Закон ома для параллельного соединения резисторов

ТЕМА: Соединения резисторов. Законы Ома.

План

  1. Последовательное соединение резисторов.

  2. Параллельное соединение резисторов.

  3. Смешанное соединение резисторов.

  4. Законы Ома.

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике.

Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов.

Соединение резисторов может производиться последовательнопараллельно и смешанно (то есть и последовательно и параллельно), что показано на рисунке 1.

Закон ома для параллельного соединения резисторов

  • Рисунок 1. Соединение резисторов
  • Последовательное соединение резисторов
  • Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее (рисунок 2).

Закон ома для параллельного соединения резисторов

Рисунок 2. Последовательное соединение резисторов

То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток.

 Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.

Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает.

Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле:

Rобщ = R1 + R2 + R3+…+ Rn.

Где можно наблюдать последовательное соединение сопротивлений? — Да допустим в той же самой новогодней гирлянде. Каждая лампочка в новогодней гирлянде, как правило, обладает одинаковым сопротивлением. При последовательном соединении, если перегорает одна лампочка, то в электрической цепи будет наблюдаться разрыв и соответственно, в этом случае, новогодняя гирлянда не будет гореть полностью.

Параллельное соединение резисторов

Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку (Б) (см. рисунок 3).

Закон ома для параллельного соединения резисторов

Рисунок 3. Параллельное соединение резисторов

При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей.

 Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока.

А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)

  1. Общее сопротивление параллельно соединенных резисторов определяется следующим отношением:
  2. 1/Rобщ= 1/R1+1/R2+1/R3+…+1/Rn

Следует отметить, что здесь действует правило «меньше — меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле:

Rобщ= R1*R2/R1+R2

Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них.

В этой теме можно привести множество примеров из нашей повседневной жизни, касающихся параллельного подключения сопротивлений. Параллельное соединение одинаковых сопротивлений — это наглядный пример подключения люстры с n-ым количеством ламп и с одинаковым сопротивлением для каждой лампы рис.1.

Закон ома для параллельного соединения резисторов

  • рис.1
  • Если допустим в люстре состоящей из нескольких ламп с одинаковым сопротивлением перегорела одна лампа и была произведена замена на лампочку другой мощности, — в этом случае, подключение люстры будет выглядеть как параллельное подключение с разным сопротивлением.
  • Какие еще можно привести примеры из практики — при параллельном подключении сопротивлений? Допустим, Вы подключили в своей квартире через удлинитель три бытовых электроприбора:
  • электроплиту;
  • стиральную машину;
  • телевизор.

Характер такого подключения примет значение как для параллельного подключения сопротивлений, разных по величине. То-есть, для каждого электроприбора, сопротивление имеет свое значение.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением. На рисунке 4 показан простейший пример смешанного соединения резисторов.

Закон ома для параллельного соединения резисторов

Рисунок 4. Смешанное соединение резисторов

На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно. Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:1.

Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.2. Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.3. После расчета эквивалентных сопротивлений резисторов перерисовывают схему.

Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.

4. Рассчитывают сопротивления полученной схемы.

Пример расчета участка цепи со смешанным соединением резисторов приведен на рисунке 5.

Закон ома для параллельного соединения резисторов

  1. Рисунок 5. Расчет сопротивления участка цепи при смешанном соединении резисторов
  2. Закон Ома для участка цепи
  3. Скажу сразу, что закон Ома – основной закон электротехники и применяется для расчета таких величин, как: ток, напряжение и сопротивление в цепи.
  4. Рассмотрим электрическую цепь, приведенную на рисунке 1.

Закон ома для параллельного соединения резисторов

Рисунок 1. Простейшая цепь, поясняющея закон Ома

Мы знаем, что электрический ток, то есть поток электронов, возникает в цепи между двумя точками (на рисунке А и Б) с разными потенциалами.

