Теплопроводность титана и алюминия

Теплопроводность титана и алюминия

-Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.

Основные сведения:-Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия:-Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана:-В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам.

Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства).

Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом.

Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию.

Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к.

в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности. Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см.

При температурах ниже 0,45 К он становится сверхпроводником. Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Физические и механические свойства:

Химические свойства:

Марки титана и сплавов:-Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей.

Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.

В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо. Титановый сплав ВТ5 содержит 5% алюминия.

Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.

Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку.

Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С. Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки.

Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С.

Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1.

Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла.

Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С. Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

  • Достоинства / недостатки:— Достоинства:-малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
  • -высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые -сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
  • — Недостатки:
  • -большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

-необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности -тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;-удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.-высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;-активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, -составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;-трудности вовлечения в производство титановых отходов;-плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;-высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;-плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;

Области применения:-Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель.

Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.

Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств.

Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты.

Читайте также:  Миксер для шпаклевки своими руками

Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение.

Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении.

Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п.

Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей).

В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла. Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

-Удачной Вам эксплуатации и спасибо за внимание! Надеюсь, что помог Вам!-С уважением DrPavlov.

инженер поможет — титан против алюминия, какой металл выбрать – сравнение между титаном и алюминием

Легкие, прочные материалы, такие как титан и алюминий, популярны во многих отраслях промышленности, титановые детали идеально подходят для снижения веса и снижения энергопотребления. В этой статье я опишу разницу между алюминиевым и титановым сплавом и их преимуществами.

Что такое алюминиевые сплавы?

Алюминий представляет собой серебристо-белый, мягкий, прочный, немагнитный и пластичный металл с хорошим соотношением веса и прочности, хорошей коррозионной стойкостью и высокой вязкостью разрушения. Алюминий является экономичным вариантом из-за простоты обработки и низкой цены.

Алюминий можно использовать в проводниках из-за его хорошей электропроводности, вы часто можете найти алюминиевые детали в кухонных машинах и посуде из-за его хорошей теплопроводности и нетоксичности. Алюминий не реагирует на кислоты, но легко подвергается коррозии в щелочной среде.

Что такое Титановые сплавы?

Титан представляет собой блестящий переходный металл серебристого цвета, с низкой плотностью, высокой прочностью, хорошей теплопроводностью и хорошей коррозионной стойкостью, но его трудно извлекать и обрабатывать, что делает его более дорогим, чем многие другие металлы. Титан также немагнитен и не токсичен Он плохо проводит электричество. Вместо того, чтобы поглощать тепло, титан любит его отражать, кроме того, он имеет низкое тепловое расширение.

Высокая биосовместимость также является замечательной особенностью титана. Прочность и безопасность делают титан отличным материалом для медицинского оборудования, такого как зубные имплантаты, протезы коленного сустава, кардиостимуляторы и многое другое. Детали из титанового сплава используют в химической и морской промышленности, поскольку титановые сплавы устойчив к коррозии.

Сравнение между титановым сплавом и алюминиевым  сплавом

1. Стоимость

Определенно, алюминий является более экономичным металлом, в то время как детали из титана просто служат дольше. Высокая стоимость добычи и изготовления ограничивает некоторые области применения титана.

2. Вес и прочность

Титан тяжелее алюминия, но присущая ему прочность означает, что вам нужно его меньше.

3. Применение

– Титан часто используется в аэрокосмической, авиационно-космической промышленности, компонентах спутников, креплениях и кронштейнах, медицинских приложениях, таких как зубные имплантаты, хирургические инструменты, морской промышленности, включая корпуса бедер, подводные лодки и другие конструкции, подверженные воздействию морской воды, а также в деталях, требующих высокой термостойкости.

– Применение алюминиевых изделий, включая велосипедные рамы, рыболовные катушки, небольшие лодки и рамы транспортных средств, пресс-формы для пластмасс и оснастки, рамы самолетов, электрические проводники, радиаторы и приложения, требующие высокой теплопроводности.

4. Обрабатываемость

Алюминий легко обрабатывается при токарной обработке, фрезеровании, сверлении и т. д., в то время как с титаном очень трудно работать.

5. Плотность

Более высокая плотность титана означает, что отношения прочности к весу для двух металлов одинаковы.

