Трансформатор для паяльной станции

Пайка электронных плат требует соблюдения определенного уровня температуры для различных деталей, ведь недостаток нагрева приведет к плохому соединению припоя, равно, как и чрезмерный нагрев вызовет преждевременное окисление олова и такое же низкое качество пайки.

Помимо этого на перегретой плате могут отслаиваться дорожки, обугливаться целые участки.

Если раньше для работы с мелкими и крупными деталями, лужением относительно большой площади радиолюбители использовали набор из нескольких паяльников, сегодня эта функция решается одной паяльной установкой.

Но из-за высокой стоимости такого устройства не все могут позволить себе ее приобретение, поэтому мы расскажем, как собирается паяльная станция своими руками.

Принцип действия и варианты реализации

Принцип работы паяльной станции заключается в способности устройства регулировать температуру нагрева и поддерживать ее в установленных пределах на протяжении всего процесса.

Разумеется, реализация всех вышеперечисленных функций задача не из простых, поэтому изготовление полноценного аналога под силу опытным электрикам, имеющим должное оборудование и опыт сборки электронных схем, изготовления печатных плат.

Поэтому сначала мы разберем относительно простые варианты изготовления, регулировка температуры в которых осуществляется вручную. Но и таких паяльных станций вполне достаточно, чтобы выполнить качественную  пайку деталей, ориентируясь только по внешним признакам работы жала.

Способ №1. Контактная паяльная станция

Для такой паяльной станции вам понадобиться относительно классический паяльник мощностью хотя бы 80 – 100Вт, регулятор мощности (в данном примере мы будем использовать диммер), диодный мост, соединительные провода. Такая паяльная станция будет работать без обратной связи по температуре жала паяльника, поэтому результативность воздействия на припой придется определять опытным путем.

Трансформатор для паяльной станцииРис. 1: схема изготовления простейшей станции

Так как в домашней сети напряжение может быть значительно ниже 220В, в схеме паяльной станции будет использоваться диодный мост.

Процесс изготовления состоит из следующих этапов:

  • Соберите из четырех диодов мост или возьмите готовую сборку с параметрами работы с 220 В на 300 В;
  • Отрежьте питающий шнур на расстоянии 10 – 15 см от ручки, запас нужен для подключения к паяльной станции;
  • Зачистите выводы проводов как возле паяльника, так и на шнуре, его также будем использовать для подключения;
  • Подключите одну из жил шнура питания к диодному мосту через диммер, а вторую напрямую;
  • Подсоедините выводы диодного моста к жилам паяльника, лучше использовать клеммное соединение, болтовое или пайку;
  • Места электрических соединений заизолируйте для предотвращения поражения электрическим током при работе паяльной станцией;
  • Установите мост и светорегулятор на диэлектрическое основание.

Простейшая паяльная станция готова к использованию, достаточно включить ее в розетку и повернуть ручку в нужное положение. Принцип работы с ней схож с прибором для выжигания по дереву.

Работая с крупными элементами, регулятор мощности устанавливается в максимальное положение.

С мелкими, выводится в половинное значение, следует отметить, что конструкция регулятора температуры на основе диммера изменяет напряжение питания от 220 до 0В,  а вам ограничивать его меньше половины  смысла не имеет.

Способ №2. Бесконтактная паяльная станция

Как показывает практика, далеко не всегда нагревом жала можно воздействовать на любые элементы платы, к примеру, к тем же smd деталям крайне трудно подобраться. В таких ситуациях используется паяльный фен, направляющий поток горячего воздуха на  ножки.

Несмотря на схожесть, переделать обычное устройство для сушки волос в инфракрасную станцию не получится, так как рабочая температура должна достигать 500 – 800ºС. Для сборки такой паяльной станции вам понадобится компрессор для подачи воздуха, нагревательный элемент, корпус для элементов управления, сопло, понижающий трансформатор, выпрямитель, блок управления скоростью подачи воздуха.