Тогда следует считать, что чем больше разность потенциалов, тем большее количество электронов переместятся из точки с низким потенциалом (Б) в точку с высоким потенциалом (А).

Количественно ток выражается суммой зарядов прошедших через заданную точку и увеличение разности потенциалов, то есть приложенного напряжения к резистору R, приведет к увеличению тока через резистор.

С другой стороны сопротивление резистора противодействует электрическому току. Тогда следует сказать, что чем больше сопротивление резистора, тем меньше будет средняя скорость электронов в цепи, а это ведет к уменьшению тока через резистор.

  • Совокупность двух этих зависимостей (тока от напряжения и сопротивления) известна как закон Ома для участка цепи и записывается в следующем виде:
  • I=U/R
  • Это выражение читается следующим образом: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
  • Следует знать что:
  • I – величина тока, протекающего через участок цепи;
  • U – величина приложенного напряжения к участку цепи;
  • R – величина сопротивления рассматриваемого участка цепи.
  • При помощи закона Ома для участка цепи можно вычислить приложенное напряжение к участку цепи (рисунок 1), либо напряжение на входных зажимах цепи (рисунок 2).

Закон ома для параллельного соединения резисторов

Рисунок 2. Последовательная цепь, поясняющая расчет напряжения на зажимах цепи.

  1. В этом случае формула (1) примет следующий вид:
  2. U = I *R
  3. Но при этом необходимо знать ток и сопротивление участка цепи.
  4. Третий вариант закона Ома для участка цепи, позволяющий рассчитать сопротивление участка цепи по известным значениям тока и напряжения имеет следующий вид:
  5. R =U/I
  6. Как запомнить закон Ома: маленькая хитрость!

Для того, что бы быстро переводить соотношение, которое называется закон Ома, не путаться, когда необходимо делить, а когда умножать входящие в формулу закона Ома величины, поступайте следующим образом. Напишите на листе бумаги величины, которые входят в закон Ома, так как показано на рисунке 3.

Закон ома для параллельного соединения резисторов

Рисунок 3. Как запомнить закон Ома.

Теперь закройте пальцем, ту величину, которую необходимо найти. Тогда относительное расположение оставшихся незакрытыми величин подскажет, какое действие необходимо совершить для вычисления неизвестной величины.

Закон Ома для полной цепи определяет значение тока в реальной цепи, который зависит не только от сопротивления нагрузки, но и от сопротивления самого источника тока. Другое название этого закона — закон Ома для замкнутой цепи. Рассмотрим смысл закона Ома для полной цепи более подробно.

Потребители электрического тока (например, электрические лампы) вместе с источником тока образуют замкнутую электрическую цепь. На рисунке 1 показана замкнутая электрическая цепь, состоящая из автомобильного аккумулятора и лампочки.

Закон ома для параллельного соединения резисторов

Рисунок 1. Замкнутая цепь, поясняющея закон Ома для полной цепи.

Ток, проходящий через лампочку, проходит также и через источник тока.

Следовательно, проходя по цепи, ток кроме сопротивления проводника встретит еще и то сопротивление, которое ему будет оказывать сам источник тока (сопротивление электролита между пластинами и сопротивление пограничных слоев электролита и пластин). Следовательно, общее сопротивление замкнутой цепи будет складываться из сопротивления лампочки и сопротивления источника тока.

Сопротивление нагрузки, присоединенной к источнику тока, принято называть внешним сопротивлением, а сопротивление самого источника тока — внутренним сопротивлением. Внутреннее сопротивление обозначается буквой r.

Читайте также:  Фартук токарно винторезного станка служит для

Если по цепи, изображенной на рисунке 1, протекает ток I, то для поддержания этого тока во внешней цепи согласно закону Ома между ее концами должна существовать разность потенциалов, равная I*R.

Но этот же ток I протекает и по внутренней цепи. Следовательно, для поддержания тока во внутренней цепи, также необходимо существование разности потенциалов между концами сопротивления r.