6. Внешний вид

Алюминий имеет серебристо-белый цвет и варьируется от серебристого до тускло-серого в зависимости от шероховатости поверхности, а титан имеет серебристую поверхность.

Титан

Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия титана

Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана

В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен.

По внешнему виду похож на сталь. Титан относится к переходным элементам.

Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом.

Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия.

Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы.

С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана — существенный его недостаток, т.к.

в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Характеристики физико-механических свойств титана (ВТ1-00)

Плотность r , кг/м3

Температура плавления Тпл, ° С

Коэффициент линейного расширения a  ×  10–6, град–1

Теплопроводность l , Вт/(м × град)

Предел прочности при растяжении s в, МПа

Условный предел текучести s 0,2, МПа

Удельная прочность (s в/r × g)× 10–3, км

Относительное удлинение d , %

Относительное сужение Y , %

Модуль нормальной упругости Е´ 10–3, МПа

Модуль сдвига G´ 10–3, МПа

Коэффициент Пуассона m ,

Твердость НВ

Ударная вязкость KCU, Дж/см2

4,5 × 10–3
1668± 4
8,9
16,76
300–450
250–380
7–10
25–30
50–60
110,25
41
0,32
103
120

Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.

Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний.

Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы.

При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.

Читайте также:  Работа с тестером для начинающих

Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.

Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод).

Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок: ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1).

Цифры означают твердость по Бринеллю НВ, ТВ — твердый.

Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375–540 МПа, s 0,2 = 295–410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.

Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).

При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300–600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.

Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.

Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5–6 нм.

Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.

Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.

При технологических и эксплуатационных нагревах, особенно выше 550–600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).

Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется.

Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения.

Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.

Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.

Таблица 17.1

Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)

Марка Ti, не менее Не более Твердость НВ,10/1500/30, не более Fe Si Ni C Cl N O
ТГ-90 99,74 0,05 0,01 0,04 0,02 0,08 0,02 0,04 90
ТГ-100 99,72 0,06 0,01 0,04 0,03 0,08 0,02 0,04 100
ТГ-110 99,67 0,09 0,02 0,04 0,03 0,08 0,02 0,05 110
ТГ-120 99,64 0,11 0,02 0,04 0,03 0,08 0,02 0,06 120
ТГ-130 99,56 0,13 0,03 0,04 0,03 0,10 0,03 0,08 130
ТГ-150 99,45 0,2 0,03 0,04 0,03 0,12 0,03 0,10 150
ТГ-Тв 99,75 1,9 0,10 0,15 0,10

Таблица 17.2

Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807–91)

Обозначениямарок Ti Al V Mo Sn Zr Mn Cr Si Fe O H N C
ВТ1-00 Основа 0,08 0,15 0,10 0,008 0,04 0,05
ВТ1-0 То же 0,10 0,25 0,20 0,010 0,04 0,07
ВТ1-2 То же 0,15 1,5 0,30 0,010 0,15 0,10
ОТ4-0 То же 0,4–1,4 0,30 0,5–1,3 0,12 0,30 0,15 0,012 0,05 0,10
ОТ4-1 То же 1,5–2,5 0,30 0,7–2,0 0,12 0,30 0,15 0,012 0,05 0,10
ОТ4 То же 3,5–5,0 0,30 0,8–2,0 0,12 0,30 0,15 0,012 0,05 0,10
ВТ5 То же 4,5–6,2 1,2 0,8 0,30 0,12 0,30 0,20 0,015 0,05 0,10
ВТ5-1 То же 4,3–6,0 1,0 2,0 –3,0 0,30 0,12 0,30 0,15 0,015 0,05 0,10
ВТ6 То же 5,3–6,8 3,5–5,3 0,30 0,10 0,60 0,20 0,015 0,05 0,10
ВТ6с То же 5,3–6,5 3,5–4,5 0,30 0,15 0,25 0,15 0,015 0,04 0,10
ВТ3-1 То же 5,5–7,0 2,0–3,0 0,50 0,8–2,0 0,15–0,40 0,2–0,7 0,15 0,015 0,05 0,10
ВТ8 То же 5,8–7,0 2,8–3,8 0,50 0,20–0,40 0,30 0,15 0,015 0,05 0,10
ВТ9 То же 5,8–7,0 2,8–3,8 1,0–2,0 0,20–0,35 0,25 0,15 0,015 0,05 0,10
ВТ14 То же 3,5–6,3 0,9–1,9 2,5–3,8 0,30 0,15 0,25 0,15 0,015 0,05 0,10
ВТ20 То же 5,5–7,0 0,8–2,5 0,5–2,0 1,5–2,5 0,15 0,25 0,15 0,015 0,05 0,10
ВТ22 То же 4,4–5,7 4,0–5,5 4,0–5,5 0,30 0,5–1,5 0,15 0,5–1,5 0,18 0,015 0,05 0,10
ПТ-7М То же 1,8–2,5 2,0–3,0 0,12 0,25 0,15 0,006 0,04 0,10
ПТ-3В То же 3,5–5,0 1,2–2,5 0,30 0,12 0,25 0,15 0,006 0,04 0,10
АТ3 То же 2,0–3,5 0,2–0,5 0,20–0,40 0,2–0,5 0,15 0,008 0,05 0,10

Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 — 0,10 %.

Температура плавления титана, свойства и характеристики

Титан считается самым прочным тугоплавким металлом, сохраняющим пластичность. Он прочнее железа и алюминия. Впервые сплав был получен русским ученым в 1875 году.

В 1925-м голландскому химику удалось получить чистый 99,9% металл. Благодаря высокой температуре плавления, титан незаменим в космической отрасли, авиастроении.

Легкий, химически нейтральный, он используется и в других отраслях.

Характеристики титановых сплавов

Для легирования титана используют несколько компонентов:

  • Алюминий – самая распространенная добавка. Он повышает удельную прочность, упругость, сопротивление ползучести.
  • Олово замедляет окисление при нагреве, повышает пластичность, свариваемость.
  • Благодаря цирконию, Ti-Al-Zr деформируется при комнатной температуре.
  • Марганец повышает способность к деформации.
  • Кремний улучшает трещиностойкость.
  • Ванадий – свариваемость.
  • Система Ti-Al-Mo-Cr-Fe-Si – высокопрочная. Это металл мартенситного класса.
  • Молибден увеличивает жаропрочность титана.

Чистый титан имеет предел прочности до 450 МПа, легирующие добавки способны повысить ее до 2000 МПа. При охлаждении у титана повышается прочность на изгиб. При комнатной температуре составляет 700 МПа, около -200°С возрастает до 1100 МПа.

Физические свойства

Основные характеристики титана:

  • температуры: плавления 1668 градусов Цельсия, кипения – 3227;
  • предел текучести: от 250 до 380 МПа;
  • упругость – 110 Гпа, различается в разных направлениях;
  • средняя твердость сплавов по НВ – 103;
  • плотность: при комнатной температуре 4500 кг/м3, при температуре плавления – 4120 кг/м3;
  • теплоемкость – 531 Дж на один килограмм при нагреве на градус;
  • теплопроводность – 18 Вт/(м·град);
  • удельное сопротивление – 42,1·10-6 Ом·см.

При охлаждении до 3,8°К (-270°С) металл становится сверхпроводником.

Химические свойства

В твердом состоянии Тi химически устойчив, не окисляется при высокой влажности, морской атмосфере, при контакте с агрессивными средами. При нагреве до температуры плавления становится активным. Взаимодействует со всеми компонентами воздуха:

  • кислородом, образуются твердые оксиды;
  • азотом, он упрочняет структуру, повышает предел прочности, критическая концентрация 0,2%, выше этого показателя металл становится хрупким;
  • водород ухудшает технологические свойства;
  • углерод повышает температуру фазовых изменений.

При нагреве до температуры плавления металл необходимо изолировать.

Теплопроводность — титан

Теплопроводность титана составляет — 14 0 Вт / м град, что несколько ниже теплопроводности легированной стали. Материал хорошо куется, штампуется, обрабатывается резанием.

Сварка изделий из титана производится вольфрамовым электродом в защитной атмосфере аргона. В последнее время титан используется для изготовления широкого ассортимента труб, листа, проката.