Принципиальная схема такой паяльной станции приведена на рисунке ниже:

Трансформатор для паяльной станцииРис. 2: электрическая схема термофена

Принцип действия паяльной станции основан на воздействии инфракрасного излучения от нагревательного элемента непосредственно в область пайки. Компрессор подает воздух от нагревателя через сужающееся сопло, создавая эффект турбины, производительность насоса желательно обеспечить в пределах от 20 до 30 л в минуту.

При изготовлении инфракрасной станции существует два способа для ее выполнения –  ручная модель или стационарная.

Первый вариант подходит в тех ситуациях, когда корпус ИК паяльной предвидится относительно небольших размеров и будет удобно помещаться в руке.

Второй способ подойдет для крупногабаритных приспособлений, в которых станция установлена неподвижно, а заготовка перемещается под соплом.

Рассмотрим такой пример изготовления паяльной станции бесконтактного типа:

  • Намотайте нагревательную спираль из нихромовой проволоки, в данном случае используется диаметром 0,8мм. Можете взять и другой вариант, к примеру, от электрической плиты.
    Трансформатор для паяльной станцииРис. 3: намотайте нагревательный элемент
  • Для намотки используйте жесткий каркас, укладывайте витки вплотную, но не делайте нахлестов и следите за тем, чтобы не закоротить намотку. Чем меньше диаметр проволоки у вас получится, тем эффективнее будет идти нагрев, достаточно будет спирали с наружным диаметром 8 – 10 мм.
  • В данном примере изготавливаются несколько спиралей, соединяемых параллельно для повышения температуры нагрева.
  • Установите полученную спираль на цилиндрический каркас из негорючего материала.

Трансформатор для паяльной станцииРисунок 4: поместите спирали на диэлектрический элемент

Предварительно удалите с каркаса все лишнее но если он уже готов, можете сразу осуществлять намотку.

  • Изготовьте металлический стакан для нагревательного элемента, в этом примере изготовления паяльной станции мы сделаем его из корпуса пальчиковой батарейки.
  • Из куска телескопической антенны от радиоприемника сделайте сопло, один край которого нужно расплескать и надеть на шайбу.
    Трансформатор для паяльной станцииРис. 5. Наденьте шайбу
  • Прикрутите шайбу сопла к стакану из батарейки при помощи соразмерных болтов.
    Трансформатор для паяльной станцииРис. 6: прикрутите сопло к стакану
  • Поместите внутрь стакана между спиралью и стенками термоизоляционный материал, чтобы предотвратить перегревание наружных деталей.
  • Соберите диодный мост из четырех полупроводниковых элементов, если под рукой уже есть готовая сборка, можете использовать и ее.
  • Изготовьте блок питания из понижающего трансформатора и выпрямительного агрегата, ваша задача получить на выходе низкое напряжение для снижения вероятности поражения электротоком. В рассматриваемом примере получается около 10 – 15В, мощность трансформатора составляет 150Вт. Аналогичная модель может браться с готового оборудования.
  • Корпус для паяльной станции мы изготовим из обычной пластиковой бутылки. В данном примере нам нужен прозрачный пластик, так как в нем легче подключать блок питания, нагнетатель воздуха и плату управления.
    Трансформатор для паяльной станцииРис. 7. соедините все элементы  в корпусе
  • Подключите куллер и нагревательную спираль к выводам блока питания, подсоедините регулятор напряжения.
    Трансформатор для паяльной станцииРис. 8. установите кулер

Регулировка мощности теплового потока может осуществляться либо по скорости подачи воздуха, либо по уровню напряжения, подаваемого на нагреватель.

  • Подключите шнур питания к выводам трансформатора – паяльная станция готова к использованию.
    Трансформатор для паяльной станцииРис. 9: паяльная станция готова

Способ №3. Автоматическая паяльная станция на базе Ардуино

Такая паяльная станция собирается на базе микроконтроллера Arduino, который выполняет роль логического элемента, обрабатывающего данные от индикатора температуры и регулирующего мощность нагрева жала. Отличительной особенностью такого устройства является полная автоматизация контроля за температурой – вам достаточно задать ее и дождаться нагревания. Пример схемы для сборки приведен на рисунке ниже:

Читайте также:  Как прозвонить телефонный кабель тестером

Трансформатор для паяльной станцииРис. 10. схема паяльной станции на базе ардуино

Чтобы собрать такую станцию вам понадобится:

  • сама плата Ардуино для управления работой паяльной станции;
  • цифровое табло для отображения температуры нагрева;
  • микросхему для программирования паяльной станции;
  • транзистор, стабилизатор и кнопки, магазин резисторов и емкостных элементов.