Эта разность потенциалов па закону Ома должна быть равна I*r.

  • Поэтому для поддержания тока в цепи электродвижущая сила (ЭДС) аккумулятора должна иметь величину:
  • E=I*r+I*R
  • Эта формула показывает, что электродвижущая сила в цепи равна сумме внешнего и внутреннего падений напряжения. Вынося I за скобки, получим:
  • E=I(r+R)
  • или
  • I=E/(r+R)
  • Две последние формулы выражают закона Ома для полной цепи.
  • Закон Ома для полной замкнутой цепи формулируется так:сила тока в замкнутой цепи прямо пропорциональна ЭДС в цепи и обратно пропорциональна общему сопротивлению цепи.
  • Под общим сопротивлением подразумевается сумма внешнего и внутреннего сопротивлений.

Последовательное и параллельное соединение резисторов

Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.

Последовательное соединение резисторов

Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях, будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:

Закон ома для параллельного соединения резисторов

Здесь у нас классический случай последовательного соединения — два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:

  • А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:
  • В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:
  • Тогда для вычисления общего напряжения можно использовать следующее выражение:

U = U_1 + U_2 = IR_2 + IR_2 = I(R_1 + R_2)

  1. Но для общего напряжения также справедлив закон Ома:
  2. Здесь R_0 — это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:
  3. Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.
  4. Например, для следующей цепи:

Закон ома для параллельного соединения резисторов

Общее сопротивление будет равно:

R_0 = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 + R_{10}

Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление, будет работать в любом случае. А если при последовательном  соединении все сопротивления равны (R_1 = R_2 = … = R), то общее сопротивление цепи составит:

В данной формуле n равно количеству элементов. С последовательным соединением резисторов разобрались, логичным образом переходим к параллельному.

Параллельное соединение резисторов

Закон ома для параллельного соединения резисторов

  • При параллельном соединении напряжения на проводниках равны:
  • А для токов справедливо следующее выражение:
  • То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

I_1 = frac{U_1}{R_1} = frac{U}{R_1} I_2 = frac{U_2}{R_2} = frac{U}{R_2}

Подставим эти выражения в формулу общего тока:

I = frac{U}{R_1} + frac{U}{R_2} = Umedspace (frac{1}{R1} + frac{1}{R2})

А по закону Ома:

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

frac{1}{R_0} = frac{1}{R_1} + frac{1}{R_2}

Данную формулу можно записать и несколько иначе:

R_0 = frac{R_1R_2}{R_1 + R_2}

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

Закон ома для параллельного соединения резисторов frac{1}{R_0} = frac{1}{R_1} + frac{1}{R_2} + frac{1}{R_3} + frac{1}{R_4} + frac{1}{R_5} + frac{1}{R_6}

Смешанное соединение резисторов

Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:

Закон ома для параллельного соединения резисторов

Давайте рассчитаем общее сопротивление. Начнем с резисторов R_1 и R_2 — они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_{1-2}:

R_{1-2} = frac{R1cdot R2}{R1 + R2} = 1

Теперь у нас образовались две группы последовательно соединенных резисторов:

Закон ома для параллельного соединения резисторов

Заменим эти две группы двумя резисторами, сопротивление которых равно:

R_{1-2-3} = R_{1-2} + R_3 = 5 Закон ома для параллельного соединения резисторов

Как видите, схема стала уже совсем простой. Заменим группу параллельно соединенных резисторов R_{1-2-3} и R_{4-5}  одним резистором R_{1-2-3-4-5}:

R_{1-2-3-4-5}enspace = frac{R_{1-2-3}medspacecdot R_{4-5}}{R_{1-2-3} + R_{4-5}} = frac{5cdot24}{5 + 24} = 4.14

И в итоге у нас на схеме осталось только два резистора соединенных последовательно:

Закон ома для параллельного соединения резисторов

Общее сопротивление цепи получилось равным:

R_0 = R_{1-2-3-4-5}medspace +medspace R_6 = 4.14 + 10 = 14.14

Таким вот образом достаточно большая схема свелась к банальнейшему последовательному соединению двух резисторов.

Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление — для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте ????

Параллельное соединение резисторов: формула и примеры расчета сопротивления, напряжения, тока и мощности

Закон ома для параллельного соединения резисторов

Типы проводников

Закон ома для параллельного соединения резисторов

Электрический ток — упорядоченное движение свободных носителей заряда, на которые воздействует электромагнитное поле. При протекании тока по веществу происходит взаимодействие потока заряженных частиц с узлами кристаллической решетки, при этом часть кинетической энергии частицы превращается в тепловую энергию. Иными словами, частица «ударяется» об атом, а затем снова продолжает движение, набирая скорость под действием электромагнитного поля.

Процесс взаимодействия частиц с узлами кристаллической решетки называется электрической проводимостью или сопротивлением материала. Единицей измерения является Ом, а определить его можно при помощи омметра или расчитать. Согласно свойству проводимости, вещества можно разделить на 3 группы:

  1. Проводники (все металлы, ионизированный газ и электролитические растворы).
  2. Полупроводники (Si, Ge, GaAs, InP и InSb).
  3. Непроводники (диэлектрики или изоляторы).

Закон ома для параллельного соединения резисторов

Проводники всегда проводят электрический ток, поскольку содержат в своем атомарном строении свободные электроны, анионы, катионы и ионы. Полупроводники проводят электричество только при определенных условиях, которые влияют на наличие или отсутствие свободных электронов и дырок.

К факторам, влияющим на проводимость, относятся следующие: температура, освещенность и т. д. Диэлектрики вообще не проводят электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда.

При выполнении расчетов каждый радиолюбитель должен знать зависимость сопротивления от некоторых физических величин.

Зависимость сопротивления

Значение электропроводимости зависит от нескольких факторов, которые необходимо учитывать при расчетах, изготовлении элементов резистивной нагрузки (резисторов), ремонте и проектировании устройств. К этим факторам необходимо отнести следующие:

  1. Температура окружающей среды и материала.
  2. Электрические величины.
  3. Геометрические свойства вещества.
  4. Тип материала, из которого изготовлен проводник (полупроводник).

К электрическим величинам можно отнести разность потенциалов (напряжение), электродвижущую силу (ЭДС) и силу тока. Геометрией проводника является его длина и площадь поперечного сечения.

Электрические величины

Закон ома для параллельного соединения резисторов
Вам это будет интересно  Подключение проходного выключателя света по схеме

Для расчета электропроводимости всего участка следует воспользоваться соотношением между ЭДС (e), силой тока (i), а также внутренним сопротивлением источника питания (Rвн): i = e / (R+Rвн). В этом случае величина R вычисляется по формуле: R = (e / i) — Rвн. Однако при выполнении расчетов необходимо учитывать также геометрические параметры и тип проводника, поскольку они могут существенно повлиять на вычисления.

Тип и геометрические параметры

Закон ома для параллельного соединения резисторов

Иногда для удобства расчетов используется обратная величина, которая называется удельной проводимостью (σ). Она связана с удельным сопротивлением следующим соотношением: p = 1 / σ. Площадь поперечного сечения (S) влияет на электрическое сопротивление. С физической точки зрения, зависимость можно понять следующим образом: при малом сечении происходят более частые взаимодействия частиц электрического тока с узлами кристаллической решетки. Поперечное сечение можно вычислить по специальному алгоритму:

  1. Измерение геометрических параметров проводника (диаметр или длину сторон) при помощи штангенциркуля.
  2. Визуально определить форму материала.
  3. Вычислить площадь поперечного сечения по формуле, найденной в справочнике или интернете.
Читайте также:  Холодильник бирюса не отключается постоянно работает

Закон ома для параллельного соединения резисторов

Температурные показатели

Закон ома для параллельного соединения резисторов

В радиотехнике уменьшение величины напряжение называется просадкой или падением. Формула зависимости р от температуры имеет следующий вид: p = p0 * [1 + a * (t — 20)]. Значение p0 — удельное сопротивление материала, взятого из таблицы, а литера «t» — температура проводника.

