Цвета проводов в электронике

Цвета проводов в электронике

Цветовая маркировка проводов стала применяться с тех пор, как техника усложнилась, и выполнять работы по монтажу и ремонту без ошибок стало сложно. Ошибки в электрических цепях приводят к неисправностям, имеющим иногда очень высокую цену. Так или иначе, маркировать проводники в технике начали рано, но делать цветные провода научились только с появлением поливинилхлоридной изоляции.

Расцветка проводов

Изоляцию ПВХ или полиэтиленовую можно окрасить в любой цвет, химики подобрали для этого все необходимые красители.

Наиболее актуальна цветовая маркировка была сначала в телефонных кабелях, до сих пор существуют правила для подсчета пар и четверок по цвету.

В них используется тонкая медная жила, покрытая пластиковой разноцветной изоляцией. Позднее стандарты на цвет пришли в силовую электротехнику.

Например, алюминиевые и медные шины в силовых шкафах раньше окрашивались в желтый, зеленый и красный цвета для обозначения фаз A, B и C. Чередование фаз очень важно во многих случаях, например, от этого зависит направление вращения электродвигателей.

Существуют простые правила, позволяющие уверенно определить по цвету назначение проводника. Защитная земля (проводник PE) всегда окрашивается в желто-зеленый или желтый или зеленый цвет. Это цвет провода заземления – никакой другой не может быть такого цвета.

Нейтраль N (это общая точка соединения обмоток генератора соединенных по схеме звезда) всегда синего или голубого цвета. Все остальные цвета используются для маркировки фаз, при условии, что их нельзя спутать с проводами нуля и земли даже при плохом освещении. То есть, наиболее предпочтительны контрастные цвета:

Цвета проводов в электронике

Чаще всего фазный проводник в однофазной цепи обозначается коричневым цветом. Трехфазный трехжильный провод маркируют цветами: коричневый, черный, серый. Такие кабели подключают обычно к электромоторам на металлической раме при соединении обмоток треугольником (краны, погрузчики, оборудование в промышленности).

Несколько слов нужно сказать о цепях постоянного тока. В таких случаях применяют расцветку для обозначения полярности: плюс – предпочтительно коричневый (или красный), минус – серый. Если какой-либо из проводников цепи постоянного тока соединяется с нейтралью переменного тока, то для него используют синий цвет.

Цвета проводов в электрике должны соблюдаться во всех случаях (ГОСТ Р 50462 – 2009). Электрические провода находятся под напряжением и цветная маркировка повышает безопасность. Это никоим образом не отменяет остальные правила безопасности. Даже после снятия напряжения с цепи, следует использовать индикатор фазы, выпускаемый в виде небольшой отвертки.

Установочные провода (для монтажа электроустановок и аппаратуры) почти всегда расположены так, что обязательно требуют прозвонки перед подключением: либо их много в пучке, либо они идут неизвестно откуда. Многожильный кабель может быть использован для различных нужд не только для подачи питания, но и в схемах управления и автоматики.

Раньше установочные провода часто представляли собой белый провод из алюминия в котором не было разницы между фазой и нулем. При необходимости установить, например, кнопочную станцию с несколькими кнопками, возникали сложности с прозвонкой и частые ошибки. Иногда это обходилось слишком дорого.

Как разобраться с проводами в пучке

И сегодня не помешает знать, как определить провода в пучке или жилы в кабеле, если они одного цвета. Более того, провода могут где-то соединяться, и приходить в конечную точку уже другим цветом. Это неправильно, но в жизни случается, и соединять провода просто по цвету слишком рискованно. Поэтому прозванивать цепи после монтажа и ремонта надо обязательно.

Цвета проводов в электронике

Для этой цели изготавливают специальные кабельные тестеры, но они оправданы только при постоянном и частом использовании, на таких сложных объектах, как самолеты, ракетная техника, морские суда, электростанции и т. п. В домашних условиях или даже при выполнении электромонтажных работ на небольших производствах или строительстве можно обойтись простейшими приемами, которые дают вполне надежные результаты.

Для этого можно протянуть контрольный провод, но это далеко не всегда доступно. Часто все, что есть – это батарейка и контрольная лампочка.

