Схема включения симистора вместо реле

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях.

Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах.

Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Содержание статьи

Схема включения симистора вместо реле

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Схема включения симистора вместо реле

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Схема включения симистора вместо реле

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

  • Падение напряжения при максимальном токе анода (VT или Uос).
  • Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
  • Обратное напряжение (VR(PM) или Uобр).
  • Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
  • Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
  • Обратный ток (IR) — ток при определенном обратном напряжении.
  • Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
  • Постоянное отпирающее напряжение управления (VGT или UУ).
  • Ток управления (IGT).
  • Максимальный ток управления электрода IGM.
  • Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Схема включения симистора вместо реле

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Схема включения симистора вместо реле

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение.

То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток.

Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Схема включения симистора вместо реле

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Схема включения симистора вместо реле

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Схема включения симистора вместо реле

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Схема включения симистора вместо реле

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

Схема включения симистора вместо реле

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны.

Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт.

Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Интересно:

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими.

Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно.

Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее.

Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях.

Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Читайте также:  Температура пламени газовой горелки на баллончике

Алексей Бартош

Симисторы: принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью.

Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор.

Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Схема включения симистора вместо релеРис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО.

Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Схема включения симистора вместо релеРис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

Схема включения симистора вместо релеВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Схема включения симистора вместо релеСимистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

Схема включения симистора вместо релеRC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока.

Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась.

Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.
  • Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.
  • Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).
  • Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема включения симистора вместо релеСхема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Читайте также:  Расчет квт по сечению кабеля

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема включения симистора вместо релеСхема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Схема включения симистора вместо релеПростой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема включения симистора вместо релеСхема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Telegram канал @asutpp_ru

Замена э/м реле на симисторный ключ в выключателе Livolo

Решил я в квартиру накупить сенсорных выключателей. Вообще началось все с соседа, который жаловался, что они слышат, как мы пользуемся выключателем в спальне (дом — панелька). Ха ха. Я этому значения особо не придал, но червячок зашевелился. Хотелось, как в Stargate Atlantis, включать свет махом руки у выключателя.

Наткнулся на эти выключатели у российских магазинов, где они достаточно дороги. На Али они же оказались несколько дешевле. Вот только неоднозначно было, то ли они на реле, то ли на ключах. В обзорах встречаются и те и те, причем выключатели с ключами помаргивают лампочками, судя по отзывам. Может в силу схемотехники, или использования простых дешевых компонентов.

Заказал один на пробу. Пробу он прошел на ура, но подло щелкал релюшкой как дешевый кнопочный выключатель.

Поэтому решил заменить реле на ключ. Задача осложнялась двумя неудобствами: оптопара работает по управлению на 5в, а выключатель на 12, и, как выяснилось в последствии, реле импульсное (первый раз с такими столкнулся).

Пришлось думать, откуда взять постоянный сигнал на управление и куда впихнуть делитель, чтобы делать из 12в 5.

Сам ключ получился по габаритам недалеким от родного реле

Схема включения симистора вместо реле Схема включения симистора вместо реле

В данном случае собрать на плату не получалось и в угоду компактности пришлось лепить навесным монтажом. Да и то на двойной выключатель такая конструкция не встанет, надо искать двойную оптопару, для уменьшения занимаемой площади.

После попыток реверс-инженеринга выключателя, я нашел только одну точку с постоянным и подходящим управляющим напряжением — питание светодиодов индикации. Да и при напряжении 3в не нужен громоздкий делитель.

Потребление у оптопары очень маленькое, питания индикатора должно хватить. Бонусом — выбор цвета индикации вкл/выкл заменой точки подключения ключа.

За монтаж просьба сильно ногами не пинать — отладочный образец. На остальных придумаю, как более компактно и аккуратно все скомпоновать и подключить.

Точка снятия управляющего сигнала. (+3в)

Схема включения симистора вместо реле

Точка снятия управляющего сигнала  (-3в). Вторая нога разъема справа, в нижнем ряду по фото.

Схема включения симистора вместо реле

Общий вид того, что получилось.

Схема включения симистора вместо реле Схема включения симистора вместо реле

Проводок, опоясывающий сенсор добавлен для увеличения активной площади сенсора, чтобы не надо было пальцем тыкать в центр, а достаточно было махнуть рукой около выключателя.

Схема включения симистора вместо реле

Как результат — выключатель работает бесшумно. Лампочки (LED и энергосберегайки) не моргают и не светят в полнакала. Ключ и схемы выключателя не греются.

