Схемы регулировки тока зарядных устройств

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях. 

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения. 

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта.

 Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.

 

Схемы регулировки тока зарядных устройств

Первая схема отличается максимальной простотой и доступностью компонентов.  Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток. 

Схемы регулировки тока зарядных устройств

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Схемы регулировки тока зарядных устройствСхемы регулировки тока зарядных устройств

Резистор R1 по сути обычный делитель напряжения, которым  мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему. 

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

Схемы регулировки тока зарядных устройств

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме.

 Операционный усилитель  сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение.

Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения. 

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне. 

Схемы регулировки тока зарядных устройствСхемы регулировки тока зарядных устройств

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока. 

Схемы регулировки тока зарядных устройств

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов. 

Схемы регулировки тока зарядных устройствСхемы регулировки тока зарядных устройств

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься. 

  • Небольшое видео

Печатные платы 

Самодельное зарядное устройство для автомобильного аккумулятора из БП АТХ, схемы

Первой будет схема, пожалуй, самая простейшая, и справиться с ней сможет практически любой автолюбитель.

Как сделать пастилу в сушилке на пергаменте?

Для изготовления простейшего зарядного устройства понадобиться всего лишь две составные части – трансформатор и выпрямитель.

Главное условие, которым должно соответствовать зарядное устройство – это сила тока на выходе из прибора должна составлять 10% от емкости АКБ.

То есть, зачастую на легковых авто применяется батарея на 60 Ач, исходя из этого, на выходе из прибора сила тока должна быть на уровне 6 А. При этом напряжение 13,8-14,2 В.

Как попросить домового найти вещь или деньги в квартире

Если у кого-то стоит старый ненужный ламповый советский телевизор, то лучше трансформатора, чем из него не найти.

Принципиальная схема зарядного устройства из телевизора имеет такой вид.

Схемы регулировки тока зарядных устройств Кактус желтеет снизу что делать?

Зачастую на таких телевизорах устанавливался трансформатор ТС-180. Особенностью его являлось наличие двух вторичных обмоток, по 6,4 В и силой тока 4,7 А. Первичная обмотка тоже состоит из двух частей.

Схемы регулировки тока зарядных устройств

Вначале потребуется выполнить последовательное подключение обмоток. Удобство работ с таким трансформатором в том, что каждый из выводов обмотки имеет свое обозначение.

Для последовательного соединения вторичной обмотки нужно соединить между собой выводы 9 и 9’.

А к выводам 10 и 10’ – припаять два отрезка медного провода. Все провода, которые припаиваются к выводам должны иметь сечение не менее 2,5 мм. кв.

Схемы регулировки тока зарядных устройств

Что касается первичной обмотки, то для последовательного соединения нужно соединить между собой выводы 1 и 1’. Провода с вилкой для подключения к сети нужно припаять к выводам 2 и 2’. На этом с трансформатором работы завершены.

Очень сухие кончики волос, что делать?Схемы регулировки тока зарядных устройств

Далее нужно сделать диодный мост. Для этого потребуется 4 диода, способных работать с током в 10 А и выше. Для этих целей подойдут диодные мосты Д242 или аналоги Д246, Д245, Д243.

Схемы регулировки тока зарядных устройств

На схеме указано, как должно производится подключение диодов – к диодному мосту припаиваются провода, идущие от выводов 10 и 10’, а также провода, которые будут идти к АКБ.

Схемы регулировки тока зарядных устройств

Не стоит забывать и о предохранителях. Один из них рекомендуется установить на «плюсовом» выводе с диодного моста. Этот предохранитель должен быть рассчитан на ток не более 10 А. Второй предохранитель (на 0,5 А) нужно установить на выводе 2 трансформатора.

Перед началом зарядки лучше проверить работоспособность устройства и проверить его выходные параметры при помощи амперметра и вольтметра.

Иногда бывает, что сила тока несколько больше, чем требуется, поэтому некоторые в цепь установить 12-вольтовую лампу накаливания с мощностью от 21 до 60 Ватт. Эта лампа «заберет» на себя излишки силы тока.