Чтобы однозначно определить в этом случае провода, в пучке должно быть не менее трех жил. Сначала на одном конце трассы замыкают все три провода. Если на другом конце все они звонятся, значит, все в порядке, обрывов нет.

Затем на первом конце маркируется один из проводов, например, A, и эту жилу отключают.

На другом конце ищут провод, который перестал звониться с остальным пучком. Он и есть A, его также маркируют. Таким образом выбирается «опорный» провод.

Затем на первом конце размыкают все провода и замыкают с A провод B, маркируют, на другом конце он, естественно, звонится с проводом A. Это B и его так же маркируют, как и на первом конце.

Эту процедуру повторяют для всех остальных жил при необходимости.

Определить даже всего два провода однозначно можно при помощи батарейки и мультиметра. На одном конце батарейку подключают известными полюсами к проводам, а на другом конце мультиметр покажет полярность измеренного постоянного напряжения.

Можно также использовать простой светодиод вместо мультиметра или любой диод с обычной лампочкой.

Такая цепь будет работать только при правильной полярности, причиной чего является односторонняя проводимость, как обычного диода, так и светодиода.

Сейчас используются почти исключительно медные провода. Алюминий применяют только для воздушных линий. Все виды проводов производители окрашивают в любой из цветов, так что потребители могут выбрать цвета по каталогу.

Для бытовых потребителей это не столь важно. Однако никогда не должно быть неясностей по поводу того какого цвета провод заземления. Поэтому все многожильные провода и шнуры питания соответственно маркируют зеленым или желто-зеленым. Любой другой провод фаза или ноль и должен быть окрашен в подходящий цвет (ноль всегда синий).

Телефонные провода и ЛВС

Обычная телефонная линия состоит из двух проводов (абонентской пары). Один из этих проводов плюс, другой – минус. В линии 60 В. Старые аппараты с импульсным набором можно подключать как угодно, новые могут не работать при несоответствующей полярности. Розетка подключается к аппарату через разъем RJ11, RJ12 или RJ25.

Розетка с четырьмя проводами имеет пару для абонентской линии: зеленый (прямой, плюс) и красный (обратный, минус) провода. Еще два провода — черный и желтый — используются либо для подачи питания на некоторые устройства: черный – плюс, желтый – минус; либо для второй абонентской линии, местной, или офисной.

Такую розетку используют и для подключения телефонной трубки или гарнитуры (handset). При этом зелено-красная пара подключается к телефону (наушникам), а черно-желтая – к микрофону.

Шестиконтактная розетка содержит дополнительную пару проводов: белый и синий. Телефонные розетки стали сразу же использовать для подключения локальных сетей, выделяя для этого нужное число пар.

Сейчас используют восьмиконтактные модульные коннекторы по ошибке называемые «RJ45», для телефона и медленной сети T1 (1.544 Мбит/с). Для современных скоростных локальных сетей используют стандарт T568A или B, в котором подключение витых пар различается, и используют кабель 5-й категории.

Основным цветом считается первый, указанный в паре. Основной принцип разъемов и розеток RJ состоял в том, что пары последовательно идут от центра к краям, но это плохо сказалось на быстродействии сетей, так как при этом возникают взаимные помехи между витыми парами.

RJ48

Цвета проводов в электронике

T568A

Цвета проводов в электронике

Советы

Для маркировки одноцветных проводов можно использовать термоусадочную трубку, которую теперь продают всех цветов. Небольшой отрезок этой трубки надевают на маркируемый провод и слегка подогревают воздух рядом с трубкой феном, зажигалкой или газовым паяльником. Трубка усаживается и плотно обжимает изоляцию провода.

Читайте также:  Флюс для пайки бура как применять

Если нет термоусадочной трубки, то можно использовать бумагу требуемых цветов или сделать аккуратные надписи, таким образом, чтобы они читались вдоль изоляции провода. Затем взять полоску скотча, наклеить на нее полоску бумаги с надписями.

Края скотча должны позволить наложить бумагу на провод и зафиксировать ее так, чтобы она вся была под скотчем. Нужно отметить, что этот способ лучше всего применять там, где точно не появится сырости, ведь маркировка проводов должна сохраняться как можно дольше, а не только на время монтажа.

Какими бывают цвета проводов фазы, ноля и земли в квартирах или частных домах — Все об электрике от экспертов

Играют ключевую роль для обслуживания и ремонта. Сильно упрощается работа для мастеров и скорость устранения проблемы.