Для сборки такой паяльной станции воспользуйтесь приведенной схемой, в качестве нагревательного элемента будет выступать жало обычного паяльника с датчиком температуры, которые подключаются к собранной схеме.

К недостаткам такого устройства следует отнести его сложность, из-за чего начинающие радиолюбители могут попросту не собрать рабочую версию с первого раза. Также для пайки используемых в автоматической станции элементов вам понадобиться специальный паяльник и предварительные навыки работы с ним, чтобы не испортить детали.

Видео по теме

Как выбрать паяльную станцию?

Освоив пайку обычным паяльником с медным жалом, начинающий любитель электроники задумывается о покупке более современного оборудования – паяльной станции.

Как выбрать? Ведь выбор просто поражает. Я расскажу, по каким критериям я сам выбирал себе станцию хобби-класса.

Если погулять по интернет-магазинам и почитать описания к паяльным станциям, то можно заметить, что у многих указан тип нагревательного элемента – керамический. Но это не совсем корректно.

Как ни странно, но и качественные керамические (японские типа Hakko-1321) и нихромовые нагреватели (тайваньские) подходят под это описание.

У нихромовых спираль тоже запечатана в керамику, но в отличие от нагревателей Hakko-1321, устройство и характеристики у них совсем другие.

Трансформатор для паяльной станции

Устройство нихромового нагревателя

Нихромовый нагреватель изготавливается так. Берётся стержень из керамики, на него наматывается спираль из высокоомного нихромового провода ближе к концу опорного стержня. Ширина намотки около 2 см.

Также в опорный стержень запрессована термопара – она находится на торце опорного стержня. Затем всю эту конструкцию также запечатывают в керамику. Получается керамический нагреватель из нихрома с термопарой.

На таких обычно есть надпись TAIWAN (Тайвань).

Трансформатор для паяльной станции

Недостатки:

  • Разогревается несколько минут;
  • При интенсивной эксплуатации нихромовый нагреватель перегорает в среднем за полгода. В случае если вы паяете не часто, то паяльник с нихромовым нагревателем может прослужить и 4, и 5 лет…
  • Использование термопары в качестве датчика температуры снижает точность настройки температуры жала.

Нихромовые нагреватели стоят в таких паяльных станциях, как Lukey 702, Lukey 898, Lukey 852D+FAN. Плюсом этих станций является то, что они цифровые.

Как делают качественные керамические нагреватели?

Качественный керамический нагреватель состоит из опорного стержня, на который наносится тонкий слой резистивного вещества и тонкоплёночный терморезистор. Далее всё это запекается в керамическую оболочку при высокой температуре. Поверхность нагревателя получается гладкой на ощупь, а на просвет виден витиеватый узор — тонкоплёночный слой нагревателя и терморезистора.

Недостатки:

  • Чувствителен к температурному перекосу (это когда неравномерно нагревается);
  • При образовании трещин выходит из строя;
  • Стоит дороже, чем нихромовый нагреватель (в 2 — 4 раза).

Насколько я знаю, качественные японские нагреватели HAKKO 1321 стоят в паяльных станциях Lukey 936D (у самого такая), Lukey 936+, Lukey 936D+, Lukey 852D+, Lukey 868, Lukey 853, Lukey 853D. Перед покупкой лучше проверить! О том, как это сделать, читайте далее.

Трансформатор для паяльной станции

Чем лучше нихрома?

  • Быстрый нагрев.
    Одним из неоспоримых преимуществ керамических нагревателей я считаю быстрый нагрев при включении – несколько секунд! На деле 10 – 30 секунд и уже можно паять. Для тех, кто паял ранее только обычным ЭПСНом – это шок ;
  • Долговечность.
    По сравнению с нихромовыми нагревателями обладает большим временем эксплуатации;
  • Прецизионный терморезистор более точно измеряет температуру жала;
  • Высокая мощность и хорошая теплоотдача.

