Вольтметр для измерения переменного напряжения

Вольтметр — это электроизмерительный прибор, который предназначен для измерения электрического напряжения на полюсах источника тока или на каком-нибудь участке электрической цепи.

Эта величина задается в единицах, называемых вольтами, отсюда и название прибора — «Вольтметр».

На практике значения электрического напряжения измеряются в различных диапазонах, от микровольт (мкВ) до мегавольт (МВ).

Эти приборы доступны в продаже, как в аналоговом, так и в цифровом исполнении.

Многие вольтметры по внешнему виду очень похожи на амперметры. Для отличия вольтметра от других электроизмерительных приборов на его шкале ставят букву V. На схемах вольтметр изображают кружком с буквой V внутри (см. рисунок 1).

Вольтметр для измерения переменного напряженияРисунок 1. Электрическая схема с вольтметром

Как подключать вольтметр и производить измерения?

Вольтметры всегда должны быть подключены параллельно с электрическим устройством или элементом, на котором измеряется электрическое напряжение (рисунок 2).

Вольтметр для измерения переменного напряженияРис. 2. Способ измерения электрического напряжения на концах элемента R

Ключевая мысль состоит в том, что зажимы вольтметра присоединяют к тем точкам электрической цепи, между которыми надо измерить электрическое напряжение.

Однако следует помнить, что при таком соединении часть тока IV будет протекать через вольтметр, а не через проверяемый элемент R. Таким образом, мы имеем дело с ситуацией, когда действие измерения физической величины изменяет значение этой величины. Это не единственный подобный пример в физике.

Как видно из предыдущих рассуждений, для измерения истинного значения электрического напряжения на концах элемент цепи, нам понадобится вольтметр с бесконечным сопротивлением.

Тогда через измерительный прибор не будет протекать электрический ток, поэтому измерения будут неискаженными. На практике бесконечное электрическое сопротивление в вольтметре реализовать невозможно.

Тем не менее, в настоящее время продаются вольтметры с чрезвычайно высоким внутренним сопротивлением, превышающим 100 ТОМ.

Стоит отметить, что считанное значение напряжения всегда меньше истинного значения. Это пример систематической ошибки измерения.

  • Истинное значение напряжения на концах элемента R на рис. 2, согласно закона Ома для участка электрической цепи, составляет: U = I*R
  • Но, так как вольтметр имеет внутреннее сопротивление, то он показывает значение: UV = IV * RV = IR * R .
  • После простых преобразований получаем, что реальное значение электрического напряжения на концах проверяемого элемента цепи R имеет значение: U = UV * (1 + R/RV )

Эта формула подтверждает наше предыдущее утверждение о том, что идеальный вольтметр должен иметь бесконечное внутреннее сопротивление.

Поскольку коэффициент сопротивления в этой формуле стремится к бесконечности, измеренное значение UV стремится к истинному значению U.

Поскольку в реальности не существует прибора, удовлетворяющего этому идеальному условию, при проведении измерений необходимо выбирать вольтметр таким образом, чтобы величина вносимой им ошибки находилась в пределах предполагаемой погрешности измерений.

Вывод: Чем выше внутреннее сопротивление вольтметра, тем меньше погрешность измерения; поэтому вольтметры всегда имеют очень высокое электрическое сопротивление.

Как и у амперметра, у одного зажима вольтметра ставят знак «+«. Этот зажим необходимо обязательно соединять с проводом, идущим от положительного полюса источника тока. Иначе стрелка прибора будет отклоняться в обратную сторону. А отрицательный зажим, соответственно, соединяют с проводом, идущим от отрицательного полюса источника тока.

Расширение диапазона измерений.

У аналоговых вольтметров диапазон измерения в принципе ограничен концом шкалы; если на измерительный прибор подается более высокое напряжение, то, с одной стороны, стрелка прибора не может отклониться дальше, а с другой стороны, даже сам прибор может быть поврежден (выйти из строя). Чтобы расширить диапазон измерений в большую сторону, необходимо использовать подходящую электрическую схему, обеспечивающую подачу на вольтметр только части измеряемого напряжения.

Этого можно достичь, объединив вольтметр с последовательно подключенным резистором (эти резисторы ещё называют — «добавочными резисторами»).

Например, если вольтметр с диапазоном измерения 50 мВ имеет внутреннее сопротивление 100 Ом, то последовательный резистор со значением 900 Ом вызывает падение напряжения на вольтметре только на 1/10.

Таким образом, диапазон измерений увеличивается в 10 раз, поэтому вольтметры теперь могут измерять напряжение до 500 мВ.