Цвета в электропроводке: важность и практичность

Цвета проводов в электроникеМаркировка – необходимый элемент создания сети электропитания. Благодаря простым обозначениям и цветовому решению удается выделить нужный кабель из пучка.

Такой подход упрощает профилактику, замену оборудования  или выявление поломки. Поэтому так важно разбираться в окрашивании электропроводки.

Как окрашиваются провода на электропроводке?

Согласно европейским и нашим стандартам производители окрашивают провода в разный цвет и индивидуально маркируют. Окрашивается изоляционный материал.

Цветная маркировка проводится по всей длине. Такой подход определяет предназначение каждого элемента, что облегчает коммутацию. Обязательно правильно соединять цвета, чтобы предупредить опасные моменты. Провода в электрике делятся на три вида:

Каждый из них имеет разную окраску, чтобы мастер мог быстро определить их назначение.

Всегда ли одинаково обозначение цветов для сети 220 в?

У каждого производителя свои обозначения, но в целом стараются придерживаться общепринятых правил – европейских и отечественных стандартов. Например, фаза обозначается ярким цветом, чтобы даже непрофессионалу было ясно – опасность.

Какие цвета в элетропроводке?

Цвета проводов в электроникеСогласно правилам устройства электроустановок (ПУЭ), электропроводка покрывается изоляционным материалом разного цвета. Так элементы проще распознаются мастером. В работе используется трехжильный кабель, где есть фаза, ноль, земля, которые окрашены по-разному. Ранее было только черное и белое исполнение, но с введением новых правил, стало безопасней и проще.

Появились варианты:

  • белый;
  • черный;
  • красный;
  • голубой (синий);
  • желто-зеленый;
  • коричневый.

Цвет провода заземления

Желто-зеленый – элементов «заземления». Иногда владельцу прибора встречается просто желтый или зеленый, с двумя буквами – “РЕ”, которые отвечают за маркировку «земли». Если элемент заземления вместе с нулевым, то обозначается “PEN” и чаще имеет зелено-желтый оттенок.

Каким обозначается фаза?

Цвета проводов в электроникеКонтакт с фазой самый опасный. При проведении работ стоит остерегаться его. Поскольку некоторые случаи могут быть даже летальными, производители отмечают его ярким цветом, чтобы не спутать с другими вариантами.

Красный и черный – цвета фазы. Встречаются и другие:

  • коричневый;
  • сиреневый;
  • оранжевый;
  • розовый;
  • фиолетовый;
  • белый;
  • серый.

Разобраться с пучком элементов питания будет проще, когда будет исключен ноль и земля. Фаза на схеме отмечается буквой L. Если в сети несколько фаз, что часто встречается при 380 В, такие провода обозначаются L1, L2, L3. В других случаях, могут обозначаться: первая фаза – A, вторая — B и т.д.

Нулевой провод в однофазной сети

Представлен синим или голубым оттенками. В электрике больше не встречается другого обозначения этого цвета. Не важно какой используется в работе кабель – трехжильный, пятижильный, цвет один и тот же.

На схемах «ноль» подписывают буквой N. Такой кабель относят к рабочему элементу, ведь в отличие от заземления, он принимает участие в создании цепи электропитания. В некоторых схемах его читают как «минус», тогда фаза выступает «плюсом».

Как проверить правильность маркировки в квартире?

Цвета проводов в электроникеПолагаться только на цвет не рекомендуется. Перед началом работ рекомендуется проверить их принадлежность. Для этого используется специальная отвертка.

Светодиод на ней загорается при прикосновении к фазе. С двухжильным кабелем проблем не возникнет, ведь второй окажется нулем. Для трехжильного используют другой инструмент – мультиметр или тестер.

Переключатель выставляется по шкале больше 220В. На экране должен высветится этот показатель или даже меньше, ведь таковы наши реалии.

Чтобы использовать мультиметр стоит учитывать, что при прозвоне пары «фаза-земля» показатели ниже, чем при прозвоне пары «фаза-ноль»

Обозначение цветов на схемах по электрике

Цвета проводов в электроникеКоличество используемых в работе цветов зависит напрямую от конкретной схемы. Если работы проводятся согласно общепринятым стандартам, то опытный электрик в будущем легко разберется с вашей сетью. Не придется использовать дополнительные устройства для определения фазы, хватит знаний в вопросе обозначения цветов. Стандартной палитрой считается:

  • ноль – синий;
  • земля – желтый;
  • фаза – красный.