Температурный коэффициент «а» принимает следующие значения: для металлов — a>0, а для электролитических растворов — a

1.9. Последовательное и параллельное соединение проводников



Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

Закон ома для параллельного соединения резисторов
Рисунок 1.9.1.Последовательное соединение проводников
  • По закону Ома, напряжения U1 и U2 на проводниках равны
  • Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:
    U = U1 + U2 = I(R1 + R2) = IR,

    где R – электрическое сопротивление всей цепи. Отсюда следует:

  • При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.
  • Этот результат справедлив для любого числа последовательно соединенных проводников.

При параллельном соединении (рис. 1.9.2) напряжения U1 и U2 на обоих проводниках одинаковы:

Сумма токов I1 + I2, протекающих по обоим проводникам, равна току в неразветвленной цепи:

Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд IΔt, а утекает от узла за то же время заряд I1Δt + I2Δt. Следовательно, I = I1 + I2.

Закон ома для параллельного соединения резисторов
Рисунок 1.9.2.Параллельное соединение проводников
  1. Записывая на основании закона Ома
    Закон ома для параллельного соединения резисторов

    где R – электрическое сопротивление всей цепи, получим

  2. При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
  3. Этот результат справедлив для любого числа параллельно включенных проводников.

Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.

Закон ома для параллельного соединения резисторов
Рисунок 1.9.3.Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны в омах (Ом)

Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.

Закон ома для параллельного соединения резисторов
Рисунок 1.9.4.Пример электрической цепи, которая не сводится к комбинации последовательно и параллельно соединенных проводников

Цепи, подобные изображенной на рис. 1.9.4, а также цепи с разветвлениями, содержащие несколько источников, рассчитываются с помощью правил Кирхгофа.

 

Лучшие школы, лагеря, ВУЗы за рубежом

Законы Ома и их качественное объяснение

Есть такие формулы и законы, которые люди узнают еще в школе, а помнят всю жизнь. Обычно это несложные уравнения, состоящие из двух-трех физических величин и объясняющие какие-то фундаментальные вещи в науке, основу основ. Закон Ома как раз такая штука.

Закон Ома: кто придумал, определение

Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.

Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году.

Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг.

, когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.

Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.

Источник: rusenergetics.ru

Формулировки и основные формулы

Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.

Пояснения к закону:

  1. Чем выше напряжение в проводнике, тем выше будет и сила тока в этом проводнике.
  2. Чем выше сопротивление проводника, тем меньше будет сила тока в нем.

Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:

  • I — сила электротока;
  • U — напряжение;
  • R — сопротивление.

Объяснение закона Ома в классической теории

  • Формула закона, известная всем со школьных лет, выглядит так:
  • (I=frac UR)
  • Из нее легко выводятся формулы для определения (U):
  • (U;=I imes R)
  • и для определения (R):
  • (R=frac UI)
  • Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.

Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.

Источник: dzgo.ru

Закон Ома для полной (замкнутой) цепи

Замкнутой или полной называется такая электрическая цепь, по которой проходит электроток.

  1. Описание формулы этого закона для полной цепи выглядит так:
  2. (I=fracepsilon{R+r})
  3. где (epsilon) — это электродвижущая сила или напряжение источника питания, которое не зависит от внешней цепи;
  4. (R) — сопротивление внешней цепи;
  5. (r) — внутреннее сопротивление источника.

Источник: multiurok.ru

Использование закона Ома при параллельном и последовательном соединении

При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.