Верхние пределы расширения диапазона измерения практически отсутствуют. Если последовательный резистор в вышеприведенном примере имеет значение 99 900 Ом, то общее сопротивление равно 100 000 Ом, и на вольтметре падает только 1/1000 от приложенного напряжения. Соответственно, можно измерить в 1000 раз большее напряжение, т.е. максимум 50 В.

Более наглядно посмотреть, как подключаются добавочные резисторы в электрическую цепь вы можете видеть на рисунке 3 ниже.

Вольтметр для измерения переменного напряженияРис. 3. Расширение диапазона измерений вольтметра

  1. Если мы хотим использовать вольтметр с диапазоном до UV для измерения напряжения до U1 , мы можем написать: U1 = I*RP + UV ,
  2. В тоже время: UV = I*RV , тогда
  3. после преобразований получаем, что сопротивление добавочного сопротивления должно иметь значение:
  4. RP = (U1 / UV — 1) * RV

Мы также можем уменьшить диапазон измерения вольтметра. Для этого мы используем делители напряжения как на рис. 4.

Вольтметр для измерения переменного напряженияРис. 4. Делитель напряжения для уменьшения диапазона измерения вольтметра с UV до U1

При использовании цифровых измерительных приборов, измерение выполняется электронным способом и отображается на дисплее в цифровом виде. Однако проблема погрешности измерений и принцип расширения диапазона измерений идентичны для аналоговых и цифровых измерительных приборов.

Как работает вольтметр?

Существует два типа вольтметров: аналоговые, показывающие значение путем наклона стрелки механического прибора, и все чаще используемые в настоящее время цифровые, оснащенные сложными электронными схемами.

Аналоговые вольтметры обычно представляют собой амперметры с последовательно соединенным резистором RV с очень большим значением электрического сопротивления. То есть, по сути, они измеряют ток IV, протекающий через него, а шкала показывает значение, которое является результатом расчета: UV = IV * RV .

Цифровые приборы, как правило, имеют обратную конструкцию (то есть они являются именно вольтметрами, а не амперметрами). Это связано с тем, что изготовить цифровой измеритель напряжения относительно просто. Если мы подключим его параллельно резистору с малым сопротивлением, то получим амперметр. Значение индикатора может быть рассчитано по уравнению: UV = IV * RV .

Существует, однако, тип аналогового вольтметра, принцип действия которого не основан на принципе работы амперметра. Это электростатический вольтметр. На практике это конденсатор с одной неподвижной обкладкой и другой подвижной.

Электрическое взаимодействие обкладок вызывает перемещение указателя, прикрепленного к движущейся части.

С помощью такого вольтметра можно можно измерять даже очень высокие электрические напряжения, а значение его внутреннего сопротивление почти бесконечно.

Устройство

Рассмотрим устройство электростатического и электромагнитного вольтметра и способ их подключения к схеме.

На рисунке 5 показана конструкция электростатического вольтметра (слева) и электромагнитного вольтметра (справа) и как они соединены в электрическую цепь. Подвижные части вольтметров отмечены красным цветом.

Различные элементы вольтметров показаны цифрами.

Вольтметр для измерения переменного напряженияРисунок 5. Устройство вольтметров (электростатического — слева, электромагнитного — справа)

На рисунке 5 обозначено:

  1. Неподвижная часть крышки воздушного конденсатора.
  2. Подвижная часть обкладки воздушного конденсатора (чем сильнее притянута к неподвижной части, тем выше напряжение между обкладками).
  3. Указатель, который позволяет считывать результат по шкале.
  4. Указатель, который позволяет считывать результат по шкале.
  5. Катушка, через которую протекает ток, создающий магнитное поле.
  6. Ферромагнит, втянутый в катушку тем сильнее, чем сильнее протекающий через него ток (т.е. чем больше создаваемое им магнитное поле).
  7. Пружина, уравновешивающая втягивающее усилие.
  8. Направление магнитного поля, создаваемого катушкой.
  9. Добавочный резистор — для изменения диапазона измерения вольтметра.
  10. Проверка элемента электрической цепи.
  11. Проверка элемента электрической цепи.
  12. Электрическое напряжение на концах элемента R1.
  13. Электрическое напряжение на концах элемента R2.

Измерение напряжения вольтметром

Для измерения переменного или постоянного напряжения в цепях переменного и постоянного тока используют прибор, называемый вольтметром. Поскольку напряжение присутствует между разными точками цепи или на полюсах источника напряжения, вольтметр подключается всегда параллельно исследуемому участку цепи или параллельно клеммам источника напряжения.