В однофазной сети применяется один цвет, если же используются более массивные сети, то фаза может быть отмечена черным и зеленым.

Прежде чем приступить к работам с электропроводкой, важно знать обозначения цветов каждого провода. Во-первых, ради собственной безопасности, во-вторых, такой подход обеспечит максимальный комфорт.

Такие знания упрощают процесс монтажа и будущую профилактику сети. Не придется каждый раз использовать специально отвертку, чтобы определить фазу.

Опытные электрики смогут «разговаривать» на одном языке, пользуясь стандартами цветобуквенной маркировки.

Цветовая маркировка проводов

Тот кто хоть раз имел дело с проводами и электрикой обратил внимание, что проводники всегда имеют различный цвет изоляции. Сделано это не просто так. Цвета проводов в электрике призваны сделать проще распознавание фазы, нулевого провода и заземления. Все они имеют определенную окраску и при работе легко различаются. О том, каков цвет проводов фаза, ноль, земля и пойдет речь дальше. 

Как окрашиваются провода фазы

При работе с проводкой наибольшую опасность представляют фазные провода. Прикосновение к фазе, при определенных обстоятельствах, может стать летальным, потому, наверное, для них выбраны яркие цвета. Вообще, цвета проводов в электрике позволяют быстрее определить которые из пучка проводов наиболее опасны и работать с ними очень аккуратно.

Цвета проводов в электроникеРасцветка фазных проводов

Чаще всего фазные проводники бывают красного или черного цвета, но встречается и другая окраска: коричневый, сиреневый, оранжевый, розовый, фиолетовый, белый, серый. Вот во все эти цвета может быть окрашены фазы. С ними проще будет разобраться, если исключить нулевой провод и землю.

На схемах фазные провода обозначаются латинской (английской) буквой L. При наличии нескольких фаз, к букве добавляют численное обозначение: L1, L2, L3 для трехфазной сети 380 В. В другой версии первая фаза обозначается буквой A, вторая —  B, третья — C.

Цвет провода заземления

По современным стандартам, проводник заземления имеет желто-зеленый цвет. Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.

Цвета проводов в электроникеТакого цвета могут быть заземление

В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет.

Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE.

Так же маркируются и контакты, к которым «земляной» провод надо подключать.

Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.

Какого цвета нулевой провод

Ноль или нейтраль имеет синий или голубой цвет, иногда — синий с белой полосой. Другие цвета в электрике для обозначения нуля не используются. Таким он будет в любом кабеле: трехжильном, пятижильном или с большим количеством проводников.

Цвета проводов в электроникеКакого цвета нулевой провод? Синий или голубой

Синим цветом обычно рисуют «ноль» на схемах, а подписывают латинской буквой N. Специалисты называют его рабочим нулем, так как он, в отличие от заземления, участвует в образовании цепи электропитания. При прочтении схемы его часто определяют как «минус», в то время как фаза считается «плюсом».

Читайте также:  Отраслевой состав металлургического комплекса

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко.

Если кабель двухжильный, проблем нет — второй проводник это ноль.

Но если провод трехжильный, понадобиться мультиметр или тестер —  с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

Цвета проводов в электроникеОпределение фазного провода при помощи индикаторной отвертки

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению.

Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль».

В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

Итак, запомните, что при прозвонке пары «фаза-ноль» показания мультиметра всегда выше, чем при прозвонке пары «фаза-земля».

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Введение, закон Ома

Цвета проводов в электронике

Робототехника – прикладная наука, занимающаяся разработкой автоматизированных систем. Это комплексная наука, состоящая из электроники, электрики, электротехники, механики, кибернетики, телемеханики, мехатроники, информатики, радиотехники, и возможно чего-то ещё. В рамках моих уроков мы разобьём робототехнику на программирование и электронику. Программирование и работу с Arduino (и микроконтроллерами ATmega/ATtiny) мы уже изучили, осталось подтянуть электронную часть. В этом блоке уроков я буду совмещать программную часть и железо для большей наглядности.

