Шестиугольник описанный около окружности формулы

О нас
Демоверсии
Учебные пособия
Справочник по математике
Справочник по математике Геометрия (Планиметрия) Многоугольники

      Фигуру называют выпуклой, если для любых двух точек этой фигуры соединяющий их отрезок полностью принадлежит фигуре.

      Правильными многоугольниками называют выпуклые многоугольники, у которых все углы равны и все стороны равны.

      Замечание 1. В любой правильный многоугольник можно вписать окружность.

      Замечание 2. Около любого правильного многоугольника можно описать окружность.

      Замечание 3. Центры вписанной в правильный многоугольник окружности и описанной около правильного многоугольника окружности совпадают. Эту точку называют центром правильного многоугольника.

      Используемые обозначения

Число вершин правильного многоугольника Сторона правильного многоугольника Радиус вписанной окружности Радиус описанной окружности Периметр Площадь
n a r R P S
Число вершин правильного многоугольника   n  
Сторона правильного многоугольника   a  
Радиус вписанной окружности   r  
Радиус описанной окружности   R  
Периметр   P  
Площадь   S  

Формулы для стороны, периметра и площади правильного n – угольника

Величина Рисунок Формула Описание
Периметр Шестиугольник описанный около окружности формулы P = an Выражение периметра через сторону
Площадь Шестиугольник описанный около окружности формулы Выражение площади через сторону и радиус вписанной окружности
Площадь Шестиугольник описанный около окружности формулы Выражение площади через сторону
Сторона Выражение стороны через радиус вписанной окружности
Периметр Выражение периметра через радиус вписанной окружности
Площадь Выражение площади через радиус вписанной окружности
Сторона Шестиугольник описанный около окружности формулы Выражение стороны через радиус описанной окружности
Периметр Шестиугольник описанный около окружности формулы Выражение периметра через радиус описанной окружности
Площадь Шестиугольник описанный около окружности формулы Выражение площади через радиус описанной окружности
Формулы для периметра правильного n – угольника
Выражение периметра через сторонуШестиугольник описанный около окружности формулыP = anВыражение периметра через радиус вписанной окружностиШестиугольник описанный около окружности формулы

  • Выражение периметра через радиус описанной окружности
Формулы для площади правильного n – угольника
  1. Выражение площади через сторону и радиус вписанной окружности
  2. Выражение площади через сторону
  3. Выражение площади через радиус вписанной окружности
  4. Выражение площади через радиус описанной окружности
Формулы для стороны правильного n – угольника
  • Выражение стороны через радиус вписанной окружности
  • Выражение стороны через радиус описанной окружности

Формулы для стороны, периметра и площади правильного треугольника

Величина Рисунок Формула Описание
Периметр P = 3a Выражение периметра через сторону
Площадь Посмотреть вывод формулы Выражение площади через сторону
Площадь Выражение площади через сторону и радиус вписанной окружности
Сторона Выражение стороны через радиус вписанной окружности
Периметр Выражение периметра через радиус вписанной окружности
Площадь Посмотреть вывод формулы Выражение площади через радиус вписанной окружности
Сторона Выражение стороны через радиус описанной окружности
Периметр Выражение периметра через радиус описанной окружности
Площадь Посмотреть вывод формулы Выражение площади через радиус описанной окружности
Формулы для периметра правильного треугольника
  1. Выражение периметра через сторону
  2. P = 3a
  3. Выражение периметра через радиус вписанной окружности
  4. Выражение периметра через радиус описанной окружности
Формулы для площади правильного треугольника
  • Выражение площади через сторону
  • Посмотреть вывод формулы
  • Выражение площади через сторону и радиус вписанной окружности
  • Выражение площади через радиус вписанной окружности
  • Посмотреть вывод формулы
  • Выражение площади через радиус описанной окружности
  • Посмотреть вывод формулы
Формулы для стороны правильного треугольника
  1. Выражение стороны через радиус вписанной окружности
  2. Выражение стороны через радиус описанной окружности