Незнающему человеку отличить качественный керамический нагреватель от нихромового довольно сложно. Внешне они выглядят одинаково, так как их основа – керамика.

Как определить, что перед вами: керамика или нихром?

У нагревателя со спиралью из нихрома на торце своеобразная «капелька» – он как бы закруглённый.

У керамического же нагревателя на торце есть характерная «ступенька». В керамических нагревателях также встроен прецизионный тонкоплёночный терморезистор – датчик температуры. Узор в керамике от термодатчика и нагревателя виден даже невооружённым глазом. Вот взгляните.

Трансформатор для паяльной станции

Чтобы убедиться полностью – включите паяльник и оцените скорость нагрева жала. Если долго разогревается, то это нихром.

В своей Lukey 936D я обнаружил керамический нагреватель HAKKO 1321 (А1321) – на нагревателе соответствующая надпись.

Трансформатор для паяльной станции

Ещё когда выбирал её в магазине, обратил на это внимание. А вот у более дешёвой Lukey 936A (она без цифрового индикатора) я обнаружил нихромовый нагреватель с каплей на торце и надписью TAIWAN (Тайвань)… Поэтому её покупать не стал. Жутко не люблю, когда паяльник долго разогревается

У станции Lukey 936+ (не А) уже керамический нагреватель Hakko-1321, а не нихром. Маленькое такое различие в названии, а какая разница в цене и качестве.

А вот уже нагревательный элемент паяльной станции A-BF GS90D на 90 Вт. Он также керамический, со ступенькой.

Трансформатор для паяльной станции

Если приглядеться, то на корпусе можно обнаружить надпись А1329 DC и «узоры».

Трансформатор для паяльной станции

Выглядит эта паяльная станция как обычный паяльник без отдельного блока. Несмотря на это, этот паяльник – настоящая термостатированная паяльная станция. Правда, без гальванической развязки – трансформатора в ней, естественно, нет 🙂

Трансформатор для паяльной станции

Контроль температуры жала (термостатирование)

Хорошая паяльная станция имеет нагреватель с температурным датчиком и посредством обратной связи поддерживает заданную оператором температуру жала. Если расковырять паяльник от той же Lukey 936D, то можно обнаружить, что керамический нагреватель имеет 4 вывода, два красных идут на спираль нагревателя, а два синих вывода идут от тонкоплёночного терморезистора.

Трансформатор для паяльной станции

Померив сопротивление на парах этих выводов, я получил следующие данные (комнатная t°):

  • Нагреватель – 3,3 Ω (Ом);
  • Терморезистор – 50~51 Ω (Ом).

Вывод: да, это настоящая керамика .

Откровенные подделки имеют нагреватель с 2 выводами. Вот простейший паяльник без термостабилизации.

Трансформатор для паяльной станции

  • В цифровых паяльных станциях контроль температуры осуществляется микроконтроллером. Сигнал с термодатчика в нагревателе оцифровывается и сравнивается с тем значением, которое задал оператор. Плюс цифрового управления – точность. Все цифровые паяльные станции имеют кнопки для установки температуры. Реже – энкодер. Например, Lukey 702 имеет нихромовый нагреватель, но цифровое управление. Поэтому и заслужила уважение среди радиолюбителей.
  • В аналоговых паяльных станциях для поддержания заданной температуры используется компаратор, например, на базе микросхемы LM358 (HA17358), а в качестве задатчика температуры используется обычный переменный резистор. К таким станциям относится Lukey 936D. Разбирал лично и убедился в этом.
    Аналоговый контроль температуры хуже, так как дополнительную ошибку вносят механические элементы (переменный резистор), сопротивление контактов термодатчика, контактов разъёма, изменение параметров элементов. Некоторые модели аналоговых станций требуют калибровки перед использованием.

