Шестигранник вписанный в окружность формулы

Построение вписанного в окружность правильного шестиуголь­ника. Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения доста­точно разделить окружность на шесть равных частей и соединить най­денные точки между собой (фиг. 60, а).

Шестигранник вписанный в окружность формулы

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4 (фиг. 60, б), строим стороны 1 —6, 4—3, 4—5 и 7—2, после чего прово­дим стороны 5—6 и 3—2.

Построение вписанного в окружность равностороннего треуголь­ника. Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного цир­куля.

Рассмотрим два способа построения вписанного в окружность рав­ностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, прове­дённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0—1—2 равен 30°, то для нахождения стороны

Шестигранник вписанный в окружность формулы

1—2 достаточно построить по точке 1 и стороне 0—1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1—2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2—3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 прово­дим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вер­шины через одну, то получится равносторонний треугольник.

Для построения треугольника (фиг. 61, б) намечаем на диаметре вершину—точку 1 и проводим диаметральную линию 1—4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окруж­ностью в точках 3 и 2. Полученные точки будут двумя другими вер­шинами искомого треугольника.

Построение квадрата, вписанного в окружность. Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пере­секаются в центре описанного круга и наклонены к его осям под углом 45°.

Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные сто­роны квадрата 4—1 и 3—2.

Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1—2 и 4—3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра (фиг. 62, б). Намечаем на концах двух взаимно перпендикулярных диа­метров точки А, В и С и из них радиусом у описываем дуги до вза­имного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные пря­мые, отмеченные на фигуре сплошными линиями. Точки их пересече­ния с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Шестигранник вписанный в окружность формулы

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник (фиг. 63), про­изводим следующие построения.

Намечаем на окружности точку 1 и принимаем её за одну из вер­шин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точ­ках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1.

Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5.

Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вер­шины 3 и 4. Найденные точки последовательно соединяем между собой.

  Диспетчер задач высокий приоритетШестигранник вписанный в окружность формулы

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую.

Далее от точки К на этой прямой откладываем отрезок, равный 4/6 AB.

Получим точку 1—вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведён­ными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Шестигранник вписанный в окружность формулы

Приведённый способ годен для построения правильных многоуголь­ников с любым числом сторон.

Деление окружности на любое число равных частей можно произ­водить также, пользуясь данными табл. 2, в которой приведены коэф­фициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

Шестигранник вписанный в окружность формулы

  • В первой колонке этой таблицы указаны числа сторон правильного вписанного многоугольника, а во второй—коэффициенты.
  • Длина стороны заданного многоугольника получится от умножения радиуса данной окружности на коэффициент, соответствующий числу сторон этого многоугольника.

Знаете ли вы, как выглядит правильный шестиугольник? Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.

Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.

Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.

Шестигранник вписанный в окружность формулы

Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?

  Драйвера для ati radeon hd 4800 seriesШестигранник вписанный в окружность формулы

  1. Мы знаем, что площадь правильного треугольника: .
  2. Тогда площадь правильного шестиугольника — в шесть раз больше.
  3. , где — сторона правильного шестиугольника.
  4. Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольник.

Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне. Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти. Он равен .

Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.

Как найти площадь шестиугольника по формуле? Онлайн калькулятор расчета площади правильного шестиугольника с подробным решением

Гескагон — это правильный выпуклый многоугольник, соответственно, все его углы равны, все стороны равны, а если провести отрезок через две соседние вершины, то вся фигура окажется по одну сторону от этого отрезка.

Как и в любой правильный n-угольник, вокруг гексагона можно описать окружность или вписать ее вовнутрь. Главная особенность шестиугольника заключается в том, что длина радиуса описанной окружности совпадает с длиной стороны многоугольника.

Благодаря этому свойству можно легко найти площадь гексагона по формуле:

  • S = 2,59 R2 = 2,59 a2.
  • Кроме того, радиус вписанной окружности соотносится со стороной фигуры как:
  • r = 3,46 a.
  • Из этого следует, что вычислить площадь шестиугольника можно, оперируя одной из трех переменных на выбор.

Площадь правильного 6-угольника

Итак, у нас шестиугольная фигура с равными сторонами и углами. В повседневности мы часто имеем возможность встретить предметы правильной шестиугольной формы.