Видео

Основные требования

Самодельные устройства, в отличие от заводских, требуют несколько другого подхода к эксплуатации. У большинства из них отсутствуют многие узлы, помогающие при зарядке и повышающие безопасность. Происходит так преимущественно потому, что мастера, не имея опыта монтажа сложных электронных схем, стремятся упростить конструкцию.

Схемы регулировки тока зарядных устройств

Если приборы автоматического контроля и аварийного отключения отсутствуют, требуется постоянно наблюдать за процессом. Оставлять работающее устройство без присмотра опасно: есть риск повреждения аккумулятора и даже пожара. Поэтому в зарядном устройстве, сделанном самостоятельно, желательно предусмотреть узлы для безопасной автономной работы.

Они должны обеспечить:

  • стабильность вольтажа на выходе;
  • отключение от аккумулятора при превышении зарядного тока или напряжения;
  • самоблокировку — после аварийного отключения устройство самостоятельно запуститься не может;
  • защиту от неправильного подключения полюсов.

Нужные параметры при зарядке постоянным током

Уже доказано, что производить заряд автомобильных свинцовых кислотных аккумуляторных батарей (в основном в автомобилях присутствуют именно такие) необходимо при помощи тока, не превышающего показателя в 10% от емкости всей батареи.

Так, в случае емкости АБ в 55 A/ч, максимальная подача тока заряда должна быть 5,5 А. По такому принципу высчитывается максимальный ток для любой батареи.

Можно даже немного снизить подачу тока, но в таком случае процесс заряда будет идти немного медленнее. Накопление заряда будет происходить даже в случае, если ток заряда будет ближе к отметке 0,1 А.

Но в таком случае для восстановления емкости необходимо будет очень много времени.

Минимальное время заряда АБ при уровне тока в 10% от заряда составляет 10 часов, но это в случае полного разряда батареи, которого допускать недопустимо. Поэтому на фактическое время до полного заряда влияет глубина разряда.

Схемы регулировки тока зарядных устройств

Чтобы произвести расчет примерного времени до полного заряда, следует выяснить разницу между максимальным зарядом (12,8 вольт) и вольтажом на данный момент. Если эту цифру умножить на 10, то можно получить приблизительно время в часах.

Самодельная зарядка для АКБ

Существует много схем автомобильных зарядных устройств. Для реализации большинства подойдут детали, трансформаторы, выпаянные из старой радиоаппаратуры, блоки питания компьютеров.

Схемы регулировки тока зарядных устройств

Зарядка с плавной регулировкой тока

Схема немного сложнее, но все детали доступны. Прибором заряжают 12-вольтовые АКБ, емкость которых — до 120 А∙ч. Вид зарядного тока — импульсный, используется тиристор. Регулятором плавно изменяют величину зарядного тока, но одновременно предусмотрен ступенчатый переключатель. Контролируют режим при помощи стрелочного амперметра на 30 А.

Читайте также:  Лучшие марки стали для охотничьих ножей

Схемы регулировки тока зарядных устройств

Самодельный резистор R1 нужен для ограничения тока. Для его изготовления подойдет медный или нихромовый провод диаметром 0,8 мм. Нужна будет небольшая индикаторная лампа Е1, рассчитанная на 24-36 В.

Выходное напряжение на понижающем трансформаторе 16-18 В, ток — 15 А. Ищут прибор с такими характеристиками или делают своими руками из подходящего устройства мощностью 300 Вт. Оставляют только первичную обмотку, вторичную из 42 витков наматывают проводом с изоляцией, сечение 6 мм².

Для схемы нужен тиристор КУ202 с буквенным индексом В-Н. Для охлаждения используют радиатор, площадь рассеивания которого от 200 см². А также понадобится диод VD1 любого типа с характеристиками обратного напряжения 20 В, тока — 200 мА.

Настраивают устройство калибровкой амперметра, подключив в качестве контрольного заведомо исправный. Для нагрузки вместо АКБ подключают автомобильные лампочки, общая мощность которых составляет 250 Вт.