  • Состав ключа:
  • оптопара MOC3023 и симистор Q8025L6 (все снято с плат от дохлых ИБП)
  • Схема стандартная из датащита на МОС:

Схема включения симистора вместо реле

Простое твердотельное реле своими руками

Схема включения симистора вместо реле Бабай_Мазай 27-03-2020, 10:30 18 856 Электроника Твердотельное реле, представляющее собой мощный тиристорный (симисторный) электронный ключ удобнее, надежнее, имеет значительно больший ресурс и работает бесшумно, по сравнению с традиционными электромагнитными реле. Такой ключ-реле не имеет подвижных частей, искрящих-пригорающих-изнашивающихся контактов. Не трудно сделать (даже в кустарных условиях) такое электронное реле любой мыслимой степени защиты (пыль, влажность, агрессивные среды). В большинстве случаев электронные ключи-реле с успехом применяются для коммутации нагрузки на переменном токе в строящихся приборах и аппаратах, модернизируя или ремонтируя старые приборы (применяя мощные электронные ключи) улучшаем их характеристики. Например, выход из строя примененных в множестве бытовой техники механических термостатов с биметаллическими изгибающимися контактами – очень частая причина поломок. Применив подобный электронный ключ мы разгружаем контактную группу штатного механического термостата, колоссально повышая его ресурс. Здесь, реле-электронный ключ предназначено для управления электрическими нагревателями-спиралями в специальной печи небольшой мощности. Твердотельное реле управляется температурным контроллером имеющим специальный выход. Для сопряжения с контроллером применен транзисторный каскад. В целом, схема исполнительной части повторяет [1], отличаясь исполнением. Здесь, в качестве ключей применены симисторы в корпусах ТОР-3, что позволило сделать сборку вполне компактной. Принципиальная схема твердотельного реле на симисторе. Здесь применен симистор ВТА-41, транзистор КТ315. Симисторная оптопара – МОС3020 (ток включения светодиода 30 мА). Цепочка С1, R3 предназначена для улучшения динамических характеристик симистора, меньшее из диапазона сопротивлений соответствует резистивной нагрузке ключа, большее – индуктивной. Резистор греется, лучше подобрать керамический, мощностью не менее 5 Вт. При необходимости, ключ может быть применен и для ручного включения, подобно [2], в этом случае транзисторный каскад удаляется, а на светодиод подается питание от маломощного сетевого блока. Такую схему исполнительного устройства можно применить и для контроллеров, не оснащенных специальным (для твердотельных реле) выходом. Достаточно, чтобы устройство управления имело обычный релейный выход, пусть и слабый. Нормально разомкнутую группу контактов штатного реле, следует при этом включить в разрыв питания светодиода. В качестве радиаторов для симисторного ключа применены алюминиевые корпуса от отслуживших свой срок жестких дисков персонального компьютера. Они оказались вполне удобны для такого применения – преотлично нашлось место для крепления симистора, хорошо поместились и все детали высоковольтной части. Размер корпуса у HDD стандартен, имеются отверстия с нарезкой для специальных коротких саморезов. В ряде случаев, очень удобно применять и металлический корпус от старого системного блока. Модули симисторных ключей при этом монтируются на штатные места в специальную «корзину». Узко-высокий корпус-башню лучше проектировать для ее горизонтального положения, при этом все радиаторы с ключами внутри будут расположены вертикально, для нормального естественного охлаждения (не забыть про вентиляционные отверстия). Либо применять обдув и контроль температуры. Мой блок управления будет трехфазным, это усложнит схему и увеличит громоздкость блока управления, зато втрое снизит проходящие токи, равномерно распределит греющиеся элементы (симисторы, элементы снабберов) и позволит задействовать пусть и перекошенную, но трехфазную деревенскую сеть.

Читайте также:  Что делают из никеля для дома

Что понадобилось для работы.

Набор инструмента для электромонтажа, паяльник средней мощности (40…60 Вт) с принадлежностями, мультиметр, фен строительный или специальный для работы с термотрубками. Набор инструмента для некрупных слесарных работ, ножницы по металлу, электрическая дрель или шуруповерт, набор сверл.

Материалы – отслужившие HDD, потребные радиоэлементы, крепеж, провод, мелочиВ своем электрическом хламе подобрал три гарантированно ненужных жестких диска, удалил платы контроллеров и механическую часть, оставил только крашеный порошковой краской алюминиевый поддон.

В одном из вариантов HDD мотор дисков оказался насмерть запрессованным, оставил как есть, он не помешает. Разметил места креплений для крупных элементов. Керамический 10 Вт резистор снаббера закрепил жестяной обоймой вырезанной из банки от сгущенного молока (съесть, отмыть, высушить, отрезать торцы, выровнять). Обоймы с резисторами закрепил винтиками М3 (+гайки-шайбы-стопоры). Симисторы в выбранном месте прижал планками из нетонкого текстолита. Те же винтики М3 со всем сопутствующим, симистор изолировал от радиатора пластинкой из тонкой слюды. Под пластинку и под симистор плюхнул немного теплопроводящей пасты. Весь электромонтаж велся короткими жесткими проводами – толстой медной луженой проволокой изолированной термотрубкой. Схема несложная, хватило выводов механически закрепленных элементов. Для более удобного подключения нагрузки, сделал от ножек симистора короткие проволочные выводы, сигнал управления подключается к выводам торчащей оптопары. Чтобы не путаться, незадействованный вывод откусил. Испытания нагрузкой показали, что железка при работе с 2 кВт нагрузкой нагревается незначительно. Вместо сигнала управления зажигал светодиод оптопары от регулируемого БП, установив ток защиты 10 мА.

