Трехфазный регулятор мощности своими руками

Трехфазный регулятор мощности своими руками Трехфазный регулятор мощности своими руками

Данный трехфазный регулятор мощности был разработан для управления током нагревателя  в вакуумной печи 150 КВт. Подойдет для регулирования мощности в любых трехфазных схемах с тиристорами от 10 до 2500А. Обновлено 03.2019.

  • Регулятор мощности тиристорный.
  • Фазо-импульсный регулятор
  • Применим для схем с тиристорами от 10А до 2500А.
  • Входной сигнал 0-10V
  • Диапазон регулировки мощности от 0 до 100%
  • Варианты подключения смотрите ниже

Схема трехфазного регулятора мощности и его принцип действия

Трехфазный регулятор мощности своими руками

Трехфазный регулятор мощности разработан на базе 3-х микросхем TCA (Siemens) 785. Данная микросхема вырабатывает управляющие импульсы открытия тиристоров и устроена таким образом, что при 0В на входе — импульс управления подается в начале полуволны(тиристор полностью открыт) А при входном напряжении 10V управляющий импульс не подается(тиристор закрыт). Поэтому, для перехода на классическую схему управления — 0V на входе — минимальная  мощность на выходе, 10V — максимальная, сделана соответствующая доработка. Импульсы выдаваемые микросхемой TCA 785 усилены и преобразованы.

В данном трехфазном регуляторе так же присутствует плата синхронизации с трехфазной питающей сетью, показана на схеме ниже.

Варианты подключения

Напрямую от трехфазной сети, без использования понижающего трансформатора данный регулятор можно применять для регулирования мощности как трехфазной нагрузки, так нагрузки постоянного тока. Коммутационная схема регулятора мощности в таких случаях выглядит так

Трехфазный регулятор мощности своими руками Трехфазный регулятор мощности своими руками

Если регулятор подключается во вторичку как показано на схеме выше. В таком случае вторичные обмотки трансформатора можно соединять как треугольником так и в звезду.

Трехфазный регулятор мощности своими руками

Трехфазный регулятор мощности своими руками

(данный раздел статьи будет дополняться по мере изготовления 3-фазного регулятора)

Что-же, давайте перейдем от теории к практике и соберем такой регулятор. Он будет использоваться для автоматического управления температурой в печи отжига отливок. В литейном цеху.

Условно трехфазный регулятор можно изобразить так:

Трехфазный регулятор мощности своими руками

Модуль синхронизации — три трансформатора для синхронизации по 3-м фазам.

Плата регулятора — схема трехфазного регулятора представлена выше, печатная плата показана ниже)

Модуль согласования. Разные типы тиристоров требуют разных по форме импульсов открытия. В модуле согласования мы настраиваем ширину и амплитуду импульса в зависимости от выбранных тиристоров.

Делаем печатную плату

Трехфазный регулятор мощности своими руками

  • Скачать pdf печатной платы регулятора, сторона дорожек
  • Скачать pdf печатной платы регулятора, сторона элементов
  • так выглядит наша готовая плата регулятора

Трехфазный регулятор мощности своими руками

Теперь собираем синхронизацию. В данном случае будет использован трехфазный тиристорно-диодный выпрямитель без понижающего трансформатора. Поэтому схему синхронизации подключаем так:

Трехфазный регулятор мощности своими руками

Схема платы согласования выглядит следующим образом:

Показан только один канал. Нужно собрать таких три.

Все регулятор готов. Подключаем его к трехфазному выпрямителю, а на вход задания подаем сигнал 0-10В температурного контроллера. (или потенциометра, для ручного управления).

Подытожим. Если у вас есть  трехфазная установка, печь, нагреватель, да что угодно, любой потребитель мощности с максимальным потребляемым током  до 2500 А. Можете смело использовать такой трехфазный регулятор мощности.

Подобрав при этом трансформатор в зависимости от потребляемой мощности вашей установки. Или подключить регулятор напрямую от питающей трехфазной сети без использования понижающего трансформатора.

Данный трехфазный регулятор мощности испытан и отлично себя зарекомендовал на более чем 10-ти печах мощностью до 300 000 W (срок эксплуатации уже более 6 лет).

