Теплопроводность это свойство материала

Отчего, когда в оттепель идёт снег, он тает на руке, а на шубе остаётся?

Л. Н. Толстой, «Тепло» (Рассуждение)

Вспомним одну старую задачку. Есть автобус, трамвай, троллейбус. Что здесь лишнее?

Лишний автобус, так как он работает на бензине, а не на электричестве, как трамвай и троллейбус. А можно считать лишним трамвай, потому что его колёса не «обуты» в резиновые шины.

Рисунок Максима Калякина («Квантик» №2, 2019)

А теперь новая задача. Из трёх словосочетаний: тёплый осенний день, тёплое море, тёплая одежда — какое лишнее?

Мы называем день или море тёплыми, если у них соответствующая температура. Называя пальто или куртку тёплой, мы никак не связываем это качество одежды с её температурой как материального предмета. Следовательно, лишняя здесь тёплая одежда.

Называть одежду тёплой позволяет некоторая её физическая характеристика, о которой и расскажем.

Коэффициент теплопроводности

Наступила зима. В квартире батареи центрального отопления нагревают воздух. Почему же температура в комнатах повышается не до температуры батареи, а до меньшего уровня? Да потому, что тепло через стены уходит наружу, на улицу.

Что это значит? Тепло — не какой-то физический объект.

Но из жизненного опыта вы знаете, что горячее тело нагревает окружающие его холодные тела (а холодное — остужает горячие), и удобно считать, что при этом от горячих тел к холодным передаётся тепло.

Как тепло распространяется в одном теле, от уже нагретых частей к более холодным? Разные материалы проводят тепло по-разному — одни хуже, другие лучше. Поэтому у каждого материала есть свой коэффициент теплопроводности k, равный количеству тепла, которое за 1 секунду проходит через стену из этого материала площадью 1 кв. метр и толщиной 1 метр при разности температур 1 градус.

Рисунок Максима Калякина («Квантик» №2, 2019)

Понятно, что через стену в два раза большей площади проходит в два раза большее количество тепла, а через стену удвоенной толщины — вдвое меньшее (подумайте, почему?). А ещё оказывается, что чем больше разность температур, тем быстрее передаётся тепло.

Количество тепла, как и любой энергии, измеряют в джоулях (Дж). Например, чтобы вскипятить 1 литр воды комнатной температуры, необходимо «передать воде» 350 000 Дж = 350 кДж. А скорость передачи тепла измеряют в ваттах (Вт). Передача 1 Дж тепла за 1 с соответствует 1 Вт. Например, мощность чайника примерно равна 2 кВт = 2000 Вт.

У силикатного (или белого) кирпича k = 0,81 (далее эту размерность будем опускать), то есть, например, для квадратного метра кирпичной стены толщиной 50 см потери тепла на 1 градус разницы температур составят 1,62 джоуля в секунду (или 1,62 ватта).

У дерева k = 0,2, и потому при той же толщине стен деревянный дом теплее кирпичного в 4 раза. В частности, поэтому кирпичные стены делают толще деревянных. А у бетона k = 1,75, и панельный дом, построенный из бетонных плит, получается вдвое холоднее кирпичного с той же толщиной стен.

Стены можно утеплять пенопластом — его коэффициент 0,04. Вспомним детский стишок:

Ох, беда, беда, беда,
Наступили холода.
На стекле горюет муха:
«Выпал снег белее пуха!
Если бы мне валенки,
Пусть подшиты, стареньки,
Да суконные штаны —

Дожила бы до весны!»

Дело в том, что у шерстяного войлока (то есть у тех же валенок) k = 0,045. Зимой в валенках намного теплее, чем в кожаных ботинках. Конечно, валенки ноги не греют, а лишь препятствуют большим потерям тепла.

У хлопковой ваты k = 0,055. Потому испокон веков ватные халаты защищали жителей Средней Азии от нестерпимой летней жары. Температура тела человека 36,7°C, температура воздуха 40–45°C.

В этом случае ватный халат в минимальной степени способствует подводу тепла к телу, предохраняя человека от перегрева.

Точно так же меховые рукавицы защищают руки кузнеца, держащего раскалённую заготовку.

Рисунок Максима Калякина («Квантик» №2, 2019)

У минеральной ваты k = 0,045–0,055. Её используют для термоизоляции труб отопления.

Газы — плохие проводники тепла, у них коэффициент теплопроводности мал, например у воздуха k = 0,022.

Поэтому оконные рамы делали двойными, и в современных стеклопакетах тоже есть воздух между стёклами: можно сказать, что тепло в доме сохраняет не стекло, а воздух внутри рамы.

