисторный регулятор повышенной мощности. — Радио, 2000, №7, с. 41.

А. Дзанаев, г. Оренбург

Мнения читателей

Ссылка на основную публикацию
Adblock
detector