Можно, конечно, включить вольтметр и последовательно, в разрыв цепи, но тогда будет измерено напряжение источника, а не на участке цепи, так как цепь будет разомкнута, а сам вольтметр имеет при этом очень большое внутреннее сопротивление.

Вольтметр для измерения переменного напряжения

Вольтметры выпускаются как в виде отдельных электроизмерительных приборов, так и в формате одной из функций мультиметров. Во входной цепи современного вольтметра обычно находится резистор номиналом порядка мегаома, последовательно подключенный к электронной измерительной схеме.

Вольтметр для измерения переменного напряжения

Вольтметр, как отдельный измерительный прибор или как одна из функций мультиметра, имеет несколько диапазонов измерения напряжения. Выбор диапазона осуществляется при помощи переключателя, расположенного на лицевой панели прибора.

Читайте также:  Станки для переработки пластмассы

Обычно на мультиметре можно выбрать одно из следующих значений (максимальное значение для диапазона): 200мВ, 2000мВ (2В), 20В, 200В, 600В и т.д. Как правило у мультиметров есть возможность измерения постоянного и переменного напряжения. Вид напряжения также выбирается на шкале переключателя.

Для измерения тока и напряжения у мультиметров имеются два отдельных гнезда для подключения щупов: одно гнездо — для измерения напряжения, второе гнездо — для измерения тока. Третье — общий провод, который остается на своем месте независимо от того, что измеряется, ток или напряжение.

Вольтметр для измерения переменного напряжения

Подключите щупы к соответствующим гнездам мультиметра или вольтметра. Включите прибор и переведите его в режим измерения напряжения, выбрав вид напряжения и диапазон с помощью переключателя. Если диапазон неизвестен, то стоит начать с самого большого значения из доступных на шкале переключателя, потом можно будет уменьшить.

Схема подключения вольтметра для измерения падения напряжения на лампочке:

Вольтметр для измерения переменного напряжения

Присоедините щупы (соблюдая осторожность!) так, чтобы прибор оказался подключен к нужным точкам цепи, между которыми требуется измерить напряжение. Спустя пару секунд прибор отобразит на своем дисплее действующее значение измеренного напряжения.

Если диапазон 600В или более, то значение измеренного напряжения будет отображено в вольтах. Если диапазон например 2000мВ или 200мВ (порядок величин напряжений, но в принципе значения на шкале могут отличаться от этих), то на дисплее будут показания в милливольтах.

Если измеряется постоянное напряжение, то, в зависимости от его полярности и от правильности расположения щупов, на дисплее может отобразиться цифра со знаком минус перед ним.

Это значит, что красный и черный щупы стоит поменять местами, поскольку красный щуп предназначен для установки на положительный полюс, а черный — на отрицательный полюс по отношению к источнику постоянного напряжения, который установлен в исследуемой цепи.

Вольтметр (или мультиметр), не предназначенный для измерения высокочастотных напряжений или более высоких напряжений, чем максимальное на его шкале, легко выйдет из строя, если с помощью него попытаться измерить высокочастотное или более высокое напряжение. В документации к прибору всегда указан род тока и максимально допустимые параметры напряжения, которое можно им мерить.

Андрей Повный, FB, ВК

Что показывает вольтметр, или математика розетки

Вольтметр для измерения переменного напряжения

О чем эта статья

Сегодня я ненадолго отступлю от своей обычной темы о визуальном программировании контроллеров и обращусь к теме измерений напряжения прямо в ней, в розетке! Родилась эта статья из дискуссий за чаем, когда разразился спор среди «всезнающих и всеведающих» программистов о том, чего многие из них не понимают, а именно: как измеряется напряжение в розетке, что показывает вольтметр переменного напряжения, чем отличается пиковое и действующие значения напряжений. Скорее всего, это статья будет интересна тем, кто начинает творить свои устройства. Но, возможно, поможет и кому-то опытному освежить память. В статье рассказано о том, какие напряжения есть в сети переменного тока, как их измеряют и о том, что следует помнить при проектировании электронных схем. Всему дано краткое и упрощённое математическое обоснование, чтобы было ясно не только «как», но и «почему». Кому не интересно читать про интегралы, ГОСТы и фазы — могут сразу переходить к заключению.

Вступление

Когда люди начинают говорить о напряжении в розетке, очень часто стереотип «в розетке 220В» скрывает от их взора реальное положение дел.

Начнем с того, что согласно ГОСТ 29322-2014, сетевое напряжение должно составлять 230В±10% при частоте 50±0,2Гц (межфазное напряжение 400В, напряжение фаза-нейтраль 230В).