Купить такой 3-х фазный регулятор можно по ссылке.

Если вы хотите собрать трехфазный регулятор мощности своими руками, напишите в х, дам необходимую информацию.

Обзоры товаров

on 23 августа, 2019 by admin

Эндоскоп представляет из себя шнур диаметром 5мм , на конце которого размещена видеокамера со светодиодной п�…

Технологии

on 16 апреля, 2019 by admin

В этом материале постараемся теоретически решить задачу автономное отопление на солнечных батареях. Посчит�…

Технологии

on 22 марта, 2019 by admin

Данный трехфазный регулятор мощности был разработан для управления током нагревателя  в вакуумной печи 150…

Технологии

on 24 января, 2019 by admin

Чтобы очистить садовый пруд нужно организовать биоплато. Чем больше солнца тем больший объем воды солнечные …

Технологии

on 27 сентября, 2018 by admin

Возможно ли использовать солнечную панель как зарядное для литиевых аккумуляторов li ion типа 18650.  Мы решили…

Обзоры товаров

on 31 июля, 2018 by admin

Aiek M5 из магазина AliExpress. Начну с главного. Телефончик действительно хорош, вызывает много положительных эмоци�…

Регулятор мощности до трёх киловатт

Отличный регулятор мощности до трёх киловатт смастерим сами практически из хлама, но работать будет он не хуже, а местами даже лучше «фирменных». Никаких скачков напряжения, провалов и прочих неприятностей.

В конце статьи будет видео ролик, в котором сможете убедиться своими глазами, что это действительно так.Трехфазный регулятор мощности своими руками

Регулятор мощности до трёх киловатт.

Такое очень простое, и в то же время очень полезное устройство, можно применить для управления оборотами электродвигателей с фазным ротором.

Например, электродрель старого производства, у которой нет встроенного регулятора оборотов, и ещё большого количества подобных инструментов и механизмов, которым не помешает регулировка оборотов, для расширения возможностей данного устройства.

Так же, такой регулятор отлично и бесступенчато регулирует мощность электрических нагревателей любого типа. Например, конфорки электроплиты, калориферы и тому подобное.

Регулятор может плавно менять освещённость ламп накаливания и диммируемых светодиодных в широких пределах от ноля до 100%.Для начала монтажа устройства соберём детали.Трехфазный регулятор мощности своими руками

Внизу фотографии образцы DB3 — 3 штуки

Нам понадобится:R1 – 20 Килоом, R3 — 3.3 Килоом, R4 – 300 Ом, R2 – потенциометр — от 470 Килоом до 1 Мегаом,C1 и C2 -0.05 МкФ, C3 – 0.1 МкФ, T1 -динистор или ещё его называют диак DB3,T2 – симистор или по другому — триак. Симистор можно взять Советского производства из серии КУ208.

Или BT138-800, BT139-600 или им подобные, эти симисторы в Китае около 10 рублей за штуку, так же как и макетные платы, на которой мы и будем собирать данное устройство.Макетная плата здорово облегчает и убыстряет монтаж электронных приспособлений. Не нужно заморачиваться с изготовлением и сверлением печатных плат.

Просто вставляешь радиодетали в готовые отверстия, припаиваешь, соединяешь по схеме перемычками и готово. Все конденсаторы и динистор можно выпаять из старых энергосберегающих ламп. Конденсаторы с нужными номиналами и динисторы есть не во всех лампах, так что нужно поискать.

Динисторы в разных корпусах внизу второй фотографии (чтобы вы имели представление об их внешнем виде), а на корпусах у них написано DB3 (с лупой можно прочитать).Потенциометр я взял от старого, ещё Советского телевизора, но подойдёт и любой другой с указанными номиналами.

Читайте также:  Проверка ротора на межвитковое замыкание

Радиатор от компьютерного блока, но его нужно подбирать, в зависимости от планируемой нагрузки, которой вы собираетесь управлять. До 300 ватт – радиатор совсем не нужен, а чем выше нагрузка, тем массивнее радиатор.