После проверки работоспособности каждого ключа, собрал трехфазный макет. Все три светодиода оптопар ключей (МОС3022, ток включения светодиода 10 мА) включены параллельно к одному транзисторному каскаду. Такое включение не рекомендуется – сложно достичь полной синхронности работы из-за неравенства, неидентичности оптопар. Мне пришлось применить оптопары имеющиеся. Из их большого количества отобрал три с одинаковыми измеренными параметрами светодиодов. Кроме того, возможной несинхронностью включения нагревателей в печи вполне можно пренебречь. Собственно, даже отказ одного из нагревателей скомпенсирует термоконтроллер.

Согласующий транзисторный каскад собран на отдельной некрупной платке и снабжен специальными проволочными выводами для винтовых клемм контроллера. Для уменьшения возни с травлением платку спроектировал так, чтобы границы между широкими контактными площадками легко и удобно прорезать бормашиной.

Контроллер для испытаний применил из временного состава миниатюрной печи для фьюзинга.

В качестве нагрузки-индикатора включил три 60 Вт лампы накаливания. Чтобы ничего не замкнуло в самый неподходящий момент, смонтировал все крупные элементы на живую нитку на куске ДСП. Пришлось к рабочему столу протянуть и все три фазы. Все отлично, все три включаются синхронно и надежно. Babay Mazay, март, 2020 г.Литература

1. Самодельное твердотельное реле, блок управления муфельной печью.

2. Трехфазное твердотельное реле на 40 А. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

6.2

Идея

7.2

Описание

6.2

Исполнение

Итоговая оценка: 6.5

Управление нагрузкой 220 вольт БЕЗ реле! 58

При автоматизации дома или квартиры необходимо управлять электрическими приборами работающими от напряжения 220 вольт. К сожалению контроллер arduino не может коммутировать такое большое напряжение на прямую. Необходим посредник. Первое что приходит на ум — РЕЛЕ.

У данного способа есть и плюсы и минусы. К плюсам можно отнести гальваническую развязку, возможность коммутировать все, что душе  угодно (постоянный или переменный ток, любое напряжение до 250 вольт)

Минусы — дребезг контактов и щёлкает. Не такой большой минус, но он есть.

Как я не раз уже говорил: “Главное — это семья!” и если кому-то из близких не комфортно, необходимо постараться исправить.

После заявления родных о том, что “что-то там щёлкает и пугает…” решил собрать полупроводниковый ключ переменного напряжения. На просторах интернета не составило труда найти подробное описание и схему данного устройства.

Главные действующие герои ключа переменного напряжения — симистор и оптопара.

Симистор сам по себе уже является ключом переменного напряжения, но для управления симистором мы будем использовать оптопару, для того что бы обеспечить гальваническую развязку.

Рассматривая различные варианты я решил взять оптопару MOC3063. Дело в том, что она с детектором перехода нуля коммутируемого напряжения. Другими словами симистор будет открываться и закрываться в тот момент когда синусоида проходит через ноль. Данное свойство позволит продлить жизнь коммутируемым приборам…

  • Но хватит ходить вокруг да около.
  • Принципиальная схема:
  • Исходя из своих потребностей решил делать двух канальный ключ.
  • Нарисовал плату:

скачать PDF или в формате SprintLayout6 скачать

скачать программу для редактирования печатных плат SprintLayout6

Изготовил плату старым добрым способом «лазерного утюга» (ЛУТ). Только вместо утюга был использован ламинатор.

Стоимость деталей:

  1. оптопара MOC3063 — 38 руб. х2 шт.
  2. симистор BT138-600 — 30 руб. х2 шт.
  3. резисторы 6 шт. по рублю.
  4. кусок стеклотекстолита фольгированного — бесплатно (ориентировочно 10-15 руб.)
  5. клемники — можно считать бесплатными т.к. уже давно купил их 100500 штук.
  6. хлорное железо, припой и паяльник не считаем.

Итого около 150 руб.

 Плюсы:

  1. полезно для коммутируемых устройств
  2. гальваническая развязка
  3. БЕСШУМНО!

Минусы:

  1. только переменное напряжение

Фото того, что получилось:

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]