  • При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:
  • (I=I_1=I_2=I_3)
  • Где (I) — общая сила тока в электроцепи, (I_1) — сила тока первого участка, (I_2) — сила тока второго участка, (I_3) — сила тока третьего участка.
  • (U=U_1+U_2+U_3)
  • Где (U) — общее напряжение, (U_1) — напряжение первого участка, (U_2) — напряжение второго участка, (U_3) — напряжение третьего участка.
  •  Сопротивление согласно формуле:

(R=R_1+R_2+R_3)

Где (R) — общее сопротивление в цепи, (R_1) — сопротивление первого участка, (R_2) — сопротивление второго участка, (R_3) — сопротивление третьего участка.

Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.

  1. При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:
  2. (I=I_1+I_2+I_3)
  3. Где (I) — общая сила тока в электроцепи, (I_1, I_2, I_3) — сила тока первого, второго и третьего участков соответственно.
  4. (U=U_1=U_2+U_3)
  5. Где (U) — общее напряжение, (U_1, U_2, U_3) — напряжение первого, второго и третьего участков соответственно.
  6. (R=frac{R_1 imes R_2 imes R_3}{R_1+R_2+R_3})
  7. Где (R) — общее сопротивление в цепи, (R_1, R_2, R_3) — сопротивление первого, второго и третьего участков соответственно.

Закон Ома для переменного и постоянного тока

Для цепи постоянного тока правильными будут уже озвученные нами взаимосвязи основных параметров электроцепи:

Источник: en.ppt-online.org

  • При подключении к электроцепи источника переменного тока, сила электротока в цепи будет определяться по формуле:
  • (I=frac UZ)
  • где (Z) — полное сопротивление или импеданс, который состоит из активной ((R)) и реактивных составляющих ((X_C) — сопротивление емкости и (X_L) — сопротивление индуктивности).
  • Реактивное сопротивление цепи зависит:
  • от значений реактивных элементов, 
  • от частоты электротока;
  • от формы тока в цепи. 

 

Источник: fizikaotfizika.ru

Закон Ома для однородного и неоднородного участка цепи

Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:

(I=frac UR)

В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.

  1. Поэтому (R) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:
  2. (R=p imesleft(frac lS
    ight))
  3. где (p) — удельное сопротивление, ( l) — это длина проводника, а (S) — площадь его сечения.
  4. Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.

Источник: grabachapter.com

Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.

Формула расчета сопротивления при параллельном соединении резистора

Группы из нескольких пассивных элементов создают для решения разных практических задач. С помощью такого приема подбирают оптимальное электрическое сопротивление, делят напряжение, корректируют токи в отдельных цепях. Формула общего сопротивления поможет сделать точный расчет. Для вычислений применяют специальные ручные и автоматизированные методики.

Особенности включения

Для упрощения темы смешанного соединения резисторов решение задач следует ограничить схемами с подключением к источнику постоянного тока без реактивных компонентов.

В этом случае можно исключить сложные колебательные процессы, сопряженные с циклами изменения потребления энергии в нагрузке.

Для определения базовых зависимостей достаточно использовать классическую формулу закона Ома:

I (ток) = U (напряжение) / R (сопротивление).

На первой части рисунка показан последовательный проводник. Одинаковый ток можно измерить в любом разрыве с помощью мультиметра. Но даже без экспериментов понятно, что такой результат обеспечен единством пути его прохождения, который создан без разветвлений.

Однако при установке разных резисторов (R1≠R2≠R3) напряжение на отдельных элементах отличается (U1≠U2≠U3). Суммарная величина будет равна потенциалу на клеммах источника питания (Uип = U1 + U2 + U3).

Аналогичным образом вычисляют суммарное сопротивление:

Rобщ = R1 + R2 + R3.

Следующий пример – параллельное подключение. Здесь каждый ток проходит после разветвления по своему пути (ветке). По предыдущему алгоритму рассуждений несложно установить соответствующие зависимости:

  • если R1≠R2≠R3, то I1≠I2≠I3;
  • Iип = I1 + I2 + I3;

Если использовано параллельное соединение, формула для напряжений трансформируется в равенство:

Uип = U1 = U2 = U3.