Но в том же ГОСТ имеется примечание: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

Согласитесь, что это уже совсем не то однозначное «в розетке 220В», к которому мы привыкли. А когда речь начинает идти о «фазном», «линейном», «действующем» и «пиковом» напряжениях — вообще каша получается знатная. Так сколько же вольт в розетке?

Чтобы ответить на этот вопрос начнем с того, как измеряется напряжение в сети переменного тока.

Как измерять переменное напряжение?

Прежде, чем углубиться в дебри цепей переменного тока и напряжения, вспомним школьную физику цепей тока постоянного.

Цепи постоянного тока — вещь простая.

Если мы возьмем некоторую активную нагрузку (пусть это будет обычная лампа накаливания, как на рисунке) и воткнем ее в цепь постоянного тока, то все, что происходит в нашей цепи будет характеризоваться всего двумя величинами: напряжением на нагрузке U и током, протекающим через нагрузку I.

Мощность, которая потребляется нагрузкой однозначно вычисляется по формуле, известной со школы: .

Вольтметр для измерения переменного напряжения

Или, если учесть, что по закону Ома , то мощность P, потребляемую нагрузкой-лампочкой, можно вычислить по формуле .

С переменным напряжением все куда сложнее: в каждый момент времени — оно может иметь разное мгновенное значение. Следовательно, в разные моменты времени, на нагрузке, подключенной к источнику переменного напряжения (например, на лампе накаливания, воткнутой в розетку) будет выделяться разная мощность. Это очень неудобно с точки зрения описания электрической цепи. Но нам повезло: форма напряжения в розетке синусоидальная. А синусоида, как известно, полностью описывается тремя параметрами: амплитудой, периодом и фазой. В однофазных сетях (а обычная розетка с двумя дырочками именно и есть однофазная сеть) про фазу можно забыть. На рисунке подробно показаны два периода сетевого однофазного напряжения. Того самого, что в розетке. Вольтметр для измерения переменного напряжения Рассмотрим, что означают все эти буковки на рисунке.

Период T — это время между двумя соседними минимумами или соседними максимумами синусоиды. Для осветительной сети РФ этот период составляет 20 миллисекунд, что соответствует частоте 50Гц. Частота колебаний напряжения электрической сети выдерживается очень точно, до долей процента.

Очевидно, что в любых двух точках синусоиды, отстоящих друг от друга на целое число периодов, напряжения всегда равны между собой.

Амплитуда Um — это максимальное напряжение, пик синусоиды. Про действующее напряжение поговорим чуть ниже.

Напряжение в розетке (или однофазной сети) описывается формулой где t — текущий момент времени, Um — амплитуда (или пиковое значение) напряжения, T — период сетевого напряжения. Если с однофазным переменным напряжением более или менее все ясно, то попробуем посчитать мощность, которая выделяется на нашей любимой лампе накаливания, при втыкании ее прямо в розетку. Так как лампа накаливания является активной нагрузкой (а это значит, что ее сопротивление не зависит от частоты напряжения и тока), то мгновенная мощность, выделяемая на лампе накаливания, воткнутой в розетку, будет вычисляться по формуле где t — текущий момент времени, а R — сопротивление лампы накаливания при нагретой спирали. Зная амплитуду переменного напряжения Um, можно записать: Понятно, что мгновенная мощность — неудобный параметр, да и на практике не особо нужный. Поэтому практически обычно применяется мощность, усредненная за период. Именно усредненная мощность указана на лампочках, нагревателях и прочих бытовых утюгах. Рассчитывается усредненная мощность в общем случае по формуле: А для нашей синусоиды — по гораздо более простой формуле:

Можете сами подставить вместо функцию и взять интеграл, если не верите.

Не думайте, что про мощность я вспомнил просто так, из вредности. Сейчас поймете, зачем она нам была нужна. Переходим к следующему вопросу.

Что же показывает вольтметр?

Для цепей постоянного тока, тут все однозначно — вольтметр показывает единственное напряжение между двумя контактами.

С цепями переменного тока все опять сложнее. Некоторые (и этих некоторых не так мало, как я убедился) считают, что вольтметр показывает пиковое значение напряжения Um, но это не так!

На самом деле, вольтметры обычно показывают действующее или эффективное, оно же среднеквадратичное, напряжение в сети .

Разумеется, речь идет о вольтметрах переменного напряжения! Поэтому, если будете измерять вольтметром напряжение сети, обязательно убедитесь, что он находится в режиме измерения переменного напряжения.

Оговорюсь, что «пиковые вольтметры», показывающие амплитудные значения напряжения, тоже существуют, но на практике при измерении напряжения питающей сети в быту обычно не применяются. Разберемся, почему такие сложности. Почему бы не измерять просто амплитуду? Зачем выдумали какое-то «действующее значение» напряжения?