К примеру:

  • гайка;
  • пчелиные соты;
  • снежинка.

Шестиугольная фигура наиболее экономично заполняет пространство на плоскости. Взгляните на тротуарную плитку, одна подогнана к другой так, что зазоров не остается.

Каждый угол равен 120˚. Сторона фигуры равна радиусу описанной окружности.

Гексаграмма

Звездчатый правильный шестиугольник предстает перед нами в виде шестиконечной звезды. Такая фигура образуется путем наложения друг на друга двух равносторонних треугольников. Самой известной реальной гексаграммой является Звезда Давида — символ еврейского народа.

Площадь правильного шестиугольника по радиусу вписанной окружности

  1. Радиус вписанной окружности
  2. расчет площади правильного шестиугольника по радиусу вписанной окружности
  3. I. Для справки:

r =

правильный шестиугольник (гексагон)
— правильный многоугольник с шестью сторонами.

выпуклый шестиугольник
— многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.

площадь геометрической фигуры
— численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Через сторону

 {S= dfrac{3sqrt{3} cdot a^2}{2}}

Формула для нахождения площади правильного шестиугольника через сторону:

{S= dfrac{3sqrt{3} cdot a^2}{2}}, где a — сторона шестиугольника.

Через радиус описанной окружности

Формула расчета

Читайте также:  Как сделать освещение под навесом

Шестигранник вписанный в окружность формулы

Через радиус вписанной окружности

Формула для нахождения площади правильного шестиугольника через радиус вписанной окружности:

{S= 2sqrt{3} cdot r^2}, где r — радиус вписанной окружности.

Использование осей координат

Используем координаты вершин многоугольника:

  • В таблицу записываем координаты вершин x и y . Последовательно выбираем вершины, «двигаясь» против часовой стрелки, завершая список повторной записью координат первой вершины.
  • Умножаем значения координаты x 1-й вершины на значение y 2-й вершины, и продолжаем так умножать. Складываем полученные результаты.
  • Значения координат y1-й вершины умножаем на значения координат x 2-й вершины. Складываем результаты.
  • Вычитаем сумму, полученную на 4-м этапе из суммы, полученной на третьем этапе.
  • Делим результат, полученный на предыдущем этапе, и находим, что искали.

Гигантский гексагон

Гигантский гексагон — уникальное атмосферное явление на Сатуре, которое выглядит как грандиозный вихрь в форме правильного шестиугольника. Известно, что сторона гигантского гексагона составляет 13 800 км, благодаря чему мы можем определить площадь «облака». Для этого достаточно ввести значение стороны в форму калькулятора и получить результат:

S = 494 777 633

Таким образом, площадь атмосферного вихря на Сатурне приблизительно составляет 494 777 633 квадратных километров. Поистине впечатляет.

Гексагональные шахматы

Мы все привыкли к шахматному полю, разделенному на 64 квадратные ячейки. Однако существуют и гексагональные шахматы, игровое поле которых разделено на 91 правильный шестиугольник. Давайте определим площадь игровой доски для гексагональной версии известной игры. Пусть сторона ячейки составляет 2 сантиметра. Площадь одной игровой клетки составит:

S = 10,39

Тогда площадь всей доски будет равна 91 × 10,39 = 945,49 квадратных сантиметров.

Формулы:

  • Шестигранник вписанный в окружность формулыd = 2 * ad2 = √3 * ap = 6 * aS = 3/2 * √3 * a2r = √3 / 2 * a
  • Высота = d2 = 2 * r
  • Внутренние углы: 120°, 9 диагоналей

Радиус окружности = a

шестиугольник

Шестиугольник , от греческой ЕЕ ( «шесть» ) и γωνία ( «угла» ), представляет собой многоугольник с шестью вершин и шести сторон. Шестиугольник может быть правильным или неправильным.

Правильный шестиугольник является выпуклым шестиугольник , чьи шести сторон все же длина. Все внутренние углы правильного шестиугольника равны 120 ° .

Как равносторонних квадраты и треугольники , правильные шестиугольники позволяют регулярные тесселяции в плоскости . Квадратная и шестиугольная брусчатка используется, в частности, для мощения .