[1] Теплопроводность титана низкая — примерно в 13 раз ниже алюминия и в 4 4 раза ниже железа. [2]

Читайте также:  Обозначение вида сверху на чертеже

Теплопроводность титана близка к теплопроводности нержавеющей стали и составляет 14 ккал / м С час. Титан хорошо куется, штампуется и удовлетворительно обрабатывается резанием. При температуре более 200 С склонен поглощать газы. Сварка титана производится вольфрамовым электродом в защитной атмосфере аргона. [3]

Теплопроводность титана и его сплавов примерно в 15 раз ниже, чем у алюминия, и в 3 5 — 5 раз ниже, чем у стали. Коэффициент линейного термического расширения титана также значительно ниже, чем у алюминия и нержавеющей стали. [4]

Теплопроводность титана составляет — 14 0 Вт / ( м — К), что несколько ниже теплопроводности легированной стали. Материал хорошо куется, штампуется, обрабатывается резанием. Сварка изделий из титана производится вольфрамовым электродом в защитной атмосфере аргона. В последнее время титан используется для изготовления широкого ассортимента труб, листа, проката.

[5]

  • Коэффициент теплопроводности титана в области рабочих температур ( 20 — 400 С) составляет 0 057 — 0 055 кал / ( см-с — С), что примерно в 3 раза меньше теплопроводности железа, в 16 раз меньше теплопроводности меди и близко к теплопроводности нержавеющих сталей аустенитного класса. [6]
  • Поэтому, например, теплопроводность титана в 8 — 10 раз меньше теплопроводности алюминия. [7]
  • Полученные расчетные значения фононнои теплопроводности титана совпадают с оценкой этой величины, сделанной в работе [5], где она принята равной 3 -: — 5 вт / м-град. [8]

Прежде всего необходимо учитывать, что теплопроводность титана и его сплавов при невысоких температурах очень низка.

При комнатной температуре теплопроводность титана равна приблизительно 3 % от теплопроводности меди и в несколько раз ниже, чем, например, у сталей ( теплопроводность титана равна 0 0367 кал / см сек С, а теплопроводность стали 40 равна 0 142 кал.

С повышением температуры теплопроводность титановых сплавов возрастает и приближается к теплопроводности сталей. Это сказывается на скоростях нагрева титановых сплавов в зависимости от температуры, на которую они нагреваются, что видно по скоростям нагрева и охлаждения технически чистого титана ( сплав ВТ1) сечением 150 мм ( фиг. [9]

При легировании так же, как и при увеличении содержания примесей, теплопроводность титана , как правило, уменьшается. При нагреве теплопроводность сплавов, как и чистого титана, увеличивается; уже при 500 — 600 С она приближается к теплопроводности нелегированного титана. [10]

Модуль упругости титана почти вдвое меньше модуля упругости железа, находится на одном уровне с модулем медных сплавов и значительно выше, чем у алюминия.

Теплопроводность титана низкая: она составляет около 7 % от теплопроводности алюминия и 16 5 % от теплопроводности железа. Это необходима учитывать при нагреве металла для обработки давлением и при сварке.

Электросопротивление титана примерно в 6 раз больше чем у железа и в 20 раз больше, чем у алюминия. [11]

Прежде всего необходимо учитывать, что теплопроводность титана и его сплавов при невысоких температурах очень низка.

При комнатной температуре теплопроводность титана равна приблизительно 3 % от теплопроводности меди и в несколько раз ниже, чем, например, у сталей ( теплопроводность титана равна 0 0367 кал / см сек С, а теплопроводность стали 40 равна 0 142 кал.

С повышением температуры теплопроводность титановых сплавов возрастает и приближается к теплопроводности сталей. Это сказывается на скоростях нагрева титановых сплавов в зависимости от температуры, на которую они нагреваются, что видно по скоростям нагрева и охлаждения технически чистого титана ( сплав ВТ1) сечением 150 мм ( фиг. [12]

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек СС. [13]

  Лужение печатных плат. Глицерин + сплав Розе

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза меньше теплопроводности железа. С повышением температуры теплопроводность титана несколько понижается и при 700 С составляет 0 0309 кал / см сек С. [14]

При сварке плавлением для получения соединения хорошего качества необходима надежная защита от газов атмосферы ( О2, Nj, H2) металла сварного соединения, нагретого до температуры выше 400 С с обеих сторон шва.