Размеры радиатора зависят и от характера нагрузки, так что подбор дело индивидуальное, но чем больше радиатор, тем лучше режим работы симистора и он будет работать дольше без аварий. Так что не скупитесь и поставьте побольше.Резисторы везде есть, в любой аппаратуре, так что подобрать не составит большой проблемы. В Китае, тоже можно купить.

600 резисторов разных номиналов «набор», стоит около 150 рублей, вместе с доставкой, так что проще купить, чем заморачиваться с поиском и выпаиванием из блоков. Клеммы для подключения питания и нагрузки можно взять любые, какие найдёте, но можно и вовсе обойтись без них, вопрос в удобстве использования данного устройства в эксплуатации.

Схема устройства выглядит так.

Цепочка R4 – C3 является защитой от радиопомех и её можете убрать, но соседи за это могут побить, если поймают.Трехфазный регулятор мощности своими руками

Принципиальная схема регулятора мощности.

Теперь приступаем к сборке.

Детали размещаем на макетной плате, так быстрее, на мой взгляд, удобнее и выглядит хорошо. Пайку выполнять нужно как можно более качественно и желательно не спеша.Олово из Китая качественное не встречал, так что воспользуйтесь любым другим.Трехфазный регулятор мощности своими руками

Намазываем симистор теплопроводной пастой, но не густо.

Симистор к радиатору прикрутить с теплопроводной пастой. Паста должна слегка выступить с краёв, когда вы прикрутите симистор к радиатору.Трехфазный регулятор мощности своими руками

Припаиваем.

Трехфазный регулятор мощности своими руками

Припаивать детали лучше по очереди, по одной, по мере установки.

Перемычки (на схеме обозначенные красным цветом) выполняем медным проводом повышенного сечения, в зависимости от мощности нагрузки. На 3 киловатта — 2,5 квадратных миллиметра будет, с запасом, в самый раз.

Я планирую управлять оборотами дрели на 800 ватт, и провод взял 1,5 мм, конечно тоже с запасом, но как говорится запас…. . И лучше будет работать.Трехфазный регулятор мощности своими руками

«Третья рука» сильно облегчает работу.

Трехфазный регулятор мощности своими руками

Нужно постоянно сверяться со схемой, при установке деталей.

Трехфазный регулятор мощности своими руками

Схема простая, но внимательность будет не лишней.

Трехфазный регулятор мощности своими руками

Силовая часть требует очень тщательной пайки.

На макетной плате, между контактами клеммных колодок, нужно удалить медные контакты во избежание короткого замыкания. 220 вольт – серьёзное напряжение и шутить с ним не рекомендуется. На фотографии видно как это сделать.

Нужно острым предметом «например канцелярским ножом» срезать фольгу.Подключаем лампочку в качестве наглядной нагрузки и кусок провода с вилкой для подключения к сети.

Когда устройство подключаете к питанию, действуйте предельно осторожно! Все элементы схемы находятся под полным напряжением сети 220 вольт! Опасно для жизни!

Работает штатно.Вращением потенциометра регулируем свечение лампы и убеждаемся, что свет плавно, без провалов и рывков изменяет свою интенсивность.Смотрите видео и убеждайтесь, что всё работает, как и планировалось.

Удачи вам в ваших делах.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Мощный симисторный регулятор мощности

Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.

Схема мощного симисторного регулятора мощности

Трехфазный регулятор мощности своими руками

Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.

Трехфазный регулятор мощности своими руками

В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?

Трехфазный регулятор мощности своими руками

В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.

Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.

Трехфазный регулятор мощности своими руками

Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А.

Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами.

Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.

Трехфазный регулятор мощности своими руками

Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше.  И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.

Трехфазный регулятор мощности своими руками

Для сведения, медный провод сечением 2.5мм2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.

Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.

Трехфазный регулятор мощности своими руками

Трехфазный регулятор мощности своими руками

Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов.

Температура достигла 900С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу.

Иначе получим настоящую печь.

  • Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.
  • Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.
  • Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.

Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.

Читайте также:  Как определить сечение кабеля на глаз

Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.

О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.

Трехфазный регулятор мощности своими руками

Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.

Трехфазный регулятор мощности своими руками

В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм2.

Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.

  1. Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.

Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».

Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.

  • Выводы симистора, при его монтаже, рекомендуется делать как можно короче.
  • Вывод.
  • Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…
  • Печатная плата регулятора мощности СКАЧАТЬ

Регулятор мощности для 3 фазного мотора

Цифровой регулятор мощности для 3 фазного мотора переменного тока выполнен с использованием специальной микросхемы MC3PHAC от фирмы NXP Semiconductor. Она генерирует 6 ШИМ-сигналов для 3 фазного двигателя переменного тока.

Блок легко совмещается с мощным 3 фазным IGBT/MOSFET ключевым приводом. Плата обеспечивает 6 ШИМ сигналов для IPM или IGBT инвертора, а также сигнал торможения.

Схема работает в автономном режиме и не требует программирования и кодирования.

Схема регулятора

Трехфазный регулятор мощности своими руками

Органы управления

  • PR1: Потенциометр для установки ускорения
  • PR2: Потенциометр для регулировки скорости
  • SW1: Переключатель DIPX4 для установки частот 60Hz/50Hz и установки выхода активный низкий / активный высокий
  • SW2: Переключатель сброса
  • SW3: Старт / стоп мотор
  • SW4: изменить направление двигателя

Трехфазный регулятор мощности своими руками

Основные параметры

  • Питание драйвера 7-15 В постоянного тока
  • Потенциометр для управления скоростью двигателя
  • Частота ШИМ по умолчанию 10.582 кГц (5.291 кГц – 164 кГц)

М/с MC3PHAC — это монолитный интеллектуальный контроллер, разработанный специально для удовлетворения потребности в недорогих 3-фазных системах управления электродвигателем переменного тока с регулировкой скорости вращения. Устройство адаптируется и настраивается в зависимости от его параметров.

Оно содержит все активные функции, необходимые для реализации части управления с открытым контуром. Всё это делает MC3PHAC идеально подходящей для устройств, требующих поддержки управления двигателем переменного тока.

Трехфазный регулятор мощности своими руками

В состав MC3PHAC входят защитные функции, состоящие из контроля напряжения шины постоянного тока и входа неисправности системы, которые немедленно отключат модуль ШИМ при обнаружении неисправности системы.

Все выходные сигналы TTL уровня. Вход для блока питания 5-15 В постоянного тока, постоянное напряжение на шине должно быть в пределах 1.

75 — 4,75 вольта, DIP-переключатель предусмотрен на плате для установки под двигатели с частотой 60 или 50 Гц, перемычки помогают установить полярность выходного ШИМ-сигнала, то есть активный низкий или активный высокий уровень, что позволяет использовать эту плату в любом модуле, так как выход можно установить активный низкий или высокий. Потенциометр PR2 помогает регулировать скорость двигателя. Для изменения базовой частоты, времени отключения ШИМ, других возможных параметров — изучайте даташит. Файлы платы — в архиве

Трехфазный регулятор мощности своими руками

Управление скоростью. Синхронная частота электродвигателя может быть задана в режиме реального времени для любого значения от 1 Гц до 128 Гц регулировкой потенциометра PR2. Коэффициент масштабирования составляет 25,6 Гц на вольт. Обработка 24-битным цифровым фильтром для того чтобы увеличить стабильность скорости.

Управление ускорением. Ускорение двигателя может быть задано в режиме реального времени в диапазоне от 0,5 Гц/сек до 128 Гц/сек, путем регулировки потенциометра PR1. Коэффициент масштабирования составляет 25,6 Гц/секунду на вольт.

Защита. При возникновении неисправности MC3PHAC немедленно отключает ШИМ и ожидает, пока условие неисправности не будет устранено перед запуском таймера для повторного включения.

В автономном режиме этот интервал времени ожидания задается на этапе инициализации путем подачи напряжения на вывод MUX_IN, в то время как вывод RETRY_TxD управляется на низком уровне.

Таким образом, время повтора может быть указано от 1 до 60 секунд с коэффициентом масштабирования 12 секунд на вольт.