К сведению. Другие виды соединений – это комбинации представленных вариантов. На отдельных участках цепи действительны рассмотренные выше правила.

Формула параллельного соединения резисторов

Параллельное соединение резисторов

Для этого варианта суммирование номиналов не подходит. При параллельной установке можно складывать только проводимости, которые по величине обратны соответствующим электрическим сопротивлениям. Если применяют параллельное соединение резисторов, формула расчета преобразуется следующим образом:

  • 1/Rобщ = 1/R1 + 1/R2;
  • Rобщ = 1/(1/R1 + 1/R2);
  • Rобщ = R1*R2/R1 + R2.

По аналогичным принципам несложно вывести расчетную формулу для трех, четырех или большего количества пассивных элементов, установленных параллельно.

Расчёт

До изучения технологий вычислений необходимо уточнить основные определения:

  • ветвями называют цепи с одним током;
  • узлы – это места их соединения;
  • контуры – замкнутые пути прохождения токов по нескольким ветвям.

Параллельное соединение проводников

Следует отдельно отметить два постулата. Они получили специфическое название «правила (законы) Кирхгофа» по фамилии ученого, сформулировавшего базовые принципы.

Первый закон (I1 + I2 + … + In = 0) определяет равным нулю суммарное значение всех токов, которые входят и выходят из одной точки в месте соединения нескольких ветвей.

Надо подчеркнуть! Данное выражение является точным для любых комбинаций компонентов, включенных в соответствующие цепи (резисторов, источников тока и других). Для удобства и наглядности расчетов учитывают входящие в узел токи с положительным знаком, выходящие – с отрицательным.

Второе правило упомянуто в качестве промежуточного вывода при рассмотрении последовательно включенных резисторов (Uип = U1 + U2 + U3). В классической формулировке закон утверждает равенство суммарных ЭДС источников питания и потенциалов на пассивных элементах, объединенных в одном расчетном контуре.

Последовательное соединение резисторов

  • С учетом сделанных определений можно составить формулу для любого количества резисторов, установленных в единой цепи без разветвлений:
  • Rобщ = R1 + R2 + … + Rn.
  • Вне зависимости от иных внешних компонентов, токи на входе и выходе в соответствии с первым правилом Кирхгофа будут одинаковыми.
  • Пример:
  • Uип = 6,5B;
  • R1= 8 Ом;
  • R2 = 12 Ом;
  • R3 = 4 Ом;
  • Rобщ = 8 + 12 + 4 = 24 Ом;
  • I = 6,5/24 = 0,27 А;
  • U1 = I * R1 = 0,27 * 8 = 2,16 В;
  • U2 = 0,27 * 12 = 3,24 В;
  • U3 = 0,27 * 4 = 1,08 В.
  1. Чтобы проверить последовательное соединение, формула на основе второго правила Кирхгофа пригодится:
  2. Uип = 2,16 + 3,24 +1,08 ≈ 6,5 В.
  3. Расчет подтвердил отсутствие ошибок.

Параллельное соединение резисторов

В этом варианте токи разделяются на входе и соединяются на выходе (первый закон Кирхгофа). Направление движения устанавливают от положительной клеммы с отрицательной подключенного источника питания. В соответствии с рассмотренными выше правилами при равенстве напряжений на отдельных резисторах токи в соответствующих цепях будут разными.

Для примера можно использовать предыдущие исходные данные:

  • общее сопротивление при параллельном соединении формула для трех компонентов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3

  • вставив номиналы, делают расчет Rобщ = 8 * 12 * 4 / (8*12 + 12*4 +8*4) = 2,182 Ом;
  • I = 6,5/ 2,182 ≈ 2,98 А;
  • I1 = 6,5/ 8 = 0,8125 А;
  • I2 = 6,5/12 ≈ 0,5417 А;
  • I3 = 6,5/4 = 1,625.
  • Как и в предыдущем случае, расчет проверяют. Если применяют параллельное сопротивление, формула вычислений должна подтвердить равенство токов:
  • I = 0,8125 + 0,5417 + 1,6225 = 2,9767 ≈ 2,98 А.
  • Соблюдено суммарное равенство входных и выходных значений для отдельного узла, поэтому ошибки отсутствуют.