Ниже вы найдете видеоролик с подробным объяснением, что есть напряжение, а что есть ток, здесь расскажу вкратце и “на пальцах”. Также очень рекомендую изучить онлайн-учебник по электронике на сайте madelectronics. Напряжение измеряется в Вольтах (В, V), а ток – в Амперах (A), по фамилиям учёных, открывших соответствующие величины.

Напряжение и ток связаны через сопротивление, открытое Омом (Ом, Ohm). Подробнее об этом ниже. Электрический ток по своей сути это поток заряженных частиц, которые движутся от одного полюса к другому (принято от плюса к минусу). У полюсов есть так называемый потенциал, который можно сравнить с высотой уровня воды, т.е.

её потенциальной энергией: например у нас есть два сосуда с водой, расположенных на разной высоте. Между сосудами проложена труба (пока что считаем трубу закрытой).

Так вот, напряжение – это разность потенциалов, то есть насколько потенциально быстро вода может течь по трубе: если сосуды расположены на одном уровне – разность потенциалов будет 0, то есть вода не потечёт (напряжение 0 Вольт). Если один сосуд расположен на 0, а второй на высоте 5 – между ними будет напряжение, т.е.

разность потенциалов 5-0, или 5 Вольт. Напряжение обозначается буквой V. Напряжение – статическая величина, потенциал, показывает потенциальную “скорость” воды в трубе, ведь чем больше перепад, тем больше скорость. А вот теперь мы открываем трубу и вода начинает течь.

Электрический ток – это сам процесс движения электронов (частиц воды), и физически он определяется как количество электронов за единицу времени, то есть в нашей аналогии это объем воды, протекающий через трубу за единицу времени. Ток, он же сила тока, обозначается буквой I. И вот тут в дело вступает сама труба.

Труба в нашей аналогии является проводником, то есть проводом между плюсом и минусом. Чем больше диаметр трубы, тем больше воды за единицу времени через неё сможет течь, верно? Вот и с проводом такая же история. Всего у нас есть три характеристики:

  • Диаметр, или площадь поперечного сечения трубы: чем он больше – тем легче воде будет течь. Сечение обозначается буквой S.
  • Чем больше длина трубы, тем труднее будет воде через неё течь: попробуйте прокачать воду через метровый шланг, и через 100 метровый. Длина проводника обозначается l.
  • Труба имеет шершавость, так называемое удельное сопротивление. Чем оно выше, тем труднее воде будет течь, то есть тем больше скорости она потеряет. Удельное сопротивление обозначается буквой r.

Все три характеристики дают трубе сопротивление, которое обозначается буквой R и считается по формуле R = r * l / S. Сопротивление измеряется в Омах и связывает напряжение и ток: зная напряжение (высоту сосуда) и сопротивление проводника (характеристики трубы) мы можем прикинуть ток, который будет в ней течь.

Эта связь называется законом Ома и описывается очень простой формулой: I = V / R. О применении формулы к электронике мы поговорим чуть ниже. Поток воды и электронов можно охарактеризовать такой величиной, как мощность. Мощность мы будем измерять в Ваттах (Вт, W), обозначать буквой P (Power) и считать по формуле P = V * I.

Подставляя сюда закон Ома можно перейти от одной величины к другой и получить целый набор формул: Цвета проводов в электронике

Измерения при помощи мультиметра

Мультиметр – прибор для измерения “всего” – основных параметров электрических цепей и компонентов. У меня кстати есть подробный видос на эту тему:

Всем модулям, датчикам, дисплеям и вообще любым подключаемым железкам, помимо логики (управляющих сигналов), нужно питание.

Питание всегда идёт по двум проводам, называют их плюс и минус, но в электронике обычно используется однополярное питание и провода называются общий (“земля”, GND, 0 Вольт) и питание (“плюс”, VCC, величина может быть разной). Именно разность потенциалов даёт напряжение.

Земля GND является не только нулём для питания: в паре с землёй также работают все логические провода.

Сигнал не ходит по одному проводу, для подключения всегда нужно минимум два, одним из которых является GND! Именно поэтому земля у всех подключенных устройств обычно одна, все провода соединяются в один общий GND, который отвечает и за питание, и за работу остальных проводов.