А все дело в потребляемой мощности. Я ведь не просто так писал о ней. Дело в том, что действующее (эффективное) значение переменного напряжения равно величине такого постоянного напряжения, которое за время, равное одному периоду этого переменного напряжения, произведет такую же работу, что и рассматриваемое переменное напряжение.

  • Или, по-простому, лампочка накаливания будет светить одинаково ярко, воткнем ли мы ее в сеть постоянного напряжения 220В или в цепь переменного тока с действующим значением напряжения 220В.
  • Заметим, что подкоренное выражение и есть та самая «усредненная за период мощность», стоит только поделить это выражение на сопротивление нагрузки R.
  • где — действующее или среднеквадратичное значение напряжение (то самое, которое обычно показывает вольтметр), а Um — амплитудное значение.
  • Ну и, наконец, посчитаем, чему же равна амплитуда напряжения в розетке «на 220В«:
  • В худшем случае, если у вас сеть на 240В, да еще и с допуском +10%, амплитуда будет аж !
Читайте также:  Припой для серебра своими руками

Для тех, кто уже знаком с интегралами или еще не забыл математику, приведу общую формулу расчета действующего напряжения произвольной формы: Из этой формулы также становится ясно, почему действующее (эффективное) значение переменного напряжения также называют «среднеквадратичным». Применительно к синусоидальной форме напряжения, страшный интеграл после несложных преобразований превратится в простую формулу: Действующее напряжение хорошо тем, что для активной нагрузки, расчет усредненной мощности полностью совпадает с расчетом мощности на постоянном токе: Это и не удивительно, если вспомнить определение действующего значения напряжения, которое было дано чуть выше.

Поэтому, если хотите, чтобы ваши устройства, питающиеся от сети, работали стабильно и не сгорали, выбирайте элементы, которые выдерживают пиковые напряжения не менее 400В. Разумеется, речь идет об элементах, на которые непосредственно подаётся сетевое напряжение.

Отмечу, что для не-синусоидальной формы сигнала действующее значение напряжения рассчитывается по иным формулам. Кому интересно — могут сами взять интегралы или обратиться к справочникам. Нас же интересует питающая сеть, а там всегда должна быть синусоида.

Фазы, фазы, фазы…

Помимо обычной однофазной осветительной сети ~220В все слышали и о трехфазной сети ~380В. Что такое 380В? А это межфазное эффективное напряжение.

Помните, я сказал, что в однофазной сети про фазу синусоиды можно забыть? Так вот, в трехфазной сети этого делать нельзя!

Если говорить по простому, то фаза — это сдвиг во времени одной синусоиды относительно другой. В однофазной сети мы всегда могли принять за начало отсчета любой момент времени — на расчеты это не влияло.

В трехфазной сети необходимо учитывать насколько одна синусоида отстоит от другой. В трехфазных сетях переменного тока каждая из фаз отстоит от другой на треть периода или на 120 градусов.

Напомню, что период измеряется также в градусах и полный период равен 360 градусов.

Если мы возьмем осциллограф с тремя лучами и прицепимся к трем фазам и одному нулю, то увидим такую картину.

«Синяя» фаза — начинается от нуля отсчета. «Красная» фаза — на треть периода (120 градусов) позже. И, наконец «зеленая» фаза начинается на две трети периода (240 градусов) позже «синей». Все фазы абсолютно симметричны друг относительно друга.

Какую именно фазу брать за точку отсчета — не важно. Картина будет одинаковой. Математически можно записать уравнения всех трех фаз:

  1. «Синяя» фаза:
  2. «Красная» фаза:
  3. «Зеленая» фаза:

Если измерить напряжение между любой из фаз и нулем в трехфазной сети — то получим обычные 220В (или 230В или 240В — как повезет, см. ГОСТ).

А если измерить напряжение между двумя фазами — то получим 380В (или 400В или 415В — не забываем об этом).

То есть трехфазная сеть — многолика. Ее можно использовать как три однофазные сети с напряжением 220В или как одну трехфазную сеть с напряжением 380В.

Откуда взялось 380В? А вот откуда.

Если мы подставим в формулу расчета действующего напряжения наши данные о двух любых фазах, то получим:

  • Uдф — действующее межфазное, оно же линейное напряжение.

или, упрощая:

Учитывая, что амплитуда каждой фазы получим, чтодля межфазного напряжения. На рисунке наглядно показано, как образуется межфазное напряжение, которое обозначено F1-F2 из двух фазных напряжений фаз F1 и F2. Напряжение фаз F1 и F2 измеряется относительно нулевого провода. Линейное напряжение F1-F2 измеряется между двумя разными фазными проводами.