Среди всех мозаик плоскости шестиугольная мозаика (регулярная) — это мозаика с наименьшей общей длиной ребер. Это свойство находится в начале координат, в природе, из множества механизмов (плоских или в плоском сечении ) , такие как соты пчел или prismation  (в) из базальтовых органов и полигональных почв .

Правильный шестиугольник

Правильный шестиугольник — это выпуклый шестиугольник, вписанный в круг, все стороны которого имеют одинаковую длину (и углы одинаковой меры).

Общие свойства

Метрические соотношения в правильном шестиугольнике

Гексагональная сетка, которую можно найти в двумерном кристалле с отражением от линии и вращениями 6-го порядка вокруг точки. Таким образом, шестиугольник состоит из шести равносторонних треугольников .

Правильный шестиугольник можно разложить на шесть равносторонних треугольников , что придает ему следующие свойства.

Рассмотрим следующие характерные размеры правильного шестиугольника:

  1. длина одной стороны а  ;
  2. апофема  : прямая линия, перпендикулярная одной из сторон, соединяющая центр шестиугольника; его длина обозначена h  ;
  3. радиус описанной окружности r c  ;
  4. радиус вписанной окружности r i .

Таким образом, мы имеем следующие отношения:

взнак равнорпротив{ Displaystyle а = г _ { mathrm {с}}}
часзнак равноря{ Displaystyle ч = г _ { mathrm {я}}}
часзнак равно32в{ displaystyle h = { frac { sqrt {3}} {2}} a}

Расчет площади

Площадь правильного шестиугольника со стороной а равна

Взнак равно332в2.{ displaystyle A = { frac {3 { sqrt {3}}} {2}} a ^ {2}.}

Площадь правильного шестиугольника, вписанная окружность которого имеет радиус r i, равна

Взнак равно23ря2.{ displaystyle A = 2 { sqrt {3}} r _ { mathrm {i}} ^ {2}.}

Построение правильного шестиугольника

Правильный шестиугольник можно построить, потому что он удовлетворяет теореме Гаусса-Вантцеля  : 6 — это произведение 2 (действительно, 2 — степень 2) и 3 (3 — число Ферма ).

Можно построить правильный шестиугольник с компасом и линейкой , следуя способу из элементов из Евклида , который включает в себя строительство шести равносторонних треугольников:

Шестигранник вписанный в окружность формулы Шестигранник вписанный в окружность формулы
  • Построим окружность C с центром O и диаметром [AD];
  • Затем мы рисуем дугу окружности с центром A и радиусом [AO]: дуга окружности пересекает окружность C в точках B и F; (3)
  • Диаметры C, проходящие через B и через F, пересекают окружность в C и E; (4–5)
  • Соединяя точки окружности A, B, C, D, E и F, мы получаем правильный шестиугольник. (6–11)

Симметрия

Шестиугольник имеет шесть осей симметрии: три оси симметрии, проходящие через противоположные вершины и центр, три оси симметрии, проходящие через середины противоположных сторон и центр.

Мощение

Правильный шестиугольник используется для создания периодической мозаики .

В природе

  • Есть много молекул и атомов, которые принимают гексагональную форму благодаря своим ковалентным связям:
    • В химии шестиугольник является представителем циклического алкана: циклогексана .
    • В природе еще одним распространенным элементом шестиугольной формы является снежинка . Составляющие их молекулы воды имеют правильные углы на кристаллах.
  • И в более крупном макроскопическом масштабе эта форма также видна в нашей окружающей среде  :
    • В геологии, усыхания трещины и охлажденные лавы потоки берут на одной и той же геометрической конфигурации в виде базальтовых колонн . Дорога гигантов в Северной Ирландии — очень хороший пример этого типа оптимального охлаждения потока расплавленного базальта.
    • Мыльные пузыри объединяются в шестиугольники, когда их слишком много в замкнутом пространстве. Затем они принимают форму шестиугольника, что соответствует изопериметрическому оптимуму .
    • В клетках пчелы , построенные для хранения меда и пыльцы или яиц и личинок призм сопоставляются горизонтальная ось , которые являются воск пирогом. Таким образом, восковая лепешка состоит из двух рядов шестиугольных ячеек, соединяющихся в основании. Шестиугольник — оптимальная фигура для пчелы. Он не только позволяет вымощать плоскость, но, кроме того, соответствует изопериметрическому оптимуму , то есть среди правильных фигур, которые позволяют вымощать пространство, шестиугольник соответствует наибольшей поверхности, которая возможна для данный периметр . Никакая другая фигура, которая вымощает пространство, не использует меньше воска, чем пчелы. Это замечание изначально принадлежит Паппу Александрийскому , древнегреческому геометру.
    • У нарцисса 6 лепестков, сваренных в шестиугольную трубку вокруг завязи. В самом деле, это также самая большая поверхность, которая может привлекать внутрь насекомых.
    • В гидродинамике вращающиеся потоки создают нестабильные структуры, такие как вихри . Они являются источником смерчей , а также течений и других потоков. Наблюдаемая таким образом геометрическая фигура называется «ведром Ньютона» или просто шестиугольником.
    • В бореальной области Северного полюса Сатурна космический зонд Кассини (2006–2013) и «Вояджер» (1980) наблюдали гексагональную структуру на 78 градусе северной широты . Он наблюдается с точки на высоте 902 000  км над облаками и является особенно стойким.
    • В сетке клетки медиальной энторинальной коры млекопитающих представляют собой шестиугольную структуру для того , чтобы представлять пространство, таким образом , участвует в памяти и пространственное представление.