Но газы могут передавать тепло конвекцией, то есть перемешиваться. По этой причине особенно хорошими теплоизоляционными свойствами обладают пористые материалы — поры в них препятствуют конвекции.

Многие птицы зимой во время сильных морозов зарываются в снег. Рыхлый снег почти не проводит тепло и сохраняет примерно одинаковую температуру даже при сильных ночных заморозках.

Так спасаться от морозов, да и от хищников, научились глухари, тетерева, куропатки, рябчики. Птицы способны проводить под снегом без движения несколько дней, при этом их потери энергии минимальны.

Да и медведи спят в берлогах, занесённых снегом, словно тёплым одеялом.

Среди металлов рекордсменом по теплопроводности можно считать серебро — у него k = 430. У железа k = 92.

Если серебряную ложку опустить в кипяток, то удержать её в руках, пожалуй, не удастся: она очень быстро станет нестерпимо горячей.

Металлы очень хорошо проводят тепло (гораздо лучше неметаллов), потому что в них есть свободные электроны, которые быстро перемещаются и переносят тепло.

Возвращаясь к тёплой одежде, скажем, что она не греет, а препятствует потерям тепла. Теперь вы легко объясните, какую одежду мы называем холодной.

Напоследок — две задачи.

1. В некоторых современных квартирах делают тёплые полы. Для этого вдоль всего пола прокладывают нагревательные элементы, питающиеся электричеством. А в новых вагонах московского метро появились «тёплые поручни», которые не требуют электропитания. Можете догадаться, как они устроены?

2. Эта задача очень старая. Два полярника вышли из палатки на лёд. Падающий сверху снег на комбинезоне одного потихоньку таял, а у другого — нет, делая человека похожим на снеговика. У кого одежда теплее?

Ответы

1. «Тёплые поручни» — это обычные никелированные поручни, покрытые тонким слоем пластика. Пластик плохо проводит тепло, и поэтому тепло от человеческих рук не распространяется вдоль такого поручня. Это создаёт ощущение, что поручень тёплый.

2. Если снежинки на комбинезоне тают, то температура на его поверхности плюсовая. Стало быть, такой комбинезон плохо сохраняет тепло человеческого тела и отводит его в окружающую среду. Теплее одежда у того полярника, который похож на снеговика.

Художник Максим Калякин

Теплопроводность

  • Участник: Шароглазова Ксения Сергеевна
  • Руководитель: Печерская Светлана Юрьевна

Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.

Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Задачи:

  • изучить теоретический материал по данному вопросу;
  • исследовать теплопроводность твердых тел;
  • исследовать теплопроводность жидкостей;
  • исследовать теплопроводность газов;
  • сделать выводы о полученных результатах.

Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.

Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.

Элементы УМК к учебнику А.В.Перышкина: учебник «Физика. 8 класс» А.В.Перышкина

Содержание работы

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой.

Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.

Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE

Опыт 1. Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня

Внесем в огонь конец деревянной палки. Он воспламенится.

Вывод: дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.

Вывод: стекло имеет плохую теплопроводность.

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь. 

Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6).

 При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться.

Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.

Теплопроводность это свойство материала

Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени.

Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д.

Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.

Опыт 2. Исследование теплопроводности жидкостей на примере воды

Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7).

Читайте также:  C547b транзистор характеристики и его российские аналоги

 Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.

Вывод: теплопроводность жидкостей меньше теплопроводности металлов.

Теплопроводность это свойство материала

Опыт 3. Исследование теплопроводности газов

Исследуем теплопроводность газов. 

Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.

Вывод: теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.

Теплопроводность это свойство материала

Выводы и их обсуждение

Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.

Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:

ТЕПЛОПРОВОДНОСТЬ
ХОРОШАЯ ПЛОХАЯ
металлы (серебро, медь, железо) жидкости (вода)
газы (воздух)
вакуум
пористые тела, пробка, бумага, стекло, кирпич, пластмассы
волосы, перья птиц, шерсть
вата, войлок

Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом.

Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Применение теплопроводности

Теплопроводность на кухне

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду.

Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности.

Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру.

Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься.

Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией.

Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда.

Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос.

В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.

Отопительная система

Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы.

Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель.

Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение.

Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть.

Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде.

Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию.

У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания.

Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах.

У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов.

Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Теплолечение

Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред.

Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности.

Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.

Теплопроводность в бане

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно.

Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела.

Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.

Интересные факты о теплопроводности

Тепло ли колючим зверям в иголках?

Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?

Читайте также:  Классификация сварных швов по положению в пространстве

Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо.

Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов».

Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода.

Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.

Полипропилен

Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.

Какой материал имеет самую высокую теплопроводность?

Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие.

Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди.

Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.

Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях.