Стоит различать регулировку мощности и термостабилизацию. Возможно, кто-то уже делал так называемый регулятор температуры жала паяльника. Простейшие его схемы просто уменьшают мощность, подаваемую на нагреватель паяльника, и не имеют обратной связи по температуре. Благодаря снижению мощности можно снизить и температуру жала.

Читайте также:  Микрофонный усилитель для динамического микрофона

Применялись такие приставки в основном для электрических паяльников с медным жалом. При простое, жало такого паяльника сильно нагревается и выгорает. Чтобы как-то уменьшить такой эффект и применялась регулировка по мощности. Если сильно уменьшить мощность, то теплоёмкости жала может не хватить и припой будет залипать. Пайка будет затруднена.

Паяльники с термостабилизацией отслеживают именно температуру жала (обратная связь). Остыло — побольше мощности, перегрелось — меньше.

Мощность паяльной станции

Весьма важный параметр. Для начала нужно представлять, зачем нужна паяльная станция. Можно ведь и вёдра паять:). Для пайки радиоэлектронных компонентов достаточно паяльной станции на 40-60W, но лучше иметь и помощнее.

Для себя, кроме Lukey 936D (нагреватель А1321 на 50W, 24V), я приобрёл ещё и A-BF GS90D (нагреватель А1329 на 90W, 220V). Хотел на 110 Вт купить – модель A-BF GS110D, но для неё желательны жала 900L, хотя подходят и 900M.

Как видим, у обеих станций нагревательные элементы на разное рабочее напряжение. У 936-ой низковольтный (24V), а у A-BF GS90D — высоковольтный (220V).

Если безопасность на первом месте, то лучше использовать паяльную станцию с низковольтным нагревателем.

Так, например, насколько мне известно, ранее в детских кружках радиолюбителей запрещалось использовать паяльники на 220V, допускалось паять только низковольтными на 36V.

Также при ремонте чувствительной аппаратуры, например, мобилок, лучше использовать станцию с низковольтным паяльником. Тут тебе и гальваническая развязка от электросети через трансформатор, и заземление жала. Убить статикой элемент будет крайне трудно.

Сменные жала

Выбирая паяльную станцию, стоит подумать о том, насколько доступны сменные жала для данной модели паяльника. Самые распространённые – это жала серии 900M. Вот они на фото.

Советую прикупить хотя бы ещё одно жало для паяльной станции. Родное жало, как правило, не ходовое – конусообразной формы.

Если не собираетесь дымить паяльником каждый день, то можно купить медные жала 900M. Они намного дешевле, но довольно быстро «выгорают».

Медь со временем растворяется в припое и, максимум, что можно сделать с жалом – это заточить его напильником. Можно на пробу взять медные жала разных профилей и поработать ими.

Если каким-то работать очень понравится, то уже потом купить качественное, невыгораемое жало.

Наверное, уже видели такую надпись – «ESD SAFE». Обычный электрический паяльник не имеет защиты от статического электричества и электрического разряда. Кроме того, медный стержень отлично передаёт все электромагнитные всплески из электросети на паяемый элемент, ведь нихромовая спираль – это, по сути, катушка индуктивности.

В паяльных станциях суть ESD SAFE сводится к следующему. Штуцер, который фиксирует печатную плату с нагревателем и втулку, которая контактирует со сменным жалом, заземляют — подключают к третьему, заземляющему выводу сетевой вилки. В этом не трудно убедиться, если замерить сопротивление от жала до третьего вывода вилки.

Беда в том, что не в каждом доме смонтирована электропроводка с заземлением. Так что имейте это в виду, если впредь будете работать с особо капризными электронными компонентами.

Также в качестве защитного «экрана» от электромагнитных импульсов выступает и керамический нагреватель. Керамика – отличный изолятор.

Ремонтопригодность

Это качество можно оспорить, так как сейчас цена паяльных станций хобби-уровня невелика и вряд ли кто-то станет ремонтировать неисправную. Но всё же.

Основная рабочая деталь паяльных станций – это нагревательный элемент. Он легко меняется, если родной вышел из строя.

С обычными паяльниками такого трюка не пройдёт, так как если сгорела нагревательная спираль, то такой паяльник можно смело выбрасывать.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Термовоздушная паяльная станция.