  1. Для наихудшего случая (сеть 240В и межфазное напряжение 415В, да еще 10% сверху) амплитуда межфазного напряжения составит:
  2. Учтите это при работе в трехфазных сетях и выбирайте элементы, рассчитанные не менее, чем на 650В, если им предстоит работать между двумя фазами!

Как видим, что действующее межфазное напряжение больше амплитуды синусоидального напряжения одной фазы. Амплитуда межфазного напряжения составляет: Надеюсь, теперь понятно что показывает вольтметр переменного тока?

Заключение

Итак, очень кратко, почти на пальцах, мы ознакомились с тем какие напряжения действуют в бытовых сетях переменного тока. Подведем краткие итоги всего, изложенного выше.

  • Фазное напряжение — это напряжение между фазой и нулевым проводом.
  • Линейное или межфазное напряжение — это напряжение между двумя разными фазными проводами одной трехфазной сети.
  • В сетях переменного тока РФ действуют три, хоть и близких, но разных стандарта (фазное/линейное): 220В/380В, 230В/400В и 240В/415В переменного тока с частотой 50Гц.
  • Вольтметр переменного тока обычно показывает действующее (оно же среднеквадратичное, оно же эффективное) напряжение, которое в раза меньше, чем пиковое (амплитудное) напряжение в сети.
  • В наихудшем с точки зрения стандартов случае пиковое фазное напряжение составляет примерно 373В, а пиковое линейное напряжение — 645B. Это следует учитывать при разработке электронных схем.

Надеюсь эта статья помогла кому-то разобраться в теме и ответить для себя на некоторые вопросы.

Отправлять предложения и пожелания, замеченные опечатки и просто мнения можно в комментарии или на почту: [email protected].

ᐉ Вольтметры (мультиметры лабораторные). Купить Вольтметры (мультиметры лабораторные) по выгодным ценам Союз-Прибор Москва

Вольтметр универсальный — это многофункциональный, комбинированный прибор для измерения основных электрических величин. Среди них – напряжение, сила тока и сопротивления. У многих моделей есть возможность:

  • измерение частоты и периода электрических сигналов,
  • испытание p-n переходов,
  • прозвон цепи,
  • измерение температуры и ёмкости, функциями математической и логической обработки результатов.

Назначение вольтметров

Они определяют напряжение в сети, электрической цепи, а также на определенной нагрузке для изучения ее работоспособности. Там, где постоянно нужны верные и точные данные по напряжению сети для контроля работы схем, приборов и оборудования, их применяют как составляющую часть более сложного оборудования.

Где используют вольтметры

Они универсальны в плане измеряемых величин, поэтому их можно использовать для измерения электрических параметров:

  • на производстве,
  • для контроля радиоэлектронной аппаратуры при ремонте,
  • тестировании электронных и радиокомпонентов,
  • для научных и экспериментальных исследований в лабораторных и цеховых условиях,
  • для целей поверки, калибровки и выходного контроля на производстве.

Используют для тестирования электронных схем в проектировании и разработке или контроля электрических параметров готового продукта на предприятиях по производству радиоэлектронной аппаратуры.

Классификация и свойства вольтметров

К достоинствам цифрового вольтметра относится высокое внутреннее сопротивление, что делает его измерения очень точными. У него есть электронные усилители, с помощью которого проводят замеры даже слабых сигналов. Результат измерений отображается на табло сразу в виде числовых значений.

Среди приборов есть как простые вольтметры с погрешностью от 0,5%, так и высокоточные, с погрешностью 0,00005%.

Стали популярными малогабаритные дешевые, но достаточно точные (погрешность до 0,2%) цифровые вольтметры, способные измерять напряжение, ток, сопротивление. Часть из них может измерить:

  • температуру,
  • емкость,
  • параметры полупроводниковых приборов.

Выпускают прецизионные вольтметры-калибраторы, имеющие класс точности 0,00005 и цифровой 8-ми разрядный индикатор. Такая высокая точность необходима научной лаборатории или предприятию, где есть высокие требование к измеряемым электрическим величинам.

Где купить вольтметр

Купить, проконсультироваться, найти вольтметр по вашим параметрам можно в компании СОЮЗ-ПРИБОР.

Встраиваемые миниатюрные цифровые вольтметры из Китая: обзор и тонкости применения / Инструменты / iXBT Live

Для контроля работы аппаратуры бывают полезны постоянно работающие приборы — вольтметры, амперметры и т.п. Постоянный контроль параметров поможет понять пользователю: всё ли в порядке с аппаратурой, или «что-то пошло не так».
В этом обзоре будут представлены два миниатюрных цифровых вольтметра: на 30 Вольт и на 100 Вольт. Они — похожи, но не одинаковы.