 В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью.

Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.

«Огнеупорный шарик»

Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.

Теплопроводность | это… Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.).

Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому.

Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи.

Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло.

Тем не менее, тепло в вакууме передаётся с помощью излучения.

Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная.

Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов — у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело.

Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п.

Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

Цветок на куске аэрогеля над горелкой Бунзена

Материал
Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Графит 278,4—2435
Карбид кремния 490
Серебро 430
Медь 382—390
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 93,7
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,14—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Читайте также:  Чем полезен конский жир для суставов

Примечания

Теплопроводность | 8 класс | Физика

Содержание

Внутренняя энергия тела может изменяться без совершения работы — за счет теплопередачи. Когда мы подносим металлическую палку к пламени свечи, ее конец тоже становится горячим.

На этом примере видно, что внутренняя энергия может передаваться от одних тел к другим. Также внутренняя энергия может передаваться от одной части тела к другой — ведь нижняя часть палки не касается свечи, но нагревается.

То же явления мы можем наблюдать, опустив железную ложку в кипяток. Вскоре конец ложки, не погружённый в воду, станет горячим (рисунок 1).

Рисунок 1. Пример теплопроводности

Одним из видов теплопередачи является теплопроводность. Именно его мы наблюдаем в приведенном примере. На данном уроке мы более подробно рассмотрим это явление.

Определение тепловодности

Теплопроводность — это явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте. 

  • теплопроводность свойственна веществам во всех трех агрегатных состояниях: твердом, жидком и газообразном
  • разные вещества обладают разной теплопроводностью

Рассмотрим подробнее последнее утверждение. Поднесем к огню конец деревянной палочки (рисунок 2). Он загорится. Тем не менее, другой ее конец останется холодным. Следовательно, дерево обладает плохой теплопроводностью.

Рисунок 2. Нагревание различных материалов для оценки их теплопроводности.

Если мы заменим деревянную палочку на металлическую, то она вся довольно быстро нагреется. Держа такой предмет, можно легко обжечься.

Это говорит о том, что металлы имеют большую теплопроводность. Серебро медь и золото имеют наибольшую теплопроводность.

Теплопроводность твердых тел

Рассмотрим опыт, изображенный на рисунке 3. 

Рисунок 3. Теплопроводность твердого тела.

Прикрепляем к штативу один конец толстой медной проволоки. Под другим концом проволоки расположим спиртовую горелку. К проволоке прикрепим с помощью воска небольшие гвоздики (рисунок 3, а).

Начнем нагревать свободный конец проволоки с помощью спиртовки (рисунок 3, б). Воск постепенно начнет таять.

Поочередно гвоздики начнут отваливаться, начиная с тех, что находятся ближе к огню спиртовки (рисунок 3, в).

Объясним происходящее со стороны физики:

  1. Частицы металла находятся очень близко к друг другу. Они колеблются в определенных положениях
  2. Скорость колебательного движения частиц при нагревании металла сначала увеличивается в той части проволоки, которая находится ближе к огню
  3. За счет взаимодействия частиц металла друг с другом, увеличивается скорость движения соседних частиц
  4. При увеличении скорости их движения, начинает подниматься температура

Этот процесс будет постепенно проходить по всей длине проволоки.

При теплопроводности не происходит переноса вещества от одного конца тела к другому.

Рассмотрим еще один опыт (рисунок 3). На этот раз с другой стороны подставим к горелке еще один штатив с закрепленной на нем проволокой. Различие будет в ее материале — проволока сделана из стали.

Рисунок 3. Теплопроводность различных металлов.

В процессе нагревания мы увидим, что гвоздики на медной проволоке отваливаются быстрее. Медь быстрее нагревается по всей длине. Это показывает нам, что тепловодность различных металлов неодинакова. Медь имеет большую тепловодность, чем сталь.

Теплопроводность жидкостей

Проведем простой опыт. Наполним пробирку водой и начнем подогревать ее верхнюю часть (рисунок 4).

Рисунок 4. Теплопроводность жидкости.

Вода в верхней части пробирки быстро закипит, а у дна просто нагреется. Это говорит о том, что у жидкостей теплопроводность невелика (исключение составляют ртуть и расплавленные металлы).

Причина небольшой теплопроводности жидкостей — расположение молекул в их строении. Расстояние между молекулами жидкости больше, чем в твердых телах. 

Теплопроводность газов

Исследуем на опыте теплопроводность газов. Наденем на палец пробирку. Будем нагревать ее дно в пламени спиртовки (рисунок 5).

Рисунок 5. Теплопроводность газа.

Нам придется долго ждать, чтобы почувствовать тепло нагретого в пробирке воздуха. Расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел. Значит, теплопроводность газов еще меньше.