  • Как научиться паять?

Цифровая паяльная станция своими руками

Трансформатор для паяльной станции

В этом посте мы будем делать в домашних условиях недорогую цифровую паяльную станцию Hakko 907! Она способна поддерживать переменную и постоянную температуру (до 525 °C). Для создания паяльной станции потребуются несколько компонентов общей стоимостью всего 7 долларов (не считая блока питания, но можно использовать уже имеющийся блок питания). Мне не удалось найти подробные инструкции по созданию такой станции, поэтому я решил подготовить собственный туториал с подробным описанием процесса.

Технические характеристики

  • Станция предназначена для ручных паяльников Hakko 907.
  • Станция совместима с ручными паяльниками аналогичного типа.
  • Температурный диапазон: от 27 до 525 °C.
  • Время прогрева: от 25 до 37 с (до 325 °C).
  • Рекомендованный источник питания: 24 В, 3 А.
  • Мощность: 50 Вт (средняя).

Полная видеоинструкция

Схема сборки, разводка печатной платы, код и файлы стандартной библиотеки шаблоновдоступны по ссылке.

Шаг 1. Обычные и цифровые паяльники

Трансформатор для паяльной станцииТрансформатор для паяльной станцииТрансформатор для паяльной станции

Как и любой самодельщик, я взял за основу обычный паяльник. Эти паяльники отлично проявляют себя в работе, однако у них есть ряд недостатков. Любому домашнему мастеру, кто хоть однажды паял, известно, что нагрев таких паяльников занимает от 7 до 15 минут и только после этого их можно использовать по назначению. После нагревания такие паяльники продолжают работать в максимальном температурном диапазоне. В некоторых случаях такие паяльники при длительном контакте с электронными компонентами могут их повредить. Я на своём опыте знаю, что, если неудачно дотронуться сильно разогретым наконечником паяльника до перфорированной макетной платы, можно повредить приклеенный на плату медный слой. Вообще говоря, таких ошибок можно избежать, и для этого существуют свои способы и приёмы, но, стоит только попробовать пайку с цифровой паяльной станцией, у вас никогда не возникнет желания вернуться к старым методам.

Обычные паяльники с регулятором температуры

Для регулирования температуры нагрева обычных паяльников существует простой и распространённый способ – подключить в цепь питания регулятор температуры, ограничивающий мощность, подаваемую на нагревательный элемент. Такие регуляторы устанавливаются на продукты довольно часто.

В своё время у меня была паяльная станция Weller с таким регулятором. И это было на самом деле очень удобно! Единственным недостатком такого способа является отсутствие замкнутого контура температурной обратной связи.

В некоторых случаях температура паяльника будет меньше установленной регулятором, так как по мере пайки поглощающих тепло компонентов температура наконечника будет снижаться. Чтобы компенсировать падение температуры, можно повернуть регулятор, но, стоит прекратить пайку, температура снова повысится.

Время разогрева паяльника можно несколько уменьшить, если повернуть регулятор в крайнее (максимальное) положение, а после разогрева повернуть его обратно. 

Цифровая паяльная станция

Я предпочитаю третий способ – самый любимый. Он довольно схож со способом использования паяльника с регулятором температуры, но при этом все действия выполняются автоматически с помощью PID-системы (системы с пропорционально-интегрально-дифференциальным регулятором).

Говоря простым языком, такая автоматизированная электронная система управления паяльной станцией «поворачивает» ручку регулятора температуры за вас. Если система обнаружит, что температура наконечника паяльника опустится ниже установленного значения, система повысит мощность до значения, необходимого для выработки тепла на наконечнике паяльника.

Если температура паяльника поднимется выше установленного значения, питание на паяльник перестанет подаваться, что приведёт к снижению температуры. С помощью такой системы ускоряется весь процесс пайки – система постоянно включает и отключает нагревательный элемент паяльника и, таким образом, поддерживает постоянную температуру на его наконечнике.

Поэтому при использовании цифровых паяльных станций паяльник разогревается значительно быстрее.