Зарядка из компьютерного блока питания

Из старого блока питания ПК с контроллером TL 494 получается зарядное устройство с хорошими характеристиками. У него регулируемое напряжение и возможность подстройки тока до 10 А.

В демонтированный из компьютера БП вносят согласно схеме некоторые изменения:

  1. На шинах питания откусывают все провода, оставив только желтые и черные.
  2. Проводники одного цвета соединяют между собой. Жгут из черных — это минусовый контакт ЗУ, из желтых — плюсовой.
  3. Печатные дорожки к ножкам 1, 14, 15, 16 микросхемы перерезают.
  4. Для регулировки напряжения устанавливают переменный резистор 10 кОм, зарядного тока — 4,4 кОм.

Собирают способом навесного монтажа, используют провода с минимальным сечением 4 мм². Устанавливают вольтметр, амперметр, подключают провода с зажимами.

Расположенный внизу схемы резистор на 0,1 Ом мощностью 10 Вт и больше делают из меди или нихрома: подбирают нужную длину провода, замеряя сопротивление. Подойдут также резисторы С5-16МВ или 2 подключенных параллельно 5WR2J. Остальные — любого типа.

Требования к зарядке АКБ

Перед проведением процедуры изготовления самодельного зарядного для АКБ необходимо обратить внимание на следующие требования:

  1. Обеспечение стабильного напряжения 14,4 В.
  2. Автономность устройства. Это означает, что самодельное устройство не должно требовать присмотра за ним, так как зачастую АКБ заряжается ночью.
  3. Обеспечение отключения зарядного устройства при увеличении зарядного тока или напряжения.
  4. Защита от переполюсовки. Если устройство будет подключено к АКБ неправильно, то должна срабатывать защита. Для реализации в цепь включается предохранитель.

Переполюсовка представляет собой опасный процесс, в результате которого АКБ может взорваться или закипеть.

Если аккумулятор исправен и лишь слегка разряжен, то при неправильном подключении зарядного  устройства произойдёт повышение тока заряда выше номинального.

Если же АКБ разряжена, то при переполюсовке наблюдается увеличение напряжения выше заданного значения и как итог — электролит закипает.

Схема зарядного устройства для автомобильного аккумулятора

Чтобы собрать самодельное зарядное устройство нужны хотя бы навыки пайки, не более. Вот несколько схема зарядного устройства для автомобильного аккумулятора, которые можно собрать за пару часов.

Простые схемы

Вот 3 схемы простого зарядного устройства для автомобильного аккумулятора. Возможно, все необходимые комплектующие уже у вас есть или их можно купить за бесценок на барахолке.

С диодным мостом

Для АКБ автомобиля этот вариант подходит лучше. ДМ – это уже полноценный выравниватель напряжения.

Зарядник для автомобильного аккумулятора собирается также, но вместо диода устанавливается мост. От его минуса провод идет на предохранитель после трансформатора.

Диодный мост можно купить или спаять самостоятельно. Для этого понадобится всего 4 диода. Схема выглядит так. Напряжение все еще пульсирующее, что не очень хорошо для аккумуляторов.

С диодным мостом и конденсатором

Вот как выглядит правильное трансформаторное зарядное устройство. Между плюсом и минусом ставится конденсатор на 25-50 вольт и 5000-6000 микрофарад.

Конденсатор принимает напряжение и отдает его, но уже выровненным и без пульсаций.

Схемы с регулировкой

Если хочется, чтобы зарядник для аккумулятора автомобиля, сделанный своими руками правильно работал, необходим регулятор. С этим справится обычный подстроечный (переменный) резистор на 4,7 килоома.

Также в схеме предусмотрено 3 транзистора. Их расположение и номер подписан, поэтому проблем не будет. Достаточно прийти в радиомагазин и показать наименования. Они необходимы, чтобы резистор работал корректно.

Транзисторам необходимо хотя бы пассивное охлаждение, поэтому к их радиаторам лучше прикрепить алюминиевую пластину или поставить кулер.