Читайте также:  Сопротивление первичной обмотки трансформатора 220

Вольтметры предназначены для измерения постоянного напряжения положительной полярности.

Конструкция цифровых вольтметров

Оба вольтметра — бескорпусные; и из-за очень малых размеров платы с электроникой сначала может показаться, что они состоят только из индикаторов:

На этом фото сразу видно различие между вольтметром на 100 В ( слева) и на 30 В (справа): вольтметр на 100 В имеет 3-проводное подключение, а вольтметр на 30 В — двухпроводное.

Почему так сделано?

Всё очень просто: в вольтметрах применяется линейный стабилизатор с максимальным входным напряжением 30 В. Поэтому «младший» вольтметр может питаться прямо от измеряемого напряжения, а «старший» при использовании для измерения напряжений свыше 30 В требует для своего питания отдельный источник.

Если же 100-вольтовый вольтметр применять для измерения напряжений до 30 В, то можно замкнуть красный и желтый провода между собой и тоже запитать от измеряемого напряжения.

Но, как обычно, есть нюанс. Если запитывать прибор от измеряемого напряжения, то оно должно быть не ниже, чем необходимо для питания стабилизатора напряжения в приборе, а это — 5 В (рекомендовано продавцом).

То есть, в этом случае и измеряемое напряжение должно быть не менее 5 В (испытания показали работоспособность и при 4 В, но это не гарантируется для всего температурного диапазона; да и разброс параметров элементов на плате вольтметра никто не отменял).

Куплены вольтметры были на Алиэкспресс ЗДЕСЬ, цена (на дату обзора) — смешная: от $0.76 за 30-вольтовый прибор и до $1.35 — за 100-вольтовый.

Несколько слов о габаритах вольтметров.

Если говорить о размерах кратко, то габариты приборов 30.2 x 11 x 8.6 мм.

С разбивкой по деталям размеры будут такие:  длина платы — 30.2 мм, ширина платы — 11 мм, длина блока индикации — 22.6 мм, ширина блока индикации — 10.4 мм, высота блока индикации (от уровня платы) — 6.2 мм, высота всего прибора (от низа платы до верха индикатора) — 8.6 мм.

Высота цифр на индикаторе — 7.1 мм (0.28 дюйма).

 Посмотрим на обратную сторону вольтметров, т.е. на платы с электроникой:

Платы вольтметров — абсолютно одинаковые, и различаются только расположением двух элементов (эти места указаны стрелочками на фото).

То есть, при желании и наличии «прямых рук» можно один из них преобразовать в другой и обратно. Но экономического смысла в этом нет, лучше сразу купить, какой надо (или, при сомнениях — оба сразу).

Назначение проводов — очевидное: чёрный — земля, красный — питание (оно же — измеряемое напряжение для 30-вольтового прибора), желтый — измеряемое напряжение.

На платах вольтметров расположено очень мало деталей.

Основа вольтметров — аналого-цифровой микроконтроллер, увы, без маркировки. Впрочем, никаких претензий к его работе не возникло.

Микроконтроллер осуществляет аналого-цифровое преобразование сигнала; затем, вероятно, какую-то нехитрую вычислительную обработку (возможно, усреднение нескольких замеров); а затем отправляет результат на 3-значный светодиодный индикатор.

Питанием микроконтроллер обеспечивают стабилизаторы с маркировкой «7533-1 E1125D» и «6513 TA502H».

Оба стабилизатора выдают на выходе напряжение 3.3 В, и, скорее всего, являются клонами популярных стабилизаторов AMS1117.

Для калибровки вольтметров имеется подстроечный резистор.

Вот, собственно, и всё.

Испытания цифровых вольтметров

Сразу надо сказать о главном: в испытаниях проверялась точность настройки вольтметров в том виде, в каком они пришли из Китая. Проверять точность просто «как таковую» смысла нет, поскольку в приборах есть калибровочные подстроечники, позволяющие скорректировать настройку вольтметров, если погрешность показаний окажется высокой.

  • Программа испытаний такая: сначала проверяем точность 100-вольтового вольтметра, а затем — синхронность показаний вольтметров при измерениях одного и того же напряжения.
  • Также проверим ток потребления приборов и входное сопротивление для 100-вольтового прибора.
  • Итак, поехали.
  • Проверка точности заводской настройки, напряжение — 5 Вольт:

Всё хорошо, ошибка — менее 1%.