Юникод

Гексагональные символы Юникода

Закодировано
Персонаж

U+2B21
U+2B22
U+2B23

Неправильный шестиугольник

Любой шестиугольник, который не является правильным шестиугольником, называется неправильным. Этот тип шестиугольника может иметь следующие формы:

Перекрещенный шестиугольник Выпуклый шестиугольник Вогнутый шестиугольник
Вершины Стороны Диагонали
6 6 9

Гексаграмма Паскаля

Паскаль Гексаграмма является очень частности , нерегулярные шестиугольник. Это так, что противоположные стороны пересекаются в трех выровненных точках. Эта конфигурация, изобретенная Блезом Паскалем , очень полезна для изучения эллипсов, гипербол, парабол, окружностей.

Другой

  • Благодаря примерно гексагональной формы, материковой Франции часто называют «  шестиугольника  ».
  • В XVII — м  века, после архитектурного идеала эпохи Возрождения, города Сицилии как Авол или Grammichele разрушены землетрясением в 1693 году, были восстановлены в гексагональной плане.
  • Благодаря своим возможностям укладки и простоте движений шестиугольник — очень распространенная фигура в варгеймах .

Заметки

  1. ↑ Правильный многоугольник с n сторонами можно построить тогда и только тогда, когда n является произведением степени двойки и всех различных простых чисел Ферма.
  2. ^ Лилиан Dufour, Генри Реймонд, Далл città Ideale алл Читтареал: л ricostruzione ди Авол, 1693-1695, Lombardi, 1993.

Смотрите также

  • Геометрический портал

Что такое правильный шестиугольник и какие задачи с ним могут быть связаны? :: SYL.ru

Во-первых, шестиугольником является фигура с 6 вершинами. Во-вторых, он может быть выпуклым или вогнутым. Первый отличается тем, что четыре вершины лежат по одну сторону от прямой, проведенной через две другие.

В-третьих, правильный шестиугольник характеризуется тем, что все его стороны равны. Причем каждый угол фигуры тоже имеет одинаковое значение. Чтобы определить сумму всех его углов, потребуется воспользоваться формулой: 180º * (n — 2). Здесь n — число вершин фигуры, то есть 6. Простой расчет дает значение в 720º. То есть каждый угол равен 120 градусам.

Читайте также:  Сверлить железо сверлом по кафелю

В повседневной деятельности правильный шестиугольник встречается в снежинке и гайке. Химики видят ее даже в молекуле бензола.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  Распилить Бревно На Доски Бензопилой

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису.

Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность.

Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

  • Читать также: Зажим для троса duplex
  • R=а.
  • Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.
  • Ну а площадь этой окружности будет стандартная:
  • S=πR²

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника.

Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается.

Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

  1. Высота равностороннего треугольника вычисляется просто:
  2. h²=а²-(а/2)²= а²3/4, h=а(√3)/2
  3. А поскольку R=a и r=h, то получается, что
  4. r=R(√3)/2.
  5. Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.
  6. Ее площадь будет составлять:

  Набор для сборки продвинутого LCR-метра

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

  • S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или
  • S=3R²(√3)/2
  • Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.
  1. Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:
  2. Читать также: Способы защиты от химической коррозии
  3. d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

  Как снять подшипник с якоря генератора

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

Введенные обозначения

Традиционно сторона правильной геометрической фигуры обозначается латинской буквой «а». Для решения задач требуются еще площадь и периметр, это S и P соответственно. В правильный шестиугольник бывает вписана окружность или описана около него. Тогда вводятся значения для их радиусов. Обозначаются они соответственно буквами r и R.

В некоторых формулах фигурируют внутренний угол, полупериметр и апофема (являющаяся перпендикуляром к середине любой стороны из центра многоугольника). Для них используются буквы: α, р, m.

Формулы, которые описывают фигуру

Для расчета радиуса вписанной окружности потребуется такая: r = (a * √3) / 2, причем r = m. То есть такая же формула будет и для апофемы.

Поскольку периметр шестиугольника — это сумма всех сторон, то он определится так: P = 6 * a. С учетом того, что сторона равна радиусу описанной окружности, для периметра существует такая формула правильного шестиугольника: P = 6 * R. Из той, что приведена для радиуса вписанной окружности, выводится зависимость между а и r. Тогда формула принимает такой вид: Р = 4 r * √3.

Для площади правильного шестиугольника может пригодиться такая: S = p * r = (a2 * 3 √3) / 2.

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка.

Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность.

Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом.

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

  • Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:
  • Теперь можно найти и ∠А1ОН1, рассмотрев ∆А1ОН1:
  • Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:
  • С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

  Бензопилы Efco: обзор модельного ряда

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Решение.

Найдем периметр шестиугольника:

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

Далее вычисляется радиус описанной около треугольника окружности:

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

  1. Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:
  2. Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:
  3. В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:
  4. Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:
  5. AC = 17 мм
Читайте также:  Сколиоз 3-й степени: лечение и профилактика

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

  • AH = AC/2 = 17/2 = 8,5 мм
  • Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:
  • Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.
  • Ответ: 20 мм.

  • Геометрия

    1. Формулы сокращённого умножения

    Наверх

    2. Модуль числа

    Основные свойства модуля:

    • Наверх
    • 3. Степень с действительным показателем
    ,
    ,
    ,
    ,

    Свойства степени с действительным показателем

    Пусть Тогда верны следующие соотношения:

    Наверх

    4. Корень n-ой степени из числа

    Корнем n-ой степени из числа a называется число, n-ая степень которого равна a.

    Арифметическим корнем четной степени n из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.
    Основные свойства арифметического корня:

    1. Наверх
    2. 5. Логарифмы
    3. Определение логарифма:
    4. Основное логарифмическое тождество:
    5. Основные свойства логарифмов
    6. Пусть Тогда верны следующие соотношения:
    ,
    • Наверх
    • 6. Арифметическая прогрессия
    • Формула n-го члена арифметической прогрессии:
    • Характеристическое свойство арифметической прогрессии:
    • Сумма n первых членов арифметической прогрессии:
    • Наверх
    • 7. Геометрическая прогрессия
    • Формула n-го члена геометрической прогрессии:
    • Характеристическое свойство геометрической прогрессии:
    • Сумма n первых членов геометрической прогрессии:
    • Наверх
    • 8. Бесконечно убывающая геометрическая прогрессия
    • Сумма бесконечно убывающей геометрической прогрессии:
    • Наверх
    • 9. Основные формулы тригонометрии

    При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:
    При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:
    Зависимость между тригонометрическими функциями одного аргумента:

      Формулы сложения:
      Формулы тригонометрических функций двойного аргумента:

        Формулы понижения степени:

        1. Формулы приведения

        Все формулы приведения получаются из соответствующих формул сложения. Например:

        • — определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что ;
        • — определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид или , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид , то функция названия не меняет.
        • Например, получим формулу :
        • — — IV четверть;
        • — аргумент приводимой функции имеет вид , следовательно, название функции меняется. Таким образом,

        Применение формул приведения укладывается в следующую схему:
        — определяется знак приводимой функции;
        — в IV четверти тангенс отрицательный;
        Формулы преобразования суммы тригонометрических функций в произведение:

          Формулы преобразования произведения тригонометрических функций в сумму:

          • Наверх
          • 10. Производная и интеграл

          • Таблица производных некоторых элементарных функций
          ФункцияПроизводнаяФункцияПроизводная
          c

          Правила дифференцирования:

          1. 1.
          2. 2.
          3. 3.
          4. 4.
          5. 5.
          6. Уравнение касательной к графику функции в его точке :

          Таблица первообразных для некоторых элементарных функций

          ФункцияПервообразнаяФункцияПервообразная
          a
          • Правила нахождения первообразных
          • Пусть ― первообразные для функций и соответственно, a, b, k ― постоянные, Тогда:
          • — ― первообразная для функции
          • — ― первообразная для функции
          • — ― первообразная для функции
          • — Формула Ньютона-Лейбница:

          Краткий справочник по геометрии (PDF)

          1. 1. Треугольник
          2. Пусть ― длины сторон BC, AC, AB треугольника ABC соответственно; ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; ― площадь треугольника ABC. Тогда имеют место следующие соотношения:
          3. (теорема синусов);
          4. (теорема косинусов);
          5. Наверх
            2. Четырёхугольники
          6. Параллелограмм
          7. Площадь четырехугольника
          8. Наверх
          9. 3. Окружность и круг
          10. Соотношения между элементами окружности и круга
          11. Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга,  — длина дуги в градусов,  — длина дуги в радиан,  — площадь сектора, ограниченного дугой в n градусов,  — площадь сектора, ограниченного дугой в радиан. Тогда имеют место следующие соотношения:

          Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.
          Прямоугольником называется параллелограмм, у которого все углы прямые.
          Ромбом называется параллелограмм, все стороны которого равны.
          Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.
          Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.
          Площадь параллелограмма равна произведению его основания на высоту.
          Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.
          Площадь трапеции равна произведению полусуммы ее оснований на высоту.
          Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

          • Вписанный угол
          • Вписанная окружность
          • Описанная окружность
          • Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны
          • Наверх
          • 4. Призма
          • Пусть H ― высота призмы, AA1 ― боковое ребро призмы,  ― периметр основания призмы,  ― площадь основания призмы,  ― площадь боковой поверхности призмы,  ― площадь полной поверхности призмы, V ― объем призмы,  ― периметр перпендикулярного сечения призмы,  ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
          • Наверх
          • 5. Пирамида
          • Пусть H ― высота пирамиды,  ― периметр основания пирамиды,  ― площадь основания пирамиды,  ― площадь боковой поверхности пирамиды,  ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:
          • ;
          • .

          • Замечание.
            Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то
          • Наверх
          • 6. Усечённая пирамида
          • Пусть H ― высота усеченной пирамиды, и  ― периметры оснований усеченной пирамиды, и  ― площади оснований усеченной пирамиды,  ― площадь боковой поверхности усеченной пирамиды,  ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.
          • Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то:
          • Наверх
          • 7. Цилиндр
          • Пусть h ― высота цилиндра, r ― радиус цилиндра,  ― площадь боковой поверхности цилиндра,  ― площадь полной поверхности цилиндра, V ― объем цилиндра.
          • Наверх
          • 8. Конус
          • Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса,  ― площадь боковой поверхности конуса,  ― площадь полной поверхности конуса, V ― объем конуса.
          • Наверх
          • 9. Усечённый конус
          • Пусть h ― высота усеченного конуса, r и  ― радиусы основания усеченного конуса, l ― образующая усеченного конуса,  ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:
          • Наверх
          • 10. Сфера и шар
          • Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы,  ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара,  ― объем сегмента, высота которого равна h,  ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

          Вписанный угол измеряется половиной дуги, на которую он опирается.
          Вписанные углы, опирающиеся на одну и ту же дугу, равны.
          Вписанный угол, опирающийся на полуокружность, — прямой.
          Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
          В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
          Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке. Свойства параллелепипеда:
          — противоположные грани параллелепипеда равны и параллельны;
          — диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;
          — квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
          Тогда имеют место следующие соотношения:
          Тогда имеют место следующие соотношения:
          Тогда имеют место следующие соотношения:

          НаверхМатериалы, выдаваемые на экзамене, смотрите здесь

        1. Ссылка на основную публикацию
          Для любых предложений по сайту: [email protected]