Замечание. На схеме в разрыв транзистора П210 и вторым предохранителем установлен амперметр. С регулировкой тока и напряжения в нем нет необходимости, так как подстроить нужно только вольтаж. Поэтому на его место лучше поставить вольтметр.

Подробное видео можно посмотреть ниже.

Как узнать состояние батареи?

Необходимость зарядки автомобильного аккумулятора зависит от уровня заряда. И метод проверки, который обычно называют «скручивание / не скручивание», — не самый удачный метод. Если аккумулятор «не крутится», например, перед троганием с места вы вообще не сможете завести машину, состояние «не крутится» критично и может иметь крайне негативные последствия для самого аккумулятора.

Самый эффективный и безопасный метод — измерить напряжение простейшим тестером. Итак, при температуре воздуха около 20 градусов зависимость степени заряда от напряжения на выводах отключенного от нагрузки аккумулятора выглядит следующим образом:

  • 12.6-12.7 — аккумулятор полностью заряжен;

Три простые схемы регулятора тока для зарядных устройств

  • Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.
  • Схемы регулировки тока зарядных устройствРегулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.
  • В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.
  • Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.Схемы регулировки тока зарядных устройств
  • Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.Схемы регулировки тока зарядных устройств

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Схемы регулировки тока зарядных устройств

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Схемы регулировки тока зарядных устройствДатчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

  Как сделать дешёвую незамерзайку своими руками

Схемы регулировки тока зарядных устройствТакого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.Схемы регулировки тока зарядных устройств

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Схемы регулировки тока зарядных устройствРезистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Схемы регулировки тока зарядных устройствРезистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Читайте также:  Лучшая электропила для дачи рейтинг

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

  Как восстановить поцарапанный CD-диск

  1. Выход операционного усилителя управляется мощным полевым транзистором.
  2. То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.
  3. Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.Нужный ток задается переменным резистором.

Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.Нужный ток задается переменным резистором.

Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Введите электронную почту и получайте письма с новыми поделками.

  • Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.
  • Взамен будет нагреваться транзистор и от этого никуда не денешься.
  • Архив к статье; скачать…
  • Автор; АКА Касьян
  • Как вам статья?

Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных
батарей, и в частности режима зарядки, гарантирует их безотказную
работу в течение всего срока службы. Зарядку аккумуляторных батарей
производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная
электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по
эксплуатации аккумуляторной батареи, обеспечивает оптимальное
протекание электрохимических процессов в ней и нормальную работу в
течение длительного времени.

Классическая схема зарядного устройства для автомобильного
аккумулятора состоит из понижающего трансформатора, выпрямителя и
регулятора тока зарядки. В качестве регуляторов тока применяют
проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы
тока.

Схемы регулировки тока зарядных устройств

В обоих случаях на этих элементах выделяется значительная
тепловая мощность, что снижает КПД зарядного устройства и
увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать
магазин конденсаторов, включаемых последовательно с первичной
(сетевой) обмоткой трансформатора и выполняющих функцию реактивных
сопротивлений, гасящих избыточное напряжение сети. Упрощенная
схема такого устройства приведена на рис.
2.

Схемы регулировки тока зарядных устройств

В этой схеме тепловая (активная) мощность выделяется
лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе,
поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость
обеспечить напряжение на вторичной обмотке трансформатора в полтора
раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку
12-вольтовых аккумуляторных батарей током до 15 А, причем ток
зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена
на Рис. 3.

Схемы регулировки тока зарядных устройств

Предусмотрена возможность автоматического выключения
устройства, когда батарея полностью зарядится. Оно не боится
кратковременных коротких замыканий в цепи нагрузки и обрывов в
ней.

Выключателями Q1 — Q4 можно подключать различные
комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог
срабатывания реле К2, которое должно срабатывать при
напряжении на зажимах аккумулятора, равном напряжению полностью
заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в
котором ток зарядки плавно регулируется от нуля до максимального
значения.