Волосы, шерсть, перья птиц обладают плохой теплопроводностью. Причина этому — между волокнами этих веществ содержится воздух. 

Теплопроводность объясняется переносом энергии от одной части тела к другой, который происходит при взаимодействии частиц вещества. Чем больше расстояние между частицами и слабее взаимодействие между ними, тем меньшей теплопроводностью обладает тело. Поэтому наименьшей теплопроводностью обладает вакуум (безвоздушное пространство). Нет частиц — нет теплопроводности.

Применение

Иногда необходимо предохранить тело от нагревания или охлаждения. Для этого используют тела с малой теплопроводностью. Если кастрюли и сковородки делают из металла (позволяет быстрее нагреваться), то их ручки делают из дерева или пластмассы. Это позволяет нам не обжигаться. По этой же причине кружки и стаканы изготавливают преимущественно из пластмассы, стекла, фарфора.

Материалы, которые используют при строительстве домов (бревна, кирпичи, бетон) обладают плохой теплопроводностью. Таким образом строения меньше охлаждаются.

В устройстве термоса тоже применяется явление теплопроводности (рисунок 6). Из пространства между колбой и кожухом выкачан воздух, так почти не осуществляется теплопередача.

Рисунок 6. Устройство термоса.

Снежный покров имеет плохую теплопроводность. Это имеет огромное значение для живых организмов: многие зимующие растения защищены от вымерзания; крупные животные ночуют, зарывшись в снег; мелкие могут вести активную жизнь в норах, вырытых под снегом.

Теплопроводность

Явление теплопроводности состоит в переносе теплоты структурными частицами вещества — молекулами, атомами, электронами — в процессе их теплового движения.

В жидкостях и твердых телах- диэлектриках — перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества.

В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения. В металлах теплопроводность осуществляется главным образом вследствие движения свободных электронов.

В основной зеком теплопроводности входит ряд математических понятий, оп­ределения которых, целесообразно напомнить и пояснить.

Температурное поле — это со­вокупности значений температуры во всех точках тела в данный момент време­ни. Математически оно описывается ввиде t = f(x, y, z, τ).

Различают стационарное температурное поле, когда температура во всех точках тела не зависит от времени (не изменяется с течением времени), и нестационарное температурное поле.

Кроме то­го, если температура изменяется только по одной или двум пространственным координатам, то температурное поле на­зывают соответственно одно- или двух — мерным.

  • Изотермическая поверхность – это геометрическое место точек, температура в которых одинакова.
  • Градиент температуры — grad t есть вектор, направленный по нор­мали к изотермической поверхности и численно равный производной от тем­пературы по этому направлению.
  • Согласно основному закону тепло­проводности — закону Фурье (1822 г.), вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален градиенту температуры:
  • q = — λ grad t, (3)
  • где λ — коэффициент теплопро­водности вещества; его единица измерения Вт/(м·К).

Знак минус в уравнении (3) ука­зывает на то, что вектор q направлен противоположно вектору grad t, т.е. в сторону наибольшего уменьшения температуры.

Тепловой поток δQ через произволь­но ориентированную элементарную пло­щадку dF равен скалярному произведе­нию вектора q на вектор элементарной площадки dF, а полный тепловой поток Q через всю поверхность F определяется интегрированием этого произведения по поверхности F:

КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ

Коэффициент теплопроводности λ в законе Фурье (3) характеризует спо­собность данного вещества проводить теплоту. Значения коэффициентов тепло­проводности приводятся в справочниках по теплофизическим свойствам веществ.

Численно коэффициент теплопроводности λ = q/grad t равен плотности теплового потока q при градиенте температуры grad t = 1 К/м. Наиболь­шей теплопроводностью обладает легкий газ — водород. При комнатных условиях коэффициент теплопроводности водорода λ = 0,2 Вт/(м·К).

У более тяжелых газов теплопроводность меньше — у воз­духа λ = 0,025 Вт/(м·К), у диоксида уг­лерода λ = 0,02 Вт/(м·К).

Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь: λ = 400 Вт/(м·К). Для углеродистых сталей λ = 50 Вт/(м·К). У жидкостей коэффициент теплопроводности, как правило, меньше 1 Вт/(м·К). Вода является одним из лучших жидких проводников теплоты, для нее λ = 0,6 Вт/(м·К).

Коэффициент теплопроводности неметаллических твердых материалов обычно ниже 10 Вт/(м·К).

Пористые материалы – пробка, различные волокнистые наполнители типа органической ваты – обладают наименьшими коэффициентами теплопроводности λ

Ссылка на основную публикацию
Adblock
detector