Формулы для стороны, периметра и площади правильного шестиугольника

Величина Рисунок Формула Описание
Периметр P = 6a Выражение периметра через сторону
Площадь Выражение площади через сторону
Площадь S = 3ar Выражение площади через сторону и радиус вписанной окружности
Сторона Выражение стороны через радиус вписанной окружности
Периметр Выражение периметра через радиус вписанной окружности
Площадь Выражение площади через радиус вписанной окружности
Сторона a = R Выражение стороны через радиус описанной окружности
Периметр P = 6R Выражение периметра через радиус описанной окружности
Площадь Выражение площади через радиус описанной окружности
Формулы для периметра правильного шестиугольника
  • Выражение периметра через сторону
  • P = 6a
  • Выражение периметра через радиус вписанной окружности
  • Выражение периметра через радиус описанной окружности
  • P = 6R
Формулы для площади правильного шестиугольника
  1. Выражение площади через сторон
  2. Выражение площади через сторону и радиус вписанной окружности
  3. S = 3ar
  4. Выражение площади через радиус вписанной окружности
  5. Выражение площади через радиус описанной окружности
Формулы для стороны правильного шестиугольника
  • Выражение стороны через радиус вписанной окружности
  • Выражение стороны через радиус описанной окружности
  • a = R

Формулы для стороны, периметра и площади квадрата

Величина Рисунок Формула Описание
Периметр P = 4a Выражение периметра через сторону
Площадь S = a2 Выражение площади через сторону
Сторона a = 2r Выражение стороны через радиус вписанной окружности
Периметр P = 8r Выражение периметра через радиус вписанной окружности
Площадь S = 4r2 Выражение площади через радиус вписанной окружности
Сторона Выражение стороны через радиус описанной окружности
Периметр Выражение периметра через радиус описанной окружности
Площадь S = 2R2 Выражение площади через радиус описанной окружности
Формулы для периметра квадрата
  1. Выражение периметра через сторону
  2. P = 4a
  3. Выражение периметра через радиус вписанной окружности
  4. P = 8r
  5. Выражение периметра через радиус описанной окружности
Формулы для площади квадрата
  • Выражение площади через сторону
  • S = a2
  • Выражение площади через радиус вписанной окружности
  • S = 4r2
  • Выражение площади через радиус описанной окружности
  • S = 2R2
Формулы для стороны квадрата
  1. Выражение стороны через радиус вписанной окружности
  2. a = 2r
  3. Выражение стороны через радиус описанной окружности

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Построение правильного шестиугольника и его свойства: углы, площадь и радиусы окружностей; интересные факты

Шестиугольник описанный около окружности формулы

  • Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.
  • Если вспомнить формулу суммы углов многоугольника
  • 180°(n-2),

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

  1. Шестиугольник описанный около окружности формулычертится прямая линия и на ней ставится точка;
  2. из этой точки строится окружность (она является ее центром);
  3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
  4. после этого отрезками последовательно соединяются все точки на первой окружности.

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Читайте также:  Таблица момента затяжки болтов динамометрическим ключом

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Шестиугольник описанный около окружности формулы

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису.

Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность.

Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

  1. R=а.
  2. Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.
  3. Ну а площадь этой окружности будет стандартная:
  4. S=πR²

Вписанная окружность

Шестиугольник описанный около окружности формулы

  • Высота равностороннего треугольника вычисляется просто:
  • h²=а²-(а/2)²= а²3/4, h=а(√3)/2
  • А поскольку R=a и r=h, то получается, что
  • r=R(√3)/2.
  • Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.
  • Ее площадь будет составлять:
  • S=3πa²/4,
  • то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

  1. S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или
  2. S=3R²(√3)/2
  3. Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:
  4. S=3(2r/√3)²(√3)/2=r²(2√3)

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Шестиугольник описанный около окружности формулыУгол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

  • r₂=а/2
  • Площадь нового шестиугольника можно посчитать так:
  • S=(3(√3)/2)(а(√3)/3)²=а(√3)/2

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

Шестиугольник описанный около окружности формулы

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

Шестиугольник и его свойства

Шестиугольник — это многоугольник, общее количество углов (вершин) которого равно шести.

Шестиугольник описанный около окружности формулы

Выпуклый шестиугольник — это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.

Чему равна сумма углов выпуклого шестиугольника? Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 — 2 ) = 720 градусов. См. теорему о сумме углов многоугольника.

При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.

Правильный шестиугольник

Правильный шестиугольник — это шестиугольник, все стороны которого равны между собой.