Схемы регулировки тока зарядных устройств

Изменение тока в нагрузке достигается регулированием
угла открывания тринистора VS1. Узел регулирования выполнен на
однопереходном транзисторе VT1. Значение этого тока определяется
положением движка переменного резистора R5. Максимальный ток заряда
аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и
нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4),
размером 60х75 мм приведен на следующем рисунке:

Схемы регулировки тока зарядных устройств

В схеме на рис. 4 вторичная обмотка трансформатора
должна быть рассчитана на ток, втрое больший зарядного тока, и
соответственно мощность трансформатора также должна быть втрое
больше мощности, потребляемой аккумулятором.

  • Названное обстоятельство является существенным
    недостатком зарядных устройств с регулятором тока тринистором
    (тиристором).
  • Примечание:
  • Диоды выпрямительного мостика VD1-VD4 и
    тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а
следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи
вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис.
5.

Схемы регулировки тока зарядных устройств

В схеме на Рис. 5 регулирующий узел аналогичен
примененному в предыдущем варианте устройства. Тринистор VS1
включен в диагональ выпрямительного моста VD1 — VD4.

Поскольку ток
первичной обмотки трансформатора примерно в 10 раз меньше тока
заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно
небольшая тепловая мощность и они не требуют установки на
радиаторы.

Кроме того, применение тринистора в цепи первичной
обмотки трансформатора позволило несколько улучшить форму кривой
зарядного тока и снизить значение коэффициента формы кривой тока
(что также приводит к повышению КПД зарядного устройства).

К
недостатку этого зарядного устройства следует отнести
гальваническую связь с сетью элементов узла регулирования, что
необходимо учитывать при разработке конструктивного исполнения
(например, использовать переменный резистор с пластмассовой
осью).

Вариант печатной платы зарядного устройства на
рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Схемы регулировки тока зарядных устройств

Примечание:

Диоды выпрямительного мостика VD5-VD8
необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик
VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3
типа КС518, КС522, КС524, или составленный из двух одинаковых
стабилитронов с суммарным напряжением стабилизации 16÷24 вольта
(КС482, Д808, КС510 и др.).

Транзистор VT1 однопереходной, типа
КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с
рабочим током не менее 10 ампер (Д242÷Д247 и др.).
Диоды устанавливаются на радиаторы площадью не менее 200 кв.

см, а
если радиаторы будут сильно нагреваться, в
корпус зарядного устройства можно установить вентилятор для
обдува.

Регулятор тока зарядного устройства

В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения.

Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством.

Схемы регулировки тока зарядных устройств

Вариант реализации такого блока до безобразия прост  и собран на одном элементе ОУ.
Зарядное устройство должно отдавать напряжение 13,5-14,5 Вольт при токе до 10 Ампер.

  • Полевой транзистор – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливают на теплоотвод.
  • Схемы регулировки тока зарядных устройств

Можно использовать низковольтные полевые транзисторы с током от 20 , а еще лучше от 40 Ампер. Для наших целей отлично подойдут мощные N- канальные полевые транзисторы типа IRF3205, IRFZ44/46/48 iили аналогичные.

  1. Схемы регулировки тока зарядных устройств
  2. Силовой шунт в моем случая в виде низкоомного резистора, если кому лень искать, можете использовать шунт , который стоит в дешевых китайских мультиметрах, такие шунты можно использовать для довольно точных замеров при токах до 10-14Ампер.
  3. Схемы регулировки тока зарядных устройствСхемы регулировки тока зарядных устройств
  4. Полевой транзистор при желании можно заменить на биполярный, но с учетом того, что последний должен иметь большой ток коллектора, к примеру КТ819ГМ или КТ8101 из наших , тоже устанавливают на теплоотвод.

Схемы регулировки тока зарядных устройств

ОУ в моем варианте задействован сдвоенный , типа ЛМ358, но можно использовать и одиночные операционные усилители, к примеру – TL071/081

Автор; АКА Касьян

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Читайте также:  Как снять встроенную микроволновку

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.

  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки.

Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей.

Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт.

Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать.

Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца.

Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах.

Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше.

Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования.

В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт.

Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла.

Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

1 схема мощного ЗУ

Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость.

Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт.

Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так.

Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить.

Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

Схема

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

Схема

1 простая схема — как собрать ЗУ

Схема

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]