Смешанное соединение резисторов

Если в схеме присутствует комбинация последовательных и параллельных соединений, выполняют последовательно упрощение, пользуясь представленными методиками расчетов.

Последовательное преобразование схемы для упрощения вычислений

На следующем рисунке показана последовательность преобразований:

  • по значениям установленных R3 и R4 определяют общее значение для участка цепи Rэ;
  • далее вычисляют сопротивление последовательных компонентов Rэ и R6;
  • на следующем этапе делают расчет для группы R2, Rэк и R5;
  • завершающее действие – суммирование R1, Rэ и R7 (рис. ниже).

Итоговый результат (Rэк) будет определять общее (эквивалентное) электрическое сопротивление группы резисторов. При необходимости вычисляют значения токов и напряжений в отдельных ветвях.

Типичные подключения

Последовательное и параллельное соединение аккумуляторов

Любой вариант соединений можно разделить на элементарные составляющие по рассмотренной выше методике. На следующем рисунке представлены типичные подключения вместе с основными формулами для расчетов.

Последовательное, параллельное и смешанное соединения

Расчёт комбинированных схем

Принцип упрощения и вычисления эквивалентного сопротивления можно изучить подробно на конкретном примере. Исходные данные (кОм):

  • R1 = 1;
  • R2 = 3;
  • R3 = 3;
  • R4 = 3.

Пояснение к технологии вычислений

Алгоритм действий:

  • суммируют номиналы в последовательной цепи: 3 + 3 = 6;
  • вычисляют сопротивление параллельного участка: 3*6/ (3 + 6) = 2;
  • завершают вычисление: 2 + 1 = 3.

Как рассчитать сложные схемы соединения резисторов

Решение трудной задачи демонстрирует пример преобразования «звезды» в «треугольник». Этот способ поможет рассчитать эквивалентное сопротивление типичной мостовой схемы соединения резистивных компонентов.

Преобразование сложной схемы

  1. Трансформация «звезды» показана на примере одного «луча»:
  2. R2 = (R23 * R24)/ R23 + R24 + R34.
  3. Другую часть рассчитывают по формуле:
  4. R23 =R2 + R3 + (R2 * R3)/R4.
  5. Эквивалентное сопротивление вычисляют следующим образом:
  6. Rэкв = ((R12 + R2) * (R13 + R3))/((R12 + R2) + (R13 + R3)) + R4.

Ток, протекающий в цепи параллельно соединенных резисторов

Для защиты по току светодиода необходима повышенная корректность при выборе подходящих пассивных элементов питающей цепи. Однако в ряду резисторов представлены только определенные номиналы.

Не решает проблему увеличение бюджета. Прецизионные изделия выпускают с минимальными допусками (0,5% и менее). Но и в этом случае речь идет о точности значений. Номиналы предлагают в соответствии с действующими международными стандартами.

Что делать, если необходимо создать цепь с Rобщ = 11,2 Ом, при наличии серийных резисторов 11 и 12 Ом? Для получения обозначенного результата создают параллельное соединение. Расчет можно сделать с применением онлайн калькулятора на специализированном сайте. Вычисления выполняются автоматически после заполнения простой формы. Такие услуги предлагают бесплатно без регистрации.

Таблица для выбора резисторов

Представленный на рисунке справочный материал поможет подобрать подходящие изделия быстро и точно. Для рассматриваемого примера подойдут резисторы 13 и 82 Ом. При параллельной установке они создадут сопротивление участка цепи 11,2 Ом.

Видео

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]