Свойства правильного шестиугольника

Шестиугольник описанный около окружности формулы
  • все внутренние углы равны между собой 
  • каждый внутренний угол правильного шестиугольника равен 120 градусам 
  • все стороны равны между собой 
  • сторона правильного шестиугольника равна радиусу описанной окружности 
  • правильный шестиугольник заполняет плоскость без пробелов и наложений
  • всі внутрішні кути рівні між собою 
  • кожен внутрішній кут правильного шестикутника дорівнює 120 градусам 
  • всі сторони рівні між собою сторона правильного шестикутника дорівнює радіусу описаного кола 
  • правильний шестикутник заповнює плоскість без пропусків і накладень

Формулы для правильного шестиугольника

Шестиугольник описанный около окружности формулы

(по порядку следования формул)

  • Радиус описанной окружности (R) правильного шестиугольника равен его стороне (t)
  • Все внутренние углы равны 120 градусам
  • Радиус вписанной окружности (r) равен корню из трех, деленному на два и умноженному на длину стороны t (радиус описанной окружности R)
  • Периметр правильного шестиугольника (P) равен шести радиусам описанной окружности (R) или четыре корня из трех, умноженным на радиус вписанной окружности (r)
  • Площадь правильного шестиугольника равна трем корням из трех пополам, умноженным на квадрат радиуса описанной окружности (R) или квадрат стороны (t); либо площадь правильного шестиугольника равна двум корням из трех, умноженным на квадрат радиуса вписанной окружности (t)
Читайте также:  Что такое ntc на плате

Задача

Найти объем цилиндра, вписанного в правильную шестиугольную призму, каждое ребро которой равно t. Решение. Так как высота цилиндра Н равна высоте призмы и равна а, достаточно найти радиус основания цилиндра, который будет равен радиусу окружности, вписанной в правильный шестиугольник. Знайти об'єм циліндра, вписаного в правильну шестикутну призму, кожне ребро якої дорівнює t. Рiшення. Так як висота циліндра Н дорівнює висоті призми і дорівнює а, достатньо знайти радіус основи циліндра, який буде дорівнювати радіусу кола, вписаного в правильний шестикутник.

Шестиугольник описанный около окружности формулы Шестиугольник описанный около окружности формулы

0  

 Правильный многоугольник | Описание курса | Сумма углов многоугольника 

Шестиугольник описанный около окружности формулы — Мастерок

Калькулятор для вычисления стороны правильного шестиугольника по известным данным.

Шестиугольник описанный около окружности формулы

При известном радиусе R описанной вокруг правильного шестиугольника окружности сторона a имеет такое же значение как и радиус R описанной вокруг шестиугольника окружности.

Шестиугольник описанный около окружности формулы

При известном радиусе r окружности вписанной в правильный шестиугольник сторона a вычисляется как отношение двух радиусов вписанной в правильный шестиугольник окружности и корня из числа 3.

Формула для вычисления стороны правильного шестиугольника при известном радиусе вписанной в правильный шестиугольник окружности:

  • r – радиус окружности вписанной в правильный шестиугольник,
  • a – сторона правильного шестиугольника.
  • При вводе данных дробную часть от целой, отделяйте точкой, а не запятой.

На данной странице калькулятор поможет рассчитать площадь правильного шестиугольника онлайн. Для расчета задайте длину стороны или радиус окружности.

Шестиугольник – многоугольник у которого все стороны равны, а все внутренние углы равны 120°.

Через сторону

Шестиугольник описанный около окружности формулы

Формула для нахождения площади правильного шестиугольника через сторону:

Через радиус описанной окружности

Шестиугольник описанный около окружности формулы

  1. Формула для нахождения площади правильного шестиугольника через радиус описанной окружности:
  2. Определение длины стороны правильного многоугольника по радиусу вписанной окружности
  3. От нашего нового пользователя поступил вот такой запрос: «Калькулятор должен вычислять длину стороны правильного многоугольника (шестиугольник, пятигольник) по указанному диаметру (или радиусу) описанной окружности».

Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.

Правильный шестиугольник: свойства, формулы, площадь

Знаете ли вы, как выглядит правильный шестиугольник?
Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.

Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.

Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.

Шестиугольник описанный около окружности формулы

Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?

Проведем диагонали правильного шестиугольника. Мы получили шесть равносторонних треугольников.
Шестиугольник описанный около окружности формулы

  • Мы знаем, что площадь правильного треугольника: .
  • Тогда площадь правильного шестиугольника — в шесть раз больше.
  • , где — сторона правильного шестиугольника.
  • Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольник.

Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне.
Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти.

Он равен .

Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.

. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной .

  1. Шестиугольник описанный около окружности формулы
  2. Радиус такой окружности равен .
  3. Ответ: .

. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?

  • Мы знаем, что сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.
  • Ответ: .

Гексагон

  • Главная
  • Справочник
  • Геометрия
  • Фигуры
  • Гексагон

фывафыва

Гексагон — правильный выпуклый многоугольник с шестью сторонами или шестиугольник.

Шестиугольник — это многоугольник, имеющий шесть сторон и шесть углов. В правильном шестиугольнике все стороны равны, а углы образуют шесть равносторонних треугольников.

Шестиугольник описанный около окружности формулы

  • Выпуклый шестиугольник — это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.
  • Правильный шестиугольник — это шестиугольник, все стороны которого равны между собой.
  • Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 — 2 ) = 720 градусов.
  • При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.

Свойства правильного шестиугольника

  • все внутренние углы равны между собой
  • каждый внутренний угол правильного шестиугольника равен 120 градусам
  • все стороны равны между собой
  • сторона правильного шестиугольника равна радиусу описанной окружности
  • большая диагональ правильного шестиугольника является диаметром описанной вокруг него окружности и равна двум его сторонам
  • меньшая диагональ правильного шестиугольника в ( sqrt{3} )раз больше его стороны.
  • vеньшая диагональ правильного шестиугольника перпендикулярна его стороне
  • правильный шестиугольник заполняет плоскость без пробелов и наложений
  • диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу вписанной в правильный шестиугольник окружности. 6.
  • инвариантен относительно поворота плоскости на угол, кратный относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями)
  • nреугольник, образованный стороной шестиугольника, его большей и меньшей диагоналями, прямоугольный, а его острые углы равны 30° и 60°.
Читайте также:  В чем польза минералов?

Внутренние углы Внутренние углы в правильном шестиугольнике равны (120^circ):

(alpha = 120^circ)

Апофема Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)

(m = alargefrac{{sqrt 3 }}{2}
ormalsize)

Апофема Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)

(m = alargefrac{{sqrt 3 }}{2}
ormalsize)

Радиус вписанной окружности правильного шестиугольника равен апофеме:

(r = m = alargefrac{{sqrt 3 }}{2}
ormalsize)

Радиус описанной окружности равен стороне правильного шестиугольника:

(R = a)

Периметр правильного шестиугольника 

(P = 6a)

Площадь правильного шестиугольника Формула площади правильного шестиугольника через длину стороны

(S = pr = {a^2}largefrac{{3sqrt 3 }}{2}
ormalsize), где (p) − полупериметр шестиугольника.

Площадь правильного шестиугольника Формула площади правильного шестиугольника через радиус вписанной окружности

( S = r^{2}cdot 2sqrt{3} )

Площадь правильного шестиугольника Формула площади правильного шестиугольника через радиус описанной окружности

( S = frac{R^{2}cdot 3sqrt{3}}{2} )

ФигурыМатематика Формулы Геометрия Теория ФигурыБольше интересного в телеграм @calcsbox

  • Как известно, пчелы строят соты правильной шестиугольной формы. Дело в том, что шестиугольник – самая оптимальная геометрическая форма для максимально полезного использования единицы площади. Шестиугольник близок к кругу – идеальной естественной фигуре, – но у него есть преимущество: вплотную примыкая друг к другу, шестиугольники позволяют использовать всю полезную площадь сот, максимально заполняя ее медом. Совсем не так было бы, если бы ячейки имели круглую форму – между ними неизбежно оставалось бы много пространства, которое невозможно использовать.
  • Панцирь черепахи состоит из шестиугольников. Благодаря ячейкам такой формы он проще всего наращивается. Черепахи растут, и их панцирь должен увеличиваться вместе с ними, причем равномерно по всей площади. Поэтому черепаший панцирь формируется из отдельных пластинок, плотно пригнанных друг к другу, как дощечки паркета, но сохраняющих способность прирастать по краям. Если бы пластинки могли равномерно расти во все стороны, они имели бы форму кругов. Однако круги не могут плотно прилегать друг к другу, между ними неизбежно будут оставаться просветы.
  • Некоторые сложные молекулы углерода (напр., графит) имеют гексагональную кристаллическую решётку.
  • Гигантский гексагон — атмосферное явление на Сатурне.
  • Сечение гайки и многих карандашей имеет вид правильного шестиугольника.
  • Игровое поле гексагональных шахмат составляют шестиугольники, в отличие от квадратов традиционной шахматной доски.
  • Гексаграмма — шестиконечная звезда, образованная двумя равносторонними треугольниками. Является, в частности, символом иудаизма.
  • Контур Франции напоминает правильный шестиугольник, поэтому он является символом страны.