Вот пример проекта с метеостанцией, где куча модулей, но земля и питание у всех соединяются в одну точку: Цвета проводов в электронике

Цвет провода

Цвет проводов питания играет важную роль, а именно – показывает, какой это провод, плюс или минус, gnd или vcc. Если вы берете блок питания и отрезаете у него штекер, то скорее всего увидите перечисленные ниже пары цветов. В любом случае, рекомендуется взять мультиметр и убедиться в расположении проводов перед тем, как подключать их к плате или другому устройству:

  • Белый и черный – черный GND
  • Красный и черный – черный GND
  • Красный и белый – белый GND
Читайте также:  Как проверить кнопку на шуруповерте

Закон Ома

Закон Ома является одним из самых важных законов, на его базе в мире электричества завязано очень многое.

Этот закон относится к тем, которые нужно именно понять: запомнить формулу – не проблема, её знают все, а вот понять и применять – к сожалению умею немногие.

I=V/R Сила тока равна напряжению, деленному на сопротивление. Следовательно чем выше сопротивление, тем меньше ток. Когда и где это играет роль?

Сечение провода

Ни для кого не секрет, что провода бывают разной толщины, т.е. площади поперечного сечения. Чем больше сечение провода, тем больший ток он может через себя пропустить без потерь (т.н.

просадок) напряжения, это вытекает из формулы расчета сопротивления проводника: R=r*l/S, где r – удельное сопротивление материала, l – его длина, S – площадь сечения.

Чем больше площадь S, тем меньше будет сопротивление, и тем больший ток сможет пройти через проводник.

Длина провода

Также из формулы видно, что на сопротивление проводника влияет ещё материал и длина проводника. Откуда берутся потери? Чем больше сопротивление провода, тем большее напряжение на нём упадет при большом токе. Простой пример: подключаем 12 вольтовую светодиодную ленту.

Заранее известно, что лента потребляет 4 ампера при 12 вольтах, и в расчетах можно грубо заменить ленту сопротивлением 12/4=3 ома. Если подать на ленту 12 вольт, она скушает 4 Ампера, но это идеальный случай. Подключать мы будем проводами, провода тоже имеют сопротивление (внутреннее сопротивление источника питания не учитываем).

Допустим мы взяли длинные тонкие провода, общее сопротивление которых равно 0.5 Ом. Общее сопротивление цепи составит 3.5 Ома, в цепи потечёт ток 12/3.5=3.4 Ампера. На обоих потребителях “упадет” напряжение, пропорциональное их сопротивлению: на проводе 1.72 вольт, а на ленте – 10.28.

что это значит? Лента светит не в полную яркость, потому что питается не 12 вольтами. Если мы укоротим провода подключения ленты, или заменим их на более толстые провода, общее сопротивление которых будет допустим 0.05 Ом, ленте достанется напряжение уже 11.8 вольт, что уже близко к 12.

Мораль этого мысленного эксперимента очень проста: чем больший ток нужен нагрузке, тем толще нужно брать провод. Как прикинуть сечение? Можно пользоваться таблицами и калькуляторами, которых полно в интернете, а также в контрольных целях измерять напряжение, которое пришло на нагрузку.

Если оно сильно меньше нужного, то нужно менять провод, проверять подключение или источник питания, об этом поговорим далее. Что касается электроники, то всякие датчики, модули и прочие железки обычно потребляют очень малые токи, и для их соединения можно использовать очень тонкие монтажные провода.

Исключением являются GPS/GPRS антенны и прочие модули связи, светодиодные матрицы, сервоприводы. Моторы, светодиодные сборки (ленты, матрицы), нагревательные элементы и прочие мощные нагрузки нужно подключать толстыми проводами, но опять же по месту: ток потребления той или иной железки всегда написан в спецификации.

Что будет, если подключить мощную нагрузку тонким длинным проводом? Такой провод будет иметь большое сопротивление, при протекании большого тока на этом проводе упадёт напряжение, которое автоматически преобразуется в тепло. Результат: провод нагреется, а нагрузка получит меньшее напряжение, чем выходит с источника питания, т.е. напряжение “потеряется” в длинном тонком проводе. Также у меня есть отличный ролик, в котором наглядно показана работа закона Ома и другие основы:

На сопротивление цепи влияет не только длина, материал и сечение провода, гораздо большее влияние могут оказывать места соединения проводников: они тоже имеют сопротивление, называемое “сопротивление контакта”. Чем выше сопротивление контакта, тем большее на нём упадет напряжение, и тем меньше напряжения достанется потребителю.