Читайте также:  Сварка обратной полярностью что это

Шаг 2. Компоненты и материалы

Трансформатор для паяльной станцииТрансформатор для паяльной станцииТрансформатор для паяльной станции

В зависимости от того, где вы собираетесь купить компоненты станции, итоговая цена системы может оказаться разной (советую закупить компоненты на Aliexpress, так выйдет дешевле всего). Я ещё попробую выяснить, в каких именно интернет-магазинах можно приобрести самые дешёвые компоненты, и, возможно, внесу в ссылки некоторые изменения. Свои компоненты я приобрёл в местном магазине E-Gizmo Mechatronics Manila.Требуемые материалы:

  • Паяльник Hakko 907 (аналог за 3 доллара).
  • Программируемый контроллер Arduino Nano.
  • Понижающий преобразователь (MP2303 производства D-SUN).
  • Гнездовой 5-штырьковый DIN-разъём.
  • Гнездо для подключения внешнего источника постоянного тока (2,1 мм).
  • Источник питания 24 В, 3 A.
  • ЖК-дисплей 16X2 I2C.
  • Операционный усилитель LM358.
  • МОП-транзистор IRLZ44N (я использовал IRLB4132, он лучше).
  • Электролитический конденсатор 470 мкФ, 25 В.
  • Сопротивление 470 Ом, 1/4 Вт.
  • Сопротивление 2,7 кОм, 1/4 Вт.
  • Сопротивление 3,3 кОм, 1/4 Вт.
  • Сопротивление 10 кОм 1/4 Вт.
  • Потенциометр 10 кОм.

ЗАМЕЧАНИЕ: на принципиальной схеме и печатной плате ошибочно указан транзистор IRFZ44N. Следует использовать транзистор IRLZ44N, это версия транзистора IRFZ44N логического уровня.

В моей системе я использовал транзистор IRLB4132, так как его у нас легче купить. Можно использовать и другие МОП-транзисторы. Они будут нормально работать, если их технические характеристики соответствуют приведённым ниже.

В старой версии паяльной станции я использовал транзистор IRLZ44N.

Рекомендованные технические характеристики МОП-транзисторов:

  • N-канальный МОП-транзистор логического уровня – МОП-транзисторы логического уровня можно непосредственно подключать к штыревому соединителю логической платы (цифровому штырьку Arduino). Поскольку напряжение насыщения затвора ниже обычных напряжений Vgs стандартных МОП-транзисторов, на МОП-транзисторе логического уровня предусмотрен затвор для подачи напряжений насыщения 5 или 3,3 В (Vgs). Некоторые производители не указывают это в технических характеристиках. Это отражено на кривой зависимости Vgs от Id.
  • Значение Vds должно быть не менее 30 В – это предельное значение напряжения МОП-транзистора. Мы работаем на 24 В, и, в принципе, значения напряжения Vgs 24 В должно хватить, но обычно, чтобы обеспечить стабильную работу, добавляется некоторый запас. Стандартное значение напряжения Vgs для большинства МОП-транзисторов составляет 30 В. Допускается использование МОП-транзисторов с более высокими напряжениями Vgs, но только в том случае, если другие технические характеристики не выходят за пределы диапазона.
  • Сопротивление Rds(on) 0,022 Ом (22 мОм): чем ниже, тем лучше. Rds(on) – это сопротивление, формируемое на контактах стока и истока МОП-транзистора в состоянии насыщения. Проще говоря, чем ниже значения сопротивления Rds(on), тем холоднее будет МОП-транзистор. При увеличении значения Rds(on) МОП-транзистор будет при работе нагреваться благодаря рассеиванию мощности из-за – хоть и небольшой, но всё-таки присутствующей – резистивности МОП-транзистора, даже если он находится в состоянии проводимости.
  • Id не менее 3 А (я предлагаю более 20 А) – это максимальный ток, который может выдержать МОП-транзистор.

Шаг 3. Проектирование

Трансформатор для паяльной станцииТрансформатор для паяльной станции

Внутри паяльника Hakko 907 находится нагревательный элемент, рядом с которым размещается датчик температуры. Оба этих элемента имеют керамическое покрытие. Нагревательный элемент представляет собой обычную спираль, генерирующую тепло при подаче питания. Датчик температуры фактически представляет собой терморезистор. Терморезистор ведёт себя аналогично резистору – при изменении температуры сопротивление терморезистора меняется.

Таинственный терморезистор Hakko

К сожалению, Hakko не приводит практически никаких данных о терморезисторе, установленном внутри нагревательных элементов. Для меня это много лет оставалось загадкой. Ещё в 2017 году я провёл небольшое лабораторное исследование, пытаясь узнать тепловые характеристики таинственного терморезистора.

Я прикрепил датчик температуры к наконечнику паяльника, подключил омметр к штырькам терморезистора и подал питание на нагревательный элемент с испытательного стенда. Увеличивая температуру паяльника, я фиксировал соответствующие сопротивления терморезистора.

В итоге у меня получился график, который оказался полезным при разработке электрической схемы. Потом я выяснил, что, возможно, этот терморезистор представляет собой терморезистор с положительным температурным коэффициентом сопротивления.

Другими словами, по мере повышения температуры вблизи терморезистора сопротивление терморезистора также увеличивается.(При выполнении следующих шагов рекомендую сверяться с третьим рисунком.)

Делитель напряжения для датчика

Используется для получения полезного выхода с датчика температуры терморезистора. Мне пришлось подсоединить его с помощью делителя напряжения.

Здесь повторяется та же история – технические характеристики этого таинственного датчика отсутствуют, поэтому я установил верхний резистор на делитель напряжения, чтобы ограничить максимальную мощность, рассеиваемую на датчике (я установил максимальное значение 50 мВт).

Теперь, когда на делителе напряжения появился верхний резистор, я вычислил максимальное выходное напряжение при максимальной рабочей температуре. Напряжение на выходе делителя напряжения составило приблизительно 1,6 В.

Затем я попытался решить проблему совместимости АЦП для 10-разрядного программируемого контроллера Arduino Nano и в итоге обнаружил, что не могу подключить датчик делителя напряжения напрямую, так как значения получаются слишком малыми, и они могут оказаться недостаточными для получения нужного результата. Проще говоря, если я подключу датчик делителя напряжения непосредственно к аналоговому штырьку, то между значениями температуры могут возникать пропуски (например, 325 °C, 326 °C, 328 °C….. пропущено значение 327 °C).

Операционный усилитель

Чтобы избавиться от возможной проблемы, связанной с пропуском температурных значений, я использовал операционный усилитель, усиливающий низкое пиковое значение выходного напряжения делителя напряжения (1,6 В).

Расчёты, представленные на третьем рисунке, устанавливают требуемое минимальное значение коэффициента усиления и значение коэффициента усиления, выбранное мной для рабочей системы.

Я не стал доводить коэффициент усиления до значения, при котором 1,6 В на выходе делителя напряжения превращались бы в 5 В опорного напряжения АЦП в Arduino, так как мне хотелось обеспечить определённый запас, если другие паяльники Hakko, подключаемые к делителю напряжения, будут выдавать напряжения выше 1,6 В (что может привести к нелинейным искажениям). Достаточно большой запас обеспечивается при использовании коэффициента усиления 2,22, при этом система сможет работать с другими моделями паяльников.

Шаг 4. Принципиальная схема

В качестве коммутационного устройства для регулирования напряжения методом широтно-импульсной модуляции в проекте используется простой N-канальный МОП-транзистор логического уровня.

Он выступает в качестве цифрового переключателя, подающего питание на нагревательный элемент. Нереверсивный операционный усилитель (LM358) используется для усиления очень малых напряжений, выдаваемых терморезистором делителя напряжения.

В качестве регулятора температуры используется потенциометр 10 кОм, а светодиодный индикатор представляет собой обычный индикатор, который я подключил и запрограммировал таким образом, чтобы он отображал состояние активности нагревательного элемента.

В данном проекте я использовал ЖК-дисплей 16X2 с драйвером интерфейсной шины I2C, так как новичкам в электронике в нём проще разобраться.

Шаг 5. Печатная плата

Ссылка на основную публикацию
Adblock
detector