Напряжение — 12 В:

  1. Здесь формально ошибки совсем нет, но это означает, скорее всего, что ошибаются оба прибора. 🙂
  2. Обратите внимание: после 10 Вольт на тестируемом вольтметре запятая перескочила на 1 знак, и теперь прибор сотые доли Вольта не показывает.
  3. Идём далее.
  4. Напряжение — 30.1 В:

Аналогично, ошибки как будто нет.

Дальше надо бы проверить на напряжении 100 В, но такого блока питания у меня не нашлось. Максимум, что нашлось — напряжение — 49.4 В:

Здесь обнаружилась небольшая погрешность на 0.1 В.

Вольтметр на 100 В позволяет измерять напряжения и меньшие, чем его напряжение питания. Но точность при этом будет падать по банальной причине: из-за слишком большого «веса» ошибки на единицу младшего разряда.

Можно измерить, например, напряжение на батарейке:

Теперь проверим совпадение (или несовпадение) показаний вольтметров между собой для двух напряжений (4 В и 30 В):

  • Совпадение показаний вольтметров между собой оказалось на очень хорошем уровне.
  • Теперь — пример практического применения одного из этих вольтметров.
  • Младший вольтметр (на 30 В) я пристроил к QC-триггеру, предназначенному для получения напряжения 9 и 12 Вольт от павербанков и QC-зарядок (обзор QC-триггера вместе с павербанком).
  • Этот триггер посылает в подключенное устройство команду на выдачу 9 или 12 В, но не проверяет её исполнение.
  • Теперь проверка есть:
  1. На этой фотографии оказалась хорошо заметна ещё одна особенность вольтметра: цифра «1» на индикаторе светится ярче других цифр.
  2. Вероятно, вольтметр питает каждый из 3-х разрядов индикатора одним и тем же током, и для подсветки обходит их поочерёдно; в результате чего чем меньше число активных сегментов в цифре, тем ярче они светятся.
  3. Нельзя назвать это существенной проблемой, но обратить внимание на неё следует.
  4. Теперь — о потреблении тока вольтметрами.
  5. Вольтметр на 30 В (с красным индикатором) потребляет 11 мА, вольтметр на 100 В (с жёлтым индикатором) — заметно больше, почти 16 мА.

При питании вольтметра на 100 В от источника с напряжением 30 В нагрев стабилизатора на плате прибора был весьма ощутимым (получилось 0.4 Вт рассеиваемой мощности на стабилизаторе).

Отсюда следует рекомендация: запитывать 100-вольтовый прибор напряжением не свыше 20 В. Самый лучший вариант — напряжением 5 В, которое есть почти везде.

  • Причина более высокого потребления у этого вольтметра, возможно, кроется в более высоком потреблении его индикатора (всё остальное у них — одинаковое).
  • Входное сопротивление 100-вольтового прибора — 100 КОм.
  • Говорить же о входном сопротивлении 30-вольтового прибора нет смысла, поскольку вход там объединён с питанием.
  • Диапазон подстройки точности вольтметров с помощью подстроечного резистора на плате составляет около 8%.

Итоги, выводы, тонкости применения

Сначала — о тонкостях применения при измерении отрицательных напряжений.

Если напряжение не превосходит 30 В, то всё делается элементарно: земля вольтметра подключается к минусу питания, а плюс вольтметра — на землю питания. И всё сразу работает!

  1. Если же измеряемое напряжение превосходит 30 В, то всё становится намного сложнее.
  2. Использовать в этом случае возможно только 100-вольтовый прибор; причём для его питания потребуется отдельный изолированный источник (в буржуйской терминологии — плавающий или даже летающий).
  3. Это — серьёзное усложнение схемы, из-за чего есть смысл задуматься о других приборах для подобных измерений.
  4. Теоретически можно вместо изолированного источника питания загасить лишнее напряжение резистором или стабилитроном; но такое решение — не красивое и ограничивает диапазон рабочих напряжений.
  5. Теперь — о достоинствах протестированных вольтметров.
  6. Достоинства — такие:
  • низкая цена;
  • хорошая точность измерения;
  • возможность питания измеряемым напряжением;
  • малые габариты и вес.

Достоинства — очень существенные, но и недостатки тоже есть:

  • отсутствие регулировки яркости (в темноте свечение индикатора ощущается слишком ярким, а при ярком свете — тускловатым);
  • наличие строб-эффекта (при движении глаз или самих вольтметров);
  • не измеряют переменное напряжение;
  • сложности с измерением отрицательных напряжений свыше 30 В.

Проверить актуальную цену или купить протестированные вольтметры можно здесь, причём имеется широкий выбор цветов свечения индикаторов (помимо протестированных с желтым и красным цветом).

Всем спасибо за внимание!

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]