Упавшее на проводе или контакте напряжение приводит к течению тока, и этот ток превращается в тепло. Другими словами, если подключить мощную нагрузку тонкими проводами, то помимо работы нагрузки в неполную силу вы получите нагревшиеся провода. Если подключить толстыми проводами, но плохо соединить проводники – нагреваться будет место контакта.

Именно поэтому у мощных потребителей предусмотрены массивные клеммы, винтовые терминалы и зажимы. Также для большинства разъемов есть нормы по току, который они могут пропустить без вреда для себя и без сильного падения напряжения. Выбирайте разъемы согласно току, который они должны пропускать.

Для логики подойдут обычные дюпоны (джамперы), для нагрузок меньше Ампера – разъемы jst (такие как на сервоприводах), для больших токов – винтовые клеммы, разъемы типа banana, xt60 или другие мощные.

Источник питания

Самый частый вопрос возникает с источниками питания, звучит этот вопрос примерно так: “не сгорит ли Ардуина от блока питания на 5V 5A? Ведь ей нужно 20 мА”. Уважаемый, usb 2.

0, которым Ардуина подключается к компьютеру, может выдавать ток до 500 мА, никто ведь ещё не сгорел от этого! Суть в том, что нагрузка возьмёт столько тока, сколько ей нужно, и у источника питания останется запас по току.

Это значит, что если взять блок питания на 5V и 50А и подключить к нему Ардуино – она возьмёт свои 20 мА и оставит 49.98А для других потребителей! Если же попытаться взять с источника питания больший ток, чем он может отдать, то может произойти следующее:

  • Напряжение сильно просядет
  • Источник питания нагреется
  • Источник питания уйдет “в защиту”
  • Источник питания выйдет из строя
  • В случае с аккумулятором, выход из строя может сопровождаться светошумовыми эффектами =)

Эти варианты могут проявляться в разных сочетаниях, могут даже все вместе. Просадка напряжения является расчетной величиной и зависит от внутреннего сопротивления источника питания (читай закон Ома для полной цепи).

На практике нужно прикидывать, сколько ампер будет потреблять схема, и подбирать источник питания с запасом по току, но никак не меньше расчетного! Запомните, нагрузка возьмёт столько ампер, сколько ей нужно в зависимости от её “эквивалентного сопротивления” и напряжения питания.

Многие спрашивают в стиле “что будет, если я подам 20 ампер на Ардуино”. Используя источник напряжения, нельзя подать амперы, можно подать только вольты, нагрузка сама возьмёт себе свои амперы. А те амперы, которые указаны на источнике питания, являются максимальным током, который может дать источник питания без вреда для себя.

Если речь идёт об источнике тока (светодиодный драйвер), то логика здесь такая: драйвер сам выставляет такое напряжение, при котором в цепи установится указанный на нем ток. Если подключить Ардуино к источнику тока и поставить выше 25 мА, то источник тока повысит напряжение выше 5.5 Вольт и просто выжгет плату, всё верно.

Но вряд-ли вам под руку попадется источник тока, которым вы захотите питать свою электронику, ведь все “обычные” блоки питания являются источниками напряжения. Источниками тока в быту являются зарядные устройства для аккумуляторов и светодиодные драйверы.

  • Набор GyverKIT – большой стартовый набор Arduino моей разработки, продаётся в России
  • Каталог ссылок на дешёвые Ардуины, датчики, модули и прочие железки с AliExpress у проверенных продавцов
  • Подборка библиотек для Arduino, самых интересных и полезных, официальных и не очень
  • Полная документация по языку Ардуино, все встроенные функции и макросы, все доступные типы данных
  • Сборник полезных алгоритмов для написания скетчей: структура кода, таймеры, фильтры, парсинг данных
  • Видео уроки по программированию Arduino с канала “Заметки Ардуинщика” – одни из самых подробных в рунете
  • Поддержать автора за работу над уроками
  • Обратная связь – сообщить об ошибке в уроке или предложить дополнение по тексту ([email protected])
Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]