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

  • Треугольник — многоугольник, образованный тремя отрезками, которые соединяют три точки, не лежащие на одной прямой.
  • Квадрат — это правильный четырёхугольник. У него все стороны и углы равны между собой.
  • Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).
  • Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
  • Ромб — это параллелограмм, у которого все стороны равны.
  • Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.
  • Круг — геометрическое место точек плоскости, равноудаленных от одной заданной точки, называемой центром круга.
  • Прямоугольный треугольникТреугольник называют прямоугольным, если у него есть прямой угол, который равен 90 градусов.

Шестиугольник описанный около окружности формулы

Радиус окружности, описанной около правильного шестиугольника

feniks.help — Скорая помощь студентам

Правильный шестиугольник — выпуклый шестиугольник, у которого все стороны и углы равны.

Описанная около многоугольника окружность — это окружность, которая содержит все вершины выпуклого многоугольника. Ее центром является точка пересечения срединных перпендикуляров к сторонам многоугольника, обычно её обозначают прописной буквой О.

Для расчетов используем формулу радиуса окружности, описанной около правильного многоугольника.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Формула 1

  • (R=frac a{2sinleft(frac{360^0}{2n}
    ight)})
  • где R — радиус описанной окружности правильного многоугольника,
  • а — длина стороны многоугольника,
  • n — количество сторон (или вершин) многоугольника.
  1. Подставим в формулу значение n=6. 
  2. (R=frac a{2sinleft(frac{360^0}{2n}
    ight)}=R=frac a{2sinleft(frac{360^0}{2·6}
    ight)}=frac a{2sinleft(frac{360^0}{12}
    ight)}=frac a{2sin30^0}.)
  3. Так как (sin30^0=frac12), то (R=frac a{2sin30^0}=frac a{2·frac12}=frac a1). Получаем формулу радиуса окружности, описанной около правильного шестиугольника:

Формула 2

  • R=a
  • где R — радиус описанной окружности,
  • а — сторона правильного шестиугольника.

Примечание 1

Эту же формулу модно найти и другим способом. Биссектрисы углов правильного шестиугольника разбивают его на шесть равных равносторонних треугольников.

Точка пересечения биссектрис у правильного шестиугольника совпадает с точкой пересечения срединных перпендикуляров и является центром описанной окружности.

Расстояние между центром окружности и вершиной шестиугольника равно радиусу описанной окружности и стороне равностороннего треугольника. Этот отрезок также равен стороне шестиугольника.

Свойства окружности, описанной около шестиугольника

  1. У правильного шестиугольника центры вписанной и описанной окружностей совпадают.
  2. Диаметр описанной окружности совпадает с большей диагональю правильного шестиугольника и равен его удвоенной стороне.

Площадь круга, ограниченного описанной окружностью

Чтобы вычислить площадь круга, ограниченного описанной окружностью правильного шестиугольника, используем стандартную формулу площади круга.

Формула 3

  1. (S=π·r^2)
  2. где S — площадь круга,
  3. π — коэффициент, число π,
  4. r — радиус круга.

Так как радиус круга равен стороне правильного шестиугольника, около которого описана окружность, получаем формулу:

Формула 4

  • (S=π·а^2)
  • где S — площадь круга,
  • π — коэффициент, число π,
  • а — сторона правильного шестиугольника.

Пример расчета радиуса окружности, описанной около шестиугольника

Задача

Дано: около правильного шестиугольника описана окружность. Меньшая диагональ правильного шестиугольника равна (5sqrt3 см.)

Найти: радиус описанной окружности.

Решение: Обозначим сторону правильного шестиугольника как а. Тогда его меньшая диагональ будет (аsqrt3 см). Следовательно, а=5 см. Радиус окружности, описанной около правильного шестиугольника равен его стороне. R=5 см.

Ответ: 5 см.

Насколько полезной была для вас статья?

У этой статьи пока нет оценок.

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]