Рост зерна усугубляется низкой теплопроводностью титана , увеличивающей время пребывания металла сварного соединения при высоких температурах.

Для преодоления указанных трудностей сварку выполняют при минимально возможной погонной энергии. [15]

Литье титана

Во время нагрева до температуры плавления титан активно реагирует с компонентами воздуха.

Чтобы этого не происходило, воздух в печах откачивали, создавали вакуум. Остатки воздуха стали вытеснять инертными газами: смесью аргона и гелия. На промышленных литейных установках остаточное давление инертных газов колеблется от 1,33 до 0,13 Па.

Разработано несколько технологий:

В вакуумной камере металл расплавляют, разливают по формам. Охлаждают до температуры, когда металл теряет химическую активность, образует кристаллическую структуру.

Метод вакуумного литья (МВЛ) по выплавляемым моделям заключается в использовании выплавляемых или выжигаемых форм. На поверхности модели создают огнеупорную оболочку. Отливки получаются максимально приближенной формы.

Технология оболочечного литья предусматривает использование тонкостенных разъемных форм. Их устанавливают на разогретую модельную плиту, чтобы покрыть термоактивной смолой. Заливка производится вертикально и горизонтально.

Специально разрабатывается температурный режим остывания отливок. Предусмотрено равномерное структурирование по всему объему, чтобы в литье не возникали внутренние напряжения.

Титан

В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ).

Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости.

В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Основные сферы применения

Сложно описать все области жизни, где нашлось место титану, но среди основных направлений можно отметить:

  • Главные потребители — аэрокосмическая отрасль и ракетостроение. Высокая температура плавления и лёгкость являются неоценимыми преимуществами титана при использовании в качестве «летающего» конструкционного материала. Для самолёта, например, это элероны и лонжероны, поворотные узлы крыльев, трубопроводы и шпангоуты. Глубоко символично, что в 1980 году установленный в Москве памятник Ю. А. Гагарину сделан из этого космического металла.
  • Судостроение тоже нуждается в лёгких и коррозионно-стойких материалах. В конце 70-х годов ХХ века практически весь годовой объем выпуска титана в Советском Союзе пошёл на создание ядерной подводной лодки, где он служил основным конструкционным материалом. Результатом стали снижение на одну треть веса субмарины, её парамагнетизм, максимальные показатели глубины погружения и скорости под водой.
  • Титановые пластины применяют в бронежилетах. Вес лёгкого бронежилета — 4 кг, тяжёлого — 10,5 кг. Даже одна такая полоса толщиной всего 5 мм надёжно защищает от пистолетных и ружейных пуль.
  • Металл незаменим для нужд химической промышленности ввиду антикоррозийной стойкости в большинстве агрессивных сред и при высоких температурах: приборы и трубопроводы, ёмкости хранения и перегонки, фильтры и запорная арматура.
  • Для придания сталям твёрдости и жаропрочности его используют как легирующую добавку.
  • Сплавы титана служат для изготовления режущих и хирургических инструментов, ювелирных изделий. Металл не отторгается человеческим телом, поэтому его применяют в медицине для создания имплантатов.
  • Издавна здания в европейских городах покрывались цинковыми листами. В ХХ веке для этих нужд был создан экологически чистый и долговечный материал цинк-титан. Его отличная пластичность помогает изготавливать кровли практически всех контуров и формировать любые нестандартные конструкции фасадов.
  • Производство стройматериалов, красок, резины, пластмасс, бумаги и пищевых добавок трудно представить без соединений титана. Они востребованы в электротехнике, их можно найти в составе тугоплавких стёкол и керамических деталей, в опорах буровых платформ, работающих в экстремальных морских условиях, и корпусах домашних компьютеров.

Сфера применения титана постоянно расширяется, её сдерживают сложность и энергоёмкость процесса получения чистого вещества. Отчасти поэтому традиционные железо и алюминий сегодня ещё прочно удерживают позиции. Титан — дорогое удовольствие.

Цена металла в виде концентрата в сотни раз меньше стоимости готовой продукции, например, листового проката.

Сегодня такие расходы доступны далеко не всем, поэтому применение титана определяет уровень экономического развития и обороноспособности государства.

  Производство стали в электропечах преимущества и недостатки

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]