Контроль внешних неисправностей. Вывод FAULTIN принимает цифровой сигнал, указывающий на неисправность, обнаруженную с помощью внешних цепей мониторинга. Высокий уровень на этом входе приводит к немедленному отключению ШИМ.

Как только этот вход возвращается к низкому уровню логики, таймер повтора сбоя начинает работать, и ШИМ повторно включается после достижения запрограммированного значения тайм-аута.

Входной контакт 9 разъема CN3 FLTIN должен быть с высоким потенциалом.

Мониторинг целостности напряжения (входной сигнал pin 10 в cn3) в DC_BUS отслеживается на частоте 5.3 кГц (4.0 кГц, если частота ШИМ имеет значение до 15,9 кГц). В автономном режиме пороги фиксируются на 4.

47 вольт (128% от номинальной), и 1,75 вольт (50% от номинальной), где номинальное значение определяется в 3,5 вольт.

Как только уровень сигнала DC_BUS возвращается к значению в пределах допустимого — таймер повтора сбоя начинает работать, и ШИМ снова включается после достижения запрограммированного значения тайм-аута.

Регенерация. Процесс экономии, с помощью которого сохраненная механическая энергия в двигателе и нагрузке переносятся обратно в привод электроники, происходит это как правило, в результате принудительного замедления.

В особых случаях, когда этот процесс происходит часто (например, системы управления двигателями лифтов), он включает специальные функции, чтобы позволить этой энергии перейти обратно в сеть переменного тока.

Однако для большинства недорогих приводов переменного тока эта энергия сохраняется в конденсаторе шины постоянного тока за счет увеличения ее напряжения.

Если этот процесс не установлен, напряжение шины постоянного тока может подниматься до опасного уровня, что может привести к порче конденсатора шины или транзисторов в инверторе питания. MC3PHAC позволяет автоматизировать и стабилизировать этот процесс.

Читайте также:  Мощность лампы накаливания при последовательном соединении

Резистивное торможение. DC_BUS пин-код отслеживается на 5.3 кГц (4.0 кГц, если частота ШИМ имеет значение до 15,9 кГц), и когда напряжение достигает определенного порога, RBRAKE контакт примет высокий потенциал.

Этот сигнал может использоваться для управления резистивным тормозом, размещенным через конденсатор шины постоянного тока, таким образом, механическая энергия от двигателя будет рассеиваться в виде тепла в резисторе.

В автономном режиме порог DC_BUS, необходимый для подтверждения сигнала RBRAKE, зафиксирован на уровне 3,85 вольта (110 % номинала), где номинал определяется как 3,5 вольта.

Трехфазный регулятор мощности своими руками

Выбор частоты ШИМ. У MC3PHAC имеется четырех дискретных частоты ШИМ, которые могут быть динамически изменены во время вращения электродвигателя.

Этот резистор может быть потенциометром или фиксированным резистором в диапазоне, показанном в таблице.

Частота ШИМ определяется подачей напряжения на контакт MUX_IN в то время как контакт ШИМ FREQ_RxD управляется низким потенциалом.

   Форум

   Форум по обсуждению материала Регулятор мощности для 3 фазного мотора

Трехфазный регулятор мощности своими руками

Тиристорные регуляторы мощности применяются как в быту (в аналоговых паяльных станциях, электронагревательных приборах и т.д.), так и на производстве (например, для запуска мощных силовых установок).

В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные.

Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке (подробнее об этом методе будет рассказано ниже).

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

Минимальная мощность

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.

Половинная мощность

  Буровые установки, оборудование и инструмент

Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.

Мощность, близкая к максимальной

Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.

Переключение тиристора через «ноль»

Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Принцип работы и схемы

Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные.

Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра.

Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:

В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода.

Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора.

Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:

Принципиальная схема работы трехфазного преобразователя

Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше.

Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже.

Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:

Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.

В данном конкретном случае – шесть фаз постоянного напряжения вместо трех, которые были в однотактной схеме. Вот почему требования к сглаживающему фильтру снижаются, и в некоторых случаях без него можно полностью обойтись.

Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов.

Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа. Два трансформатора будто бы объединены в один.

В каждый момент прохождения тока через диоды – в процессе участвуют одновременно два диода — по